1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef elxPreconditionedStochasticGradientDescent_h
#define elxPreconditionedStochasticGradientDescent_h
#include "elxIncludes.h" // include first to avoid MSVS warning
#include "itkPreconditionedASGDOptimizer.h"
#include "itkComputeDisplacementDistribution.h" // For fast step size estimation
#include "itkComputePreconditionerUsingDisplacementDistribution.h"
#include "elxProgressCommand.h"
#include "itkAdvancedTransform.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkAdvancedBSplineDeformableTransformBase.h"
#include "itkImageRandomSampler.h"
namespace elastix
{
/**
* \class PreconditionedStochasticGradientDescent
* \brief A gradient descent optimizer with an adaptive gain.
*
* This class is a wrap around the PreconditionedASGDOptimizer class.
* It takes care of setting parameters and printing progress information.
* For more information about the optimization method, please read the documentation
* of the PreconditionedASGDOptimizer class.
*
* This optimizer is very suitable to be used in combination with the Random image sampler,
* or with the RandomCoordinate image sampler, with the setting (NewSamplesEveryIteration "true").
* Much effort has been spent on providing reasonable default values for all parameters, to
* simplify usage. In most registration problems, good results should be obtained without specifying
* any of the parameters described below (except the first of course, which defines the optimizer
* to use).
*
* This optimization method is described in the following references:
*
* [1] Y. Qiao, B.P.F. Lelieveldt, M. Staring
* An efficient preconditioner for stochastic gradient descent optimization of image registration
* IEEE Transactions on Medical Imaging, 2019
* https://doi.org/10.1109/TMI.2019.2897943
*
* The parameters used in this class are:
* \parameter Optimizer: Select this optimizer as follows:\n
* <tt>(Optimizer "PreconditionedStochasticGradientDescent")</tt>
* \parameter MaximumNumberOfIterations: The maximum number of iterations in each resolution. \n
* example: <tt>(MaximumNumberOfIterations 100 100 50)</tt> \n
* Default/recommended value: 500. When you are in a hurry, you may go down to 250 for example.
* When you have plenty of time, and want to be absolutely sure of the best results, a setting
* of 2000 is reasonable. In general, 500 gives satisfactory results.
* \parameter MaximumNumberOfSamplingAttempts: The maximum number of sampling attempts. Sometimes
* not enough corresponding samples can be drawn, upon which an exception is thrown. With this
* parameter it is possible to try to draw another set of samples. \n
* example: <tt>(MaximumNumberOfSamplingAttempts 10 15 10)</tt> \n
* Default value: 0, i.e. just fail immediately, for backward compatibility.
* \parameter AutomaticParameterEstimation: When this parameter is set to "true",
* many other parameters are calculated automatically: SP_a, SP_alpha, SigmoidMax,
* SigmoidMin, and SigmoidScale. In the elastix.log file the actually chosen values for
* these parameters can be found. \n
* example: <tt>(AutomaticParameterEstimation "true")</tt>\n
* Default/recommended value: "true". The parameter can be specified for each resolution,
* or for all resolutions at once.
* \parameter StepSizeStrategy: When this parameter is set to "true", the adaptive
* step size mechanism described in the documentation of
* itk::itkPreconditionedASGDOptimizer is used.
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(StepSizeStrategy "Adaptive")</tt>\n
* Default/recommend value: "Adaptive", because it makes the registration more robust. In case
* of using a RandomCoordinate sampler, with (UseRandomSampleRegion "true"), the adaptive
* step size mechanism is turned off, no matter the user setting.
* \parameter MaximumStepLength: Also called \f$\delta\f$. This parameter can be considered as
* the maximum voxel displacement between two iterations. The larger this parameter, the
* more aggressive the optimization.
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(MaximumStepLength 1.0)</tt>\n
* Default: mean voxel spacing of fixed and moving image. This seems to work well in general.
* This parameter only has influence when AutomaticParameterEstimation is used.
* \parameter SP_a: The gain \f$a(k)\f$ at each iteration \f$k\f$ is defined by \n
* \f$a(k) = SP\_a / (SP\_A + k + 1)^{SP\_alpha}\f$. \n
* SP_a can be defined for each resolution. \n
* example: <tt>(SP_a 3200.0 3200.0 1600.0)</tt> \n
* The default value is 400.0. Tuning this variable for you specific problem is recommended.
* Alternatively set the AutomaticParameterEstimation to "true". In that case, you do not
* need to specify SP_a. SP_a has no influence when AutomaticParameterEstimation is used.
