File: elxPreconditionedStochasticGradientDescent.h

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (418 lines) | stat: -rw-r--r-- 20,779 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef elxPreconditionedStochasticGradientDescent_h
#define elxPreconditionedStochasticGradientDescent_h

#include "elxIncludes.h" // include first to avoid MSVS warning
#include "itkPreconditionedASGDOptimizer.h"
#include "itkComputeDisplacementDistribution.h" // For fast step size estimation


#include "itkComputePreconditionerUsingDisplacementDistribution.h"
#include "elxProgressCommand.h"
#include "itkAdvancedTransform.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkAdvancedBSplineDeformableTransformBase.h"
#include "itkImageRandomSampler.h"


namespace elastix
{
/**
 * \class PreconditionedStochasticGradientDescent
 * \brief A gradient descent optimizer with an adaptive gain.
 *
 * This class is a wrap around the PreconditionedASGDOptimizer class.
 * It takes care of setting parameters and printing progress information.
 * For more information about the optimization method, please read the documentation
 * of the PreconditionedASGDOptimizer class.
 *
 * This optimizer is very suitable to be used in combination with the Random image sampler,
 * or with the RandomCoordinate image sampler, with the setting (NewSamplesEveryIteration "true").
 * Much effort has been spent on providing reasonable default values for all parameters, to
 * simplify usage. In most registration problems, good results should be obtained without specifying
 * any of the parameters described below (except the first of course, which defines the optimizer
 * to use).
 *
 * This optimization method is described in the following references:
 *
 * [1] Y. Qiao, B.P.F. Lelieveldt, M. Staring
 * An efficient preconditioner for stochastic gradient descent optimization of image registration
 * IEEE Transactions on Medical Imaging, 2019
 * https://doi.org/10.1109/TMI.2019.2897943
 *
 * The parameters used in this class are:
 * \parameter Optimizer: Select this optimizer as follows:\n
 *   <tt>(Optimizer "PreconditionedStochasticGradientDescent")</tt>
 * \parameter MaximumNumberOfIterations: The maximum number of iterations in each resolution. \n
 *   example: <tt>(MaximumNumberOfIterations 100 100 50)</tt> \n
 *    Default/recommended value: 500. When you are in a hurry, you may go down to 250 for example.
 *    When you have plenty of time, and want to be absolutely sure of the best results, a setting
 *    of 2000 is reasonable. In general, 500 gives satisfactory results.
 * \parameter MaximumNumberOfSamplingAttempts: The maximum number of sampling attempts. Sometimes
 *   not enough corresponding samples can be drawn, upon which an exception is thrown. With this
 *   parameter it is possible to try to draw another set of samples. \n
 *   example: <tt>(MaximumNumberOfSamplingAttempts 10 15 10)</tt> \n
 *    Default value: 0, i.e. just fail immediately, for backward compatibility.
 * \parameter AutomaticParameterEstimation: When this parameter is set to "true",
 *   many other parameters are calculated automatically: SP_a, SP_alpha, SigmoidMax,
 *   SigmoidMin, and SigmoidScale. In the elastix.log file the actually chosen values for
 *   these parameters can be found. \n
 *   example: <tt>(AutomaticParameterEstimation "true")</tt>\n
 *   Default/recommended value: "true". The parameter can be specified for each resolution,
 *   or for all resolutions at once.
 * \parameter StepSizeStrategy: When this parameter is set to "true", the adaptive
 *   step size mechanism described in the documentation of
 *   itk::itkPreconditionedASGDOptimizer is used.
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(StepSizeStrategy "Adaptive")</tt>\n
 *   Default/recommend value: "Adaptive", because it makes the registration more robust. In case
 *   of using a RandomCoordinate sampler, with (UseRandomSampleRegion "true"), the adaptive
 *   step size mechanism is turned off, no matter the user setting.
 * \parameter MaximumStepLength: Also called \f$\delta\f$. This parameter can be considered as
 *   the maximum voxel displacement between two iterations. The larger this parameter, the
 *   more aggressive the optimization.
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(MaximumStepLength 1.0)</tt>\n
 *   Default: mean voxel spacing of fixed and moving image. This seems to work well in general.
 *   This parameter only has influence when AutomaticParameterEstimation is used.
 * \parameter SP_a: The gain \f$a(k)\f$ at each iteration \f$k\f$ is defined by \n
 *   \f$a(k) =  SP\_a / (SP\_A + k + 1)^{SP\_alpha}\f$. \n
 *   SP_a can be defined for each resolution. \n
 *   example: <tt>(SP_a 3200.0 3200.0 1600.0)</tt> \n
 *   The default value is 400.0. Tuning this variable for you specific problem is recommended.
 *   Alternatively set the AutomaticParameterEstimation to "true". In that case, you do not
 *   need to specify SP_a. SP_a has no influence when AutomaticParameterEstimation is used.
