1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef elxConjugateGradient_hxx
#define elxConjugateGradient_hxx
#include "elxConjugateGradient.h"
#include <iomanip>
#include <string>
#include <vnl/vnl_math.h>
namespace elastix
{
/**
* ********************* Constructor ****************************
*/
template <class TElastix>
ConjugateGradient<TElastix>::ConjugateGradient()
{
this->m_LineOptimizer = LineOptimizerType::New();
this->SetLineSearchOptimizer(this->m_LineOptimizer);
this->m_EventPasser = EventPassThroughType::New();
this->m_EventPasser->SetCallbackFunction(this, &Self::InvokeIterationEvent);
this->m_LineOptimizer->AddObserver(itk::IterationEvent(), this->m_EventPasser);
this->m_LineOptimizer->AddObserver(itk::StartEvent(), this->m_EventPasser);
this->m_SearchDirectionMagnitude = 0.0;
this->m_StartLineSearch = false;
this->m_GenerateLineSearchIterations = false;
this->m_StopIfWolfeNotSatisfied = true;
this->m_WolfeIsStopCondition = false;
} // end Constructor
/**
* ***************** InvokeIterationEvent ************************
*/
template <class TElastix>
void
ConjugateGradient<TElastix>::InvokeIterationEvent(const itk::EventObject & event)
{
if (typeid(event) == typeid(itk::StartEvent))
{
this->m_StartLineSearch = true;
this->m_SearchDirectionMagnitude = this->m_LineOptimizer->GetLineSearchDirection().magnitude();
}
else
{
this->m_StartLineSearch = false;
}
if (this->m_GenerateLineSearchIterations)
{
this->InvokeEvent(itk::IterationEvent());
}
this->m_StartLineSearch = false;
} // end InvokeIterationEvent
/**
* ***************** StartOptimization ************************
*/
template <class TElastix>
void
ConjugateGradient<TElastix>::StartOptimization()
{
/** Check if the entered scales are correct and != [ 1 1 1 ...] */
this->SetUseScales(false);
const ScalesType & scales = this->GetScales();
if (scales.GetSize() == this->GetInitialPosition().GetSize())
{
ScalesType unit_scales(scales.GetSize(), 1.0);
if (scales != unit_scales)
{
/** only then: */
this->SetUseScales(true);
}
}
this->Superclass1::StartOptimization();
} // end StartOptimization
/**
* ***************** LineSearch ************************
*/
template <class TElastix>
void
ConjugateGradient<TElastix>::LineSearch(const ParametersType searchDir,
double & step,
ParametersType & x,
MeasureType & f,
DerivativeType & g)
{
/** Call the superclass's implementation and ignore a
* LineSearchError. Just report the error and assume convergence. */
try
{
this->Superclass1::LineSearch(searchDir, step, x, f, g);
}
catch (const itk::ExceptionObject & err)
{
if (this->GetLineSearchOptimizer() == nullptr)
{
throw;
}
else if (this->GetStopCondition() != StopConditionType::LineSearchError)
{
throw;
}
else
{
log::error(std::ostringstream{} << err << '\n' << "The error is ignored and convergence is assumed.");
step = 0.0;
x = this->GetScaledCurrentPosition();
f = this->GetCurrentValue();
g = this->GetCurrentGradient();
}
}
} // end LineSearch
/**
* ***************** DeterminePhase *****************************
*
* This method gives only sensible output if it is called
* during iterating
*/
template <class TElastix>
std::string
ConjugateGradient<TElastix>::DeterminePhase() const
{
if (this->GetInLineSearch())
{
return std::string("LineOptimizing");
}
return std::string("Main");
} // end DeterminePhase
/**
* ***************** BeforeRegistration ***********************
*/
template <class TElastix>
void
ConjugateGradient<TElastix>::BeforeRegistration()
{
/** Add target cells to IterationInfo.*/
this->AddTargetCellToIterationInfo("1a:SrchDirNr");
this->AddTargetCellToIterationInfo("1b:LineItNr");
this->AddTargetCellToIterationInfo("2:Metric");
this->AddTargetCellToIterationInfo("3:StepLength");
this->AddTargetCellToIterationInfo("4a:||Gradient||");
this->AddTargetCellToIterationInfo("4b:||SearchDir||");
this->AddTargetCellToIterationInfo("4c:DirGradient");
this->AddTargetCellToIterationInfo("5:Phase");
this->AddTargetCellToIterationInfo("6a:Wolfe1");
this->AddTargetCellToIterationInfo("6b:Wolfe2");
this->AddTargetCellToIterationInfo("7:LinSrchStopCondition");
/** Format the metric and stepsize as floats */
this->GetIterationInfoAt("2:Metric") << std::showpoint << std::fixed;