* \parameter SP_A: The gain \f$a(k)\f$ at each iteration \f$k\f$ is defined by \n
* \f$a(k) = SP\_a / (SP\_A + k + 1)^{SP\_alpha}\f$. \n
* SP_A can be defined for each resolution. \n
* example: <tt>(SP_A 50.0 50.0 100.0)</tt> \n
* The default/recommended value for this particular optimizer is 20.0.
* \parameter SP_alpha: The gain \f$a(k)\f$ at each iteration \f$k\f$ is defined by \n
* \f$a(k) = SP\_a / (SP\_A + k + 1)^{SP\_alpha}\f$. \n
* SP_alpha can be defined for each resolution. \n
* example: <tt>(SP_alpha 0.602 0.602 0.602)</tt> \n
* The default/recommended value for this particular optimizer is 1.0.
* Alternatively set the AutomaticParameterEstimation to "true". In that case, you do not
* need to specify SP_alpha. SP_alpha has no influence when AutomaticParameterEstimation is used.
* \parameter SigmoidMax: The maximum of the sigmoid function (\f$f_{max}\f$). Must be larger than 0.
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(SigmoidMax 1.0)</tt>\n
* Default/recommended value: 1.0. This parameter has no influence when AutomaticParameterEstimation
* is used. In that case, always a value 1.0 is used.
* \parameter SigmoidMin: The minimum of the sigmoid function (\f$f_{min}\f$). Must be smaller than 0.
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(SigmoidMin -0.8)</tt>\n
* Default value: -0.8. This parameter has no influence when AutomaticParameterEstimation
* is used. In that case, the value is automatically determined, depending on the images,
* metric etc.
* \parameter SigmoidScale: The scale/width of the sigmoid function (\f$\omega\f$).
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(SigmoidScale 0.00001)</tt>\n
* Default value: 1e-8. This parameter has no influence when AutomaticParameterEstimation
* is used. In that case, the value is automatically determined, depending on the images,
* metric etc.
* \parameter SigmoidInitialTime: the initial time input for the sigmoid (\f$t_0\f$). Must be
* larger than 0.0.
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(SigmoidInitialTime 0.0 5.0 5.0)</tt>\n
* Default value: 0.0. When increased, the optimization starts with smaller steps, leaving
* the possibility to increase the steps when necessary. If set to 0.0, the method starts with
* with the largest step allowed.
* \parameter NumberOfGradientMeasurements: Number of gradients N to estimate the
* average square magnitudes of the exact gradient and the approximation error.
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(NumberOfGradientMeasurements 10)</tt>\n
* Default value: 0, which means that the value is automatically estimated.
* In principle, the more the better, but the slower. In practice N=10 is usually sufficient.
* But the automatic estimation achieved by N=0 also works good.
* The parameter has only influence when AutomaticParameterEstimation is used.
* \parameter NumberOfJacobianMeasurements: The number of voxels M where the Jacobian is measured,
* which is used to estimate the covariance matrix.
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(NumberOfJacobianMeasurements 5000 10000 20000)</tt>\n
* Default value: M = max( 1000, nrofparams ), with nrofparams the
* number of transform parameters. This is a rather crude rule of thumb,
* which seems to work in practice. In principle, the more the better, but the slower.
* The parameter has only influence when AutomaticParameterEstimation is used.
* \parameter NumberOfSamplesForNoiseCompensationFactor: The number of image samples used to compute
* the 'exact' gradient. The samples are chosen on a uniform grid.
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(NumberOfSamplesForNoiseCompensationFactor 100000)</tt>\n
* Default/recommended: 100000. This works in general. If the image is smaller, the number
* of samples is automatically reduced. In principle, the more the better, but the slower.
* The parameter has only influence when AutomaticParameterEstimation is used.
* \parameter m_NumberOfSamplesForPrecondition: The number of image samples used to compute
* the gradient for preconditioner. The samples are chosen on a random sampler.
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(NumberOfSamplesForPrecondition 500000)</tt>\n
* Default/recommended: 500000. This works in general. If the image is smaller, the number
* of samples is automatically reduced. In principle, the more the better, but the slower.
* The parameter has only influence when AutomaticParameterEstimation is used.
* \parameter RegularizationKappa: Selects for the preconditioner regularization.
* The parameter can be specified for each resolution, or for all resolutions at once.\n
* example: <tt>(RegularizationKappa 0.9)</tt>\n
*
* \todo: this class contains a lot of functional code, which actually does not belong here.