 * \parameter SP_A: The gain \f$a(k)\f$ at each iteration \f$k\f$ is defined by \n
 *   \f$a(k) =  SP\_a / (SP\_A + k + 1)^{SP\_alpha}\f$. \n
 *   SP_A can be defined for each resolution. \n
 *   example: <tt>(SP_A 50.0 50.0 100.0)</tt> \n
 *   The default/recommended value for this particular optimizer is 20.0.
 * \parameter SP_alpha: The gain \f$a(k)\f$ at each iteration \f$k\f$ is defined by \n
 *   \f$a(k) =  SP\_a / (SP\_A + k + 1)^{SP\_alpha}\f$. \n
 *   SP_alpha can be defined for each resolution. \n
 *   example: <tt>(SP_alpha 0.602 0.602 0.602)</tt> \n
 *   The default/recommended value for this particular optimizer is 1.0.
 *   Alternatively set the AutomaticParameterEstimation to "true". In that case, you do not
 *   need to specify SP_alpha. SP_alpha has no influence when AutomaticParameterEstimation is used.
 * \parameter SigmoidMax: The maximum of the sigmoid function (\f$f_{max}\f$). Must be larger than 0.
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(SigmoidMax 1.0)</tt>\n
 *   Default/recommended value: 1.0. This parameter has no influence when AutomaticParameterEstimation
 *   is used. In that case, always a value 1.0 is used.
 * \parameter SigmoidMin: The minimum of the sigmoid function (\f$f_{min}\f$). Must be smaller than 0.
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(SigmoidMin -0.8)</tt>\n
 *   Default value: -0.8. This parameter has no influence when AutomaticParameterEstimation
 *   is used. In that case, the value is automatically determined, depending on the images,
 *   metric etc.
 * \parameter SigmoidScale: The scale/width of the sigmoid function (\f$\omega\f$).
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(SigmoidScale 0.00001)</tt>\n
 *   Default value: 1e-8. This parameter has no influence when AutomaticParameterEstimation
 *   is used. In that case, the value is automatically determined, depending on the images,
 *   metric etc.
 * \parameter SigmoidInitialTime: the initial time input for the sigmoid (\f$t_0\f$). Must be
 *   larger than 0.0.
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(SigmoidInitialTime 0.0 5.0 5.0)</tt>\n
 *   Default value: 0.0. When increased, the optimization starts with smaller steps, leaving
 *   the possibility to increase the steps when necessary. If set to 0.0, the method starts with
 *   with the largest step allowed.
 * \parameter NumberOfGradientMeasurements: Number of gradients N to estimate the
 *   average square magnitudes of the exact gradient and the approximation error.
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(NumberOfGradientMeasurements 10)</tt>\n
 *   Default value: 0, which means that the value is automatically estimated.
 *   In principle, the more the better, but the slower. In practice N=10 is usually sufficient.
 *   But the automatic estimation achieved by N=0 also works good.
 *   The parameter has only influence when AutomaticParameterEstimation is used.
 * \parameter NumberOfJacobianMeasurements: The number of voxels M where the Jacobian is measured,
 *   which is used to estimate the covariance matrix.
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(NumberOfJacobianMeasurements 5000 10000 20000)</tt>\n
 *   Default value: M = max( 1000, nrofparams ), with nrofparams the
 *   number of transform parameters. This is a rather crude rule of thumb,
 *   which seems to work in practice. In principle, the more the better, but the slower.
 *   The parameter has only influence when AutomaticParameterEstimation is used.
 * \parameter NumberOfSamplesForNoiseCompensationFactor: The number of image samples used to compute
 *   the 'exact' gradient. The samples are chosen on a uniform grid.
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(NumberOfSamplesForNoiseCompensationFactor 100000)</tt>\n
 *   Default/recommended: 100000. This works in general. If the image is smaller, the number
 *   of samples is automatically reduced. In principle, the more the better, but the slower.
 *   The parameter has only influence when AutomaticParameterEstimation is used.
 * \parameter m_NumberOfSamplesForPrecondition: The number of image samples used to compute
 *   the gradient for preconditioner. The samples are chosen on a random sampler.
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(NumberOfSamplesForPrecondition 500000)</tt>\n
 *   Default/recommended: 500000. This works in general. If the image is smaller, the number
 *   of samples is automatically reduced. In principle, the more the better, but the slower.
 *   The parameter has only influence when AutomaticParameterEstimation is used.
 * \parameter RegularizationKappa: Selects for the preconditioner regularization.
 *   The parameter can be specified for each resolution, or for all resolutions at once.\n
 *   example: <tt>(RegularizationKappa 0.9)</tt>\n
 *
 * \todo: this class contains a lot of functional code, which actually does not belong here.
 *
 * \sa PreconditionedASGDOptimizer
 * \ingroup Optimizers
 */

