1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef elxConjugateGradient_h
#define elxConjugateGradient_h
#include "elxIncludes.h" // include first to avoid MSVS warning
#include "itkGenericConjugateGradientOptimizer.h"
#include "itkMoreThuenteLineSearchOptimizer.h"
namespace elastix
{
/**
* \class ConjugateGradient
* \brief An optimizer based on the itk::GenericConjugateGradientOptimizer.
*
* A ConjugateGradient optimizer, using the itk::MoreThuenteLineSearchOptimizer.
* Different conjugate gradient methods can be selected with this optimizer.
*
* This optimizer support the NewSamplesEveryIteration option. It requests
* new samples for the computation of each search direction (not during
* the line search). Actually this makes no sense for a conjugate gradient optimizer.
* So, think twice before using the NewSamplesEveryIteration option.
*
* The parameters used in this class are:
* \parameter Optimizer: Select this optimizer as follows:\n
* <tt>(Optimizer "ConjugateGradient")</tt>
* \parameter GenerateLineSearchIterations: Whether line search iteration
* should be counted as elastix-iterations.\n
* example: <tt>(GenerateLineSearchIterations "true")</tt>\n
* Can only be specified for all resolutions at once. \n
* Default value: "false".\n
* \parameter MaximumNumberOfIterations: The maximum number of iterations in each resolution. \n
* example: <tt>(MaximumNumberOfIterations 100 100 50)</tt> \n
* Default value: 100.\n
* \parameter MaximumNumberOfLineSearchIterations: The maximum number of iterations in each resolution. \n
* example: <tt>(MaximumNumberOfIterations 10 10 5)</tt> \n
* Default value: 10.\n
* \parameter StepLength: Set the length of the initial step tried by the
* itk::MoreThuenteLineSearchOptimizer.\n
* example: <tt>(StepLength 2.0 1.0 0.5)</tt> \n
* Default value: 1.0.\n
* \parameter LineSearchValueTolerance: Determine the Wolfe conditions that the
* itk::MoreThuenteLineSearchOptimizer tries to satisfy.\n
* example: <tt>(LineSearchValueTolerance 0.0001 0.0001 0.0001)</tt> \n
* Default value: 0.0001.\n
* \parameter LineSearchGradientTolerance: Determine the Wolfe conditions that the
* itk::MoreThuenteLineSearchOptimizer tries to satisfy.\n
* example: <tt>(LineSearchGradientTolerance 0.9 0.9 0.9)</tt> \n
* Default value: 0.9.\n
* \parameter ValueTolerance: Stopping criterion. See the documentation of the
* itk::GenericConjugateGradientOptimizer for more information.\n
* example: <tt>(ValueTolerance 0.001 0.0001 0.000001)</tt> \n
* Default value: 0.00001.\n
* \parameter GradientMagnitudeTolerance: Stopping criterion. See the documentation of the
* itk::GenericConjugateGradientOptimizer for more information.\n
* example: <tt>(GradientMagnitudeTolerance 0.001 0.0001 0.000001)</tt> \n
* Default value: 0.000001.\n
* \parameter ConjugateGradientType: a string that defines how 'beta' is computed in each resolution.
* The following methods are implemented: "SteepestDescent", "FletcherReeves", "PolakRibiere",
* "DaiYuan", "HestenesStiefel", and "DaiYuanHestenesStiefel". "SteepestDescent" simply sets beta=0.
* See the source code of the GenericConjugateGradientOptimizer for more information.\n
* example: <tt>(ConjugateGradientType "FletcherReeves" "PolakRibiere")</tt> \n
* Default value: "DaiYuanHestenesStiefel".\n
* \parameter StopIfWolfeNotSatisfied: Whether to stop the optimisation if in one iteration
* the Wolfe conditions can not be satisfied by the itk::MoreThuenteLineSearchOptimizer.\n
* In general it is wise to do so.\n
* example: <tt>(StopIfWolfeNotSatisfied "true" "false")</tt> \n
* Default value: "true".\n
*
*
* \ingroup Optimizers
*/
template <class TElastix>
class ITK_TEMPLATE_EXPORT ConjugateGradient
: public itk::GenericConjugateGradientOptimizer
, public OptimizerBase<TElastix>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ConjugateGradient);
/** Standard ITK.*/
using Self = ConjugateGradient;
using Superclass1 = GenericConjugateGradientOptimizer;
using Superclass2 = OptimizerBase<TElastix>;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(ConjugateGradient, GenericConjugateGradientOptimizer);
/** Name of this class.
* Use this name in the parameter file to select this specific optimizer. \n
* example: <tt>(Optimizer "ConjugateGradient")</tt>\n
*/
elxClassNameMacro("ConjugateGradient");
/** Typedef's inherited from Superclass1.*/
using Superclass1::CostFunctionType;
using Superclass1::CostFunctionPointer;
using Superclass1::StopConditionType;
using Superclass1::ParametersType;
using Superclass1::DerivativeType;
using Superclass1::ScalesType;
/** Typedef's inherited from Elastix.*/
using typename Superclass2::ElastixType;
using typename Superclass2::RegistrationType;
using ITKBaseType = typename Superclass2::ITKBaseType;
/** Extra typedefs */
using LineOptimizerType = itk::MoreThuenteLineSearchOptimizer;
using LineOptimizerPointer = LineOptimizerType::Pointer;
using EventPassThroughType = itk::ReceptorMemberCommand<Self>;
using EventPassThroughPointer = typename EventPassThroughType::Pointer;
/** Check if any scales are set, and set the UseScales flag on or off;
* after that call the superclass' implementation */
void
StartOptimization() override;
/** Methods to set parameters and print output at different stages
* in the registration process.*/
void
BeforeRegistration() override;
void
BeforeEachResolution() override;
void
AfterEachResolution() override;
void
AfterEachIteration() override;
void
AfterRegistration() override;
itkGetConstMacro(StartLineSearch, bool);
protected:
ConjugateGradient();
~ConjugateGradient() override = default;
LineOptimizerPointer m_LineOptimizer;
/** Convert the line search stop condition to a string */
virtual std::string
GetLineSearchStopCondition() const;
/** Generate a string, representing the phase of optimisation
* (line search, main) */
virtual std::string
DeterminePhase() const;
/** Reimplement the superclass. Calls the superclass' implementation
* and checks if the MoreThuente line search routine has stopped with
* Wolfe conditions satisfied. */
bool
TestConvergence(bool firstLineSearchDone) override;
/** Call the superclass' implementation. If an itk::ExceptionObject is caught,
* because the line search optimizer tried a too big step, the exception
* is printed, but ignored further. The optimizer stops, but elastix
* just goes on to the next resolution. */
void
LineSearch(const ParametersType searchDir, double & step, ParametersType & x, MeasureType & f, DerivativeType & g)
override;
private:
elxOverrideGetSelfMacro;
void
InvokeIterationEvent(const itk::EventObject & event);
EventPassThroughPointer m_EventPasser;
double m_SearchDirectionMagnitude;
bool m_StartLineSearch;
bool m_GenerateLineSearchIterations;
bool m_StopIfWolfeNotSatisfied;
bool m_WolfeIsStopCondition;
};
} // end namespace elastix
#ifndef ITK_MANUAL_INSTANTIATION
# include "elxConjugateGradient.hxx"
#endif
#endif // end #ifndef elxConjugateGradient_h
|