*
* \sa PreconditionedASGDOptimizer
* \ingroup Optimizers
*/
template <class TElastix>
class ITK_TEMPLATE_EXPORT PreconditionedStochasticGradientDescent
: public itk::PreconditionedASGDOptimizer
, public OptimizerBase<TElastix>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(PreconditionedStochasticGradientDescent);
/** Standard ITK. */
using Self = PreconditionedStochasticGradientDescent;
using Superclass1 = PreconditionedASGDOptimizer;
using Superclass2 = OptimizerBase<TElastix>;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(PreconditionedStochasticGradientDescent, VoxelWiseASGDOptimizer);
/** Name of this class.
* Use this name in the parameter file to select this specific optimizer.
* example: <tt>(Optimizer "PreconditionedStochasticGradientDescent")</tt>\n
*/
elxClassNameMacro("PreconditionedStochasticGradientDescent");
/** Typedef's inherited from Superclass1. */
using Superclass1::CostFunctionType;
using Superclass1::CostFunctionPointer;
using Superclass1::StopConditionType;
/** Typedef's inherited from Superclass2. */
using typename Superclass2::ElastixType;
using typename Superclass2::RegistrationType;
using ITKBaseType = typename Superclass2::ITKBaseType;
using SizeValueType = itk::SizeValueType;
/** Typedef for the ParametersType. */
using typename Superclass1::ParametersType;
/** Methods invoked by elastix, in which parameters can be set and
* progress information can be printed.
*/
void
BeforeRegistration() override;
void
BeforeEachResolution() override;
void
AfterEachResolution() override;
void
AfterEachIteration() override;
void
AfterRegistration() override;
/** Check if any scales are set, and set the UseScales flag on or off;
* after that call the superclass' implementation.
*/
void
StartOptimization() override;
/** Advance one step following the gradient direction. */
void
AdvanceOneStep() override;
/** If automatic gain estimation is desired, then estimate SP_a, SP_alpha
* SigmoidScale, SigmoidMax, SigmoidMin.
* After that call Superclass' implementation.
*/
void
ResumeOptimization() override;
/** Stop optimization and pass on exception. */
void
MetricErrorResponse(itk::ExceptionObject & err) override;
/** Set/Get whether automatic parameter estimation is desired.
* If true, make sure to set the maximum step length.
*
* The following parameters are automatically determined:
* SP_a, SP_alpha (=1), SigmoidMin, SigmoidMax (=1),
* SigmoidScale.
* A usually suitable value for SP_A is 20, which is the
* default setting, if not specified by the user.
*/
itkSetMacro(AutomaticParameterEstimation, bool);
itkGetConstMacro(AutomaticParameterEstimation, bool);
/** Set/Get maximum step length. */
itkSetMacro(MaximumStepLength, double);
itkGetConstReferenceMacro(MaximumStepLength, double);
/** Set/Get regularization value kappa. */
itkSetClampMacro(RegularizationKappa, double, 0.0, 1.0);
itkGetConstReferenceMacro(RegularizationKappa, double);
/** Set/Get the MaximumNumberOfSamplingAttempts. */
itkSetMacro(MaximumNumberOfSamplingAttempts, SizeValueType);
itkGetConstReferenceMacro(MaximumNumberOfSamplingAttempts, SizeValueType);
protected:
PreconditionedStochasticGradientDescent();
~PreconditionedStochasticGradientDescent() override = default;
/** Protected typedefs */
using FixedImageType = typename RegistrationType::FixedImageType;
using MovingImageType = typename RegistrationType::MovingImageType;
using FixedImageRegionType = typename FixedImageType::RegionType;
using FixedImageIndexType = typename FixedImageType::IndexType;
using FixedImagePointType = typename FixedImageType::PointType;
using itkRegistrationType = typename RegistrationType::ITKBaseType;
using TransformType = typename itkRegistrationType::TransformType;
using JacobianType = typename TransformType::JacobianType;
using JacobianValueType = typename JacobianType::ValueType;
using typename Superclass2::SettingsType;
using typename Superclass2::SettingsVectorType;
using OutputImageType = typename ElastixType::FixedImageType;
using PreconditionerEstimationType =
itk::ComputePreconditionerUsingDisplacementDistribution<FixedImageType, TransformType>;
using PreconditionerEstimationPointer = typename PreconditionerEstimationType::Pointer;
using ComputeDisplacementDistributionType = itk::ComputeDisplacementDistribution<FixedImageType, TransformType>;
/** Samplers: */
using ImageSamplerBaseType = itk::ImageSamplerBase<FixedImageType>;
using ImageSamplerBasePointer = typename ImageSamplerBaseType::Pointer;