this->GetIterationInfoAt("3:StepLength") << std::showpoint << std::fixed;
this->GetIterationInfoAt("4a:||Gradient||") << std::showpoint << std::fixed;
this->GetIterationInfoAt("4b:||SearchDir||") << std::showpoint << std::fixed;
this->GetIterationInfoAt("4c:DirGradient") << std::showpoint << std::fixed;
/** Check in the parameter file whether line search iterations should
* be generated */
this->m_GenerateLineSearchIterations = false; // bool
std::string generateLineSearchIterations = "false";
this->m_Configuration->ReadParameter(generateLineSearchIterations, "GenerateLineSearchIterations", 0);
if (generateLineSearchIterations == "true")
{
this->m_GenerateLineSearchIterations = true;
}
} // end BeforeRegistration
/**
* ***************** BeforeEachResolution ***********************
*/
template <class TElastix>
void
ConjugateGradient<TElastix>::BeforeEachResolution()
{
/** Get the current resolution level.*/
unsigned int level = static_cast<unsigned int>(this->m_Registration->GetAsITKBaseType()->GetCurrentLevel());
/** Set the maximumNumberOfIterations.*/
unsigned int maximumNumberOfIterations = 100;
this->m_Configuration->ReadParameter(
maximumNumberOfIterations, "MaximumNumberOfIterations", this->GetComponentLabel(), level, 0);
this->SetMaximumNumberOfIterations(maximumNumberOfIterations);
/** Set the maximumNumberOfIterations used for a line search.*/
unsigned int maximumNumberOfLineSearchIterations = 20;
this->m_Configuration->ReadParameter(
maximumNumberOfLineSearchIterations, "MaximumNumberOfLineSearchIterations", this->GetComponentLabel(), level, 0);
this->m_LineOptimizer->SetMaximumNumberOfIterations(maximumNumberOfLineSearchIterations);
/** Set the length of the initial step, used to bracket the minimum. */
double stepLength = 1.0;
this->m_Configuration->ReadParameter(stepLength, "StepLength", this->GetComponentLabel(), level, 0);
this->m_LineOptimizer->SetInitialStepLengthEstimate(stepLength);
/** Set the LineSearchValueTolerance */
double lineSearchValueTolerance = 0.0001;
this->m_Configuration->ReadParameter(
lineSearchValueTolerance, "LineSearchValueTolerance", this->GetComponentLabel(), level, 0);
this->m_LineOptimizer->SetValueTolerance(lineSearchValueTolerance);
/** Set the LineSearchGradientTolerance */
double lineSearchGradientTolerance = 0.9;
this->m_Configuration->ReadParameter(
lineSearchGradientTolerance, "LineSearchGradientTolerance", this->GetComponentLabel(), level, 0);
this->m_LineOptimizer->SetGradientTolerance(lineSearchGradientTolerance);
/** Set the GradientMagnitudeTolerance */
double gradientMagnitudeTolerance = 0.000001;
this->m_Configuration->ReadParameter(
gradientMagnitudeTolerance, "GradientMagnitudeTolerance", this->GetComponentLabel(), level, 0);
this->SetGradientMagnitudeTolerance(gradientMagnitudeTolerance);
/** Set the ValueTolerance */
double valueTolerance = 0.00001;
this->m_Configuration->ReadParameter(valueTolerance, "ValueTolerance", this->GetComponentLabel(), level, 0);
this->SetValueTolerance(valueTolerance);
/** Set the definition of beta */
std::string betaDefinition = "DaiYuanHestenesStiefel";
this->m_Configuration->ReadParameter(betaDefinition, "ConjugateGradientType", this->GetComponentLabel(), level, 0);
this->SetBetaDefinition(betaDefinition);
/** Just guess this one: */
this->SetMaxNrOfItWithoutImprovement(10);
/** Check whether to stop optimisation if Wolfe conditions are not satisfied. */
this->m_StopIfWolfeNotSatisfied = true;
std::string stopIfWolfeNotSatisfied = "true";
this->m_Configuration->ReadParameter(
stopIfWolfeNotSatisfied, "StopIfWolfeNotSatisfied", this->GetComponentLabel(), level, 0);
if (stopIfWolfeNotSatisfied == "false")
{
this->m_StopIfWolfeNotSatisfied = false;
}
this->m_WolfeIsStopCondition = false;
this->m_SearchDirectionMagnitude = 0.0;
this->m_StartLineSearch = false;
} // end BeforeEachResolution
/**
* ***************** AfterEachIteration *************************
*/
template <class TElastix>
void
ConjugateGradient<TElastix>::AfterEachIteration()
{
/** Print some information. */
if (this->GetStartLineSearch())
{
this->GetIterationInfoAt("1b:LineItNr") << "start";
}
else
{
/**
* If we are in a line search iteration the current line search
* iteration number is printed.
* If we are in a "main" iteration (no line search) the last
* line search iteration number (so the number of line search
* iterations minus one) is printed out.
*/
this->GetIterationInfoAt("1b:LineItNr") << this->m_LineOptimizer->GetCurrentIteration();
}
if (this->GetInLineSearch())
{
this->GetIterationInfoAt("2:Metric") << this->m_LineOptimizer->GetCurrentValue();
this->GetIterationInfoAt("3:StepLength") << this->m_LineOptimizer->GetCurrentStepLength();
LineOptimizerType::DerivativeType cd;
this->m_LineOptimizer->GetCurrentDerivative(cd);
this->GetIterationInfoAt("4a:||Gradient||") << cd.magnitude();
this->GetIterationInfoAt("7:LinSrchStopCondition") << "---";
} // end if in line search
else
{
this->GetIterationInfoAt("2:Metric") << this->GetCurrentValue();
this->GetIterationInfoAt("3:StepLength") << this->GetCurrentStepLength();
this->GetIterationInfoAt("4a:||Gradient||") << this->GetCurrentGradient().magnitude();
this->GetIterationInfoAt("7:LinSrchStopCondition") << this->GetLineSearchStopCondition();
} // end else (not in line search)
this->GetIterationInfoAt("1a:SrchDirNr") << this->GetCurrentIteration();
this->GetIterationInfoAt("5:Phase") << this->DeterminePhase();
this->GetIterationInfoAt("4b:||SearchDir||") << this->m_SearchDirectionMagnitude;
this->GetIterationInfoAt("4c:DirGradient") << this->m_LineOptimizer->GetCurrentDirectionalDerivative();
if (this->m_LineOptimizer->GetSufficientDecreaseConditionSatisfied())
{
this->GetIterationInfoAt("6a:Wolfe1") << "true";
}
else
{
this->GetIterationInfoAt("6a:Wolfe1") << "false";
}
if (this->m_LineOptimizer->GetCurvatureConditionSatisfied())
{
this->GetIterationInfoAt("6b:Wolfe2") << "true";
}
else
{
this->GetIterationInfoAt("6b:Wolfe2") << "false";
}
if (!(this->GetInLineSearch()))
{
/** Set the initial step length estimate for the next line search
* to the result of the last iteration */
this->m_LineOptimizer->SetInitialStepLengthEstimate(this->GetCurrentStepLength());
/** If new samples: compute a new gradient and value. These
* will be used in the computation of a new search direction */
if (this->GetNewSamplesEveryIteration())
{
this->SelectNewSamples();
try
{
this->GetScaledValueAndDerivative(
this->GetScaledCurrentPosition(), this->m_CurrentValue, this->m_CurrentGradient);
}
catch (const itk::ExceptionObject &)
{
this->m_StopCondition = StopConditionType::MetricError;
this->StopOptimization();
throw;
}
} // end if new samples every iteration
} // end if not in line search
} // end AfterEachIteration
/**
* ***************** AfterEachResolution *************************
*/
template <class TElastix>
void
ConjugateGradient<TElastix>::AfterEachResolution()
{
/**
enum {
MetricError,
LineSearchError,
MaximumNumberOfIterations,
GradientMagnitudeTolerance,
ValueTolerance,
Unknown }
*/
std::string stopcondition;
if (this->m_WolfeIsStopCondition)
{
stopcondition = "Wolfe conditions are not satisfied";
}
else
{
switch (this->GetStopCondition())
{
case StopConditionType::MetricError:
stopcondition = "Error in metric";
break;
case StopConditionType::LineSearchError:
stopcondition = "Error in LineSearch";
break;
case StopConditionType::MaximumNumberOfIterations:
stopcondition = "Maximum number of iterations has been reached";
break;