using ImageRandomSamplerBaseType = itk::ImageRandomSamplerBase<FixedImageType>;
using ImageRandomSamplerBasePointer = typename ImageRandomSamplerBaseType::Pointer;
using ImageRandomCoordinateSamplerType = itk::ImageRandomCoordinateSampler<FixedImageType>;
using ImageRandomCoordinateSamplerPointer = typename ImageRandomCoordinateSamplerType::Pointer;
using ImageRandomSamplerType = itk::ImageRandomSampler<FixedImageType>;
using ImageRandomSamplerPointer = typename ImageRandomSamplerType::Pointer;
using ImageGridSamplerType = itk::ImageGridSampler<FixedImageType>;
using ImageGridSamplerPointer = typename ImageGridSamplerType::Pointer;
using ImageSampleContainerType = typename ImageGridSamplerType::ImageSampleContainerType;
using ImageSampleContainerPointer = typename ImageSampleContainerType::Pointer;
/** Other protected typedefs */
using RandomGeneratorType = itk::Statistics::MersenneTwisterRandomVariateGenerator;
using RandomGeneratorPointer = typename RandomGeneratorType::Pointer;
/** Typedefs for support of sparse Jacobians and AdvancedTransforms. */
using TransformJacobianType = JacobianType;
itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);
itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);
using CoordinateRepresentationType = typename TransformType::ScalarType;
using AdvancedTransformType =
itk::AdvancedTransform<CoordinateRepresentationType, Self::FixedImageDimension, Self::MovingImageDimension>;
using AdvancedTransformPointer = typename AdvancedTransformType::Pointer;
using NonZeroJacobianIndicesType = typename AdvancedTransformType::NonZeroJacobianIndicesType;
using AdvancedBSplineDeformableTransformType =
itk::AdvancedBSplineDeformableTransformBase<CoordinateRepresentationType, Self::FixedImageDimension>;
using BSplineTransformBasePointer = typename AdvancedBSplineDeformableTransformType::Pointer;
/** Variable to store the automatically determined settings for each resolution. */
SettingsVectorType m_SettingsVector;
/** Some options for automatic parameter estimation. */
SizeValueType m_NumberOfGradientMeasurements;
SizeValueType m_NumberOfJacobianMeasurements;
SizeValueType m_NumberOfSamplesForNoiseCompensationFactor;
SizeValueType m_NumberOfSamplesForPrecondition;
SizeValueType m_NumberOfSpatialSamples;
/** The transform stored as AdvancedTransform */
AdvancedTransformPointer m_AdvancedTransform;
/** RandomGenerator for AddRandomPerturbation. */
RandomGeneratorPointer m_RandomGenerator;
double m_SigmoidScaleFactor;
double m_NoiseFactor;
double m_GlobalStepSize;
double m_RegularizationKappa;
double m_ConditionNumber;
/** Select different method to estimate some reasonable values for the parameters
* SP_a, SP_alpha (=1), SigmoidMin, SigmoidMax (=1), and
* SigmoidScale.
*/
virtual void
AutomaticPreconditionerEstimation();
/** Measure some derivatives, exact and approximated. Returns
* the squared magnitude of the gradient and approximation error.
* Needed for the automatic parameter estimation.
* Gradients are measured at position mu_n, which are generated according to:
* mu_n - mu_0 ~ N(0, perturbationSigma^2 I );
* gg = g^T g, etc.
*/
virtual void
SampleGradients(const ParametersType & mu0, double perturbationSigma, double & gg, double & ee);
/** Helper function, which calls GetScaledValueAndDerivative and does
* some exception handling. Used by SampleGradients.
*/
virtual void
GetScaledDerivativeWithExceptionHandling(const ParametersType & parameters, DerivativeType & derivative);
/** Helper function that adds a random perturbation delta to the input
* parameters, with delta ~ sigma * N(0,I). Used by SampleGradients.
*/
virtual void
AddRandomPerturbation(ParametersType & parameters, double sigma);
private:
elxOverrideGetSelfMacro;
bool m_AutomaticParameterEstimation;
double m_MaximumStepLength;
double m_MaximumStepLengthRatio;
/** Private variables for the sampling attempts. */
SizeValueType m_MaximumNumberOfSamplingAttempts;
SizeValueType m_CurrentNumberOfSamplingAttempts;
SizeValueType m_PreviousErrorAtIteration;
bool m_AutomaticParameterEstimationDone;
/** Private variables for band size estimation of covariance matrix. */
SizeValueType m_MaxBandCovSize;
SizeValueType m_NumberOfBandStructureSamples;
/** The flag of using noise compensation. */
bool m_UseNoiseCompensation;
bool m_OriginalButSigmoidToDefault;
};
} // end namespace elastix
#ifndef ITK_MANUAL_INSTANTIATION
# include "elxPreconditionedStochasticGradientDescent.hxx"
#endif
#endif // end #ifndef elxPreconditionedStochasticGradientDescent_h
|