case StopConditionType::GradientMagnitudeTolerance:
stopcondition = "The gradient magnitude has (nearly) vanished";
break;
case StopConditionType::ValueTolerance:
stopcondition = "Almost no decrease in function value anymore";
break;
case StopConditionType::InfiniteBeta:
stopcondition = "The beta factor became infinite";
break;
default:
stopcondition = "Unknown";
break;
}
} // end else
/** Print the stopping condition */
log::info(std::ostringstream{} << "Stopping condition: " << stopcondition << ".");
} // end AfterEachResolution
/**
* ******************* AfterRegistration ************************
*/
template <class TElastix>
void
ConjugateGradient<TElastix>::AfterRegistration()
{
/** Print the best metric value */
double bestValue = this->GetCurrentValue();
log::info(std::ostringstream{} << '\n' << "Final metric value = " << bestValue);
} // end AfterRegistration
/**
* *********************** TestConvergence *****************
*/
template <class TElastix>
bool
ConjugateGradient<TElastix>::TestConvergence(bool firstLineSearchDone)
{
bool convergence = this->Superclass1::TestConvergence(firstLineSearchDone);
/** Stop if the Wolfe conditions are not satisfied
* NB: this check is only done when 'convergence' wasn't true already */
if (this->m_StopIfWolfeNotSatisfied && !convergence && firstLineSearchDone)
{
if ((!(this->m_LineOptimizer->GetCurvatureConditionSatisfied())) ||
(!(this->m_LineOptimizer->GetSufficientDecreaseConditionSatisfied())))
{
/** Stop the optimisation */
this->m_WolfeIsStopCondition = true;
convergence = true;
}
}
return convergence;
} // end TestConvergence
/**
* ***************** GetLineSearchStopCondition *****************
*/
template <class TElastix>
std::string
ConjugateGradient<TElastix>::GetLineSearchStopCondition() const
{
/** Must be repeated here; otherwise the StopconditionTypes of the
* GenericConjugateGradientOptimizer and the LineSearchOptimizer
* are mixed up. */
enum class LineSearchStopConditionType
{
StrongWolfeConditionsSatisfied,
MetricError,
MaximumNumberOfIterations,
StepTooSmall,
StepTooLarge,
IntervalTooSmall,
RoundingError,
AscentSearchDirection,
Unknown
};
std::string stopcondition;
LineSearchStopConditionType lineSearchStopCondition =
static_cast<LineSearchStopConditionType>(this->m_LineOptimizer->GetStopCondition());
switch (lineSearchStopCondition)
{
case LineSearchStopConditionType::StrongWolfeConditionsSatisfied:
stopcondition = "WolfeSatisfied";
break;
case LineSearchStopConditionType::MetricError:
stopcondition = "MetricError";
break;
case LineSearchStopConditionType::MaximumNumberOfIterations:
stopcondition = "MaxNrIterations";
break;
case LineSearchStopConditionType::StepTooSmall:
stopcondition = "StepTooSmall";
break;
case LineSearchStopConditionType::StepTooLarge:
stopcondition = "StepTooLarge";
break;
case LineSearchStopConditionType::IntervalTooSmall:
stopcondition = "IntervalTooSmall";
break;
case LineSearchStopConditionType::RoundingError:
stopcondition = "RoundingError";
break;
case LineSearchStopConditionType::AscentSearchDirection:
stopcondition = "AscentSearchDir";
break;
default:
stopcondition = "Unknown";
break;
}
return stopcondition;
} // end GetLineSearchStopCondition
} // end namespace elastix
#endif // end #ifndef elxConjugateGradient_hxx
|