template <class TElastix>
class ITK_TEMPLATE_EXPORT PreconditionedStochasticGradientDescent
  : public itk::PreconditionedASGDOptimizer
  , public OptimizerBase<TElastix>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(PreconditionedStochasticGradientDescent);

  /** Standard ITK. */
  using Self = PreconditionedStochasticGradientDescent;
  using Superclass1 = PreconditionedASGDOptimizer;
  using Superclass2 = OptimizerBase<TElastix>;
  using Pointer = itk::SmartPointer<Self>;
  using ConstPointer = itk::SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(PreconditionedStochasticGradientDescent, VoxelWiseASGDOptimizer);

  /** Name of this class.
   * Use this name in the parameter file to select this specific optimizer.
   * example: <tt>(Optimizer "PreconditionedStochasticGradientDescent")</tt>\n
   */
  elxClassNameMacro("PreconditionedStochasticGradientDescent");

  /** Typedef's inherited from Superclass1. */
  using Superclass1::CostFunctionType;
  using Superclass1::CostFunctionPointer;
  using Superclass1::StopConditionType;

  /** Typedef's inherited from Superclass2. */
  using typename Superclass2::ElastixType;
  using typename Superclass2::RegistrationType;
  using ITKBaseType = typename Superclass2::ITKBaseType;
  using SizeValueType = itk::SizeValueType;

  /** Typedef for the ParametersType. */
  using typename Superclass1::ParametersType;

  /** Methods invoked by elastix, in which parameters can be set and
   * progress information can be printed.
   */
  void
  BeforeRegistration() override;

  void
  BeforeEachResolution() override;

  void
  AfterEachResolution() override;

  void
  AfterEachIteration() override;

  void
  AfterRegistration() override;

  /** Check if any scales are set, and set the UseScales flag on or off;
   * after that call the superclass' implementation.
   */
  void
  StartOptimization() override;

  /** Advance one step following the gradient direction. */
  void
  AdvanceOneStep() override;

  /** If automatic gain estimation is desired, then estimate SP_a, SP_alpha
   * SigmoidScale, SigmoidMax, SigmoidMin.
   * After that call Superclass' implementation.
   */
  void
  ResumeOptimization() override;

  /** Stop optimization and pass on exception. */
  void
  MetricErrorResponse(itk::ExceptionObject & err) override;

  /** Set/Get whether automatic parameter estimation is desired.
   * If true, make sure to set the maximum step length.
   *
   * The following parameters are automatically determined:
   * SP_a, SP_alpha (=1), SigmoidMin, SigmoidMax (=1),
   * SigmoidScale.
   * A usually suitable value for SP_A is 20, which is the
   * default setting, if not specified by the user.
   */
  itkSetMacro(AutomaticParameterEstimation, bool);
  itkGetConstMacro(AutomaticParameterEstimation, bool);

  /** Set/Get maximum step length. */
  itkSetMacro(MaximumStepLength, double);
  itkGetConstReferenceMacro(MaximumStepLength, double);

  /** Set/Get regularization value kappa. */
  itkSetClampMacro(RegularizationKappa, double, 0.0, 1.0);
  itkGetConstReferenceMacro(RegularizationKappa, double);

  /** Set/Get the MaximumNumberOfSamplingAttempts. */
  itkSetMacro(MaximumNumberOfSamplingAttempts, SizeValueType);
  itkGetConstReferenceMacro(MaximumNumberOfSamplingAttempts, SizeValueType);

protected:
  PreconditionedStochasticGradientDescent();
  ~PreconditionedStochasticGradientDescent() override = default;

  /** Protected typedefs */
  using FixedImageType = typename RegistrationType::FixedImageType;
  using MovingImageType = typename RegistrationType::MovingImageType;

  using FixedImageRegionType = typename FixedImageType::RegionType;
  using FixedImageIndexType = typename FixedImageType::IndexType;
  using FixedImagePointType = typename FixedImageType::PointType;
  using itkRegistrationType = typename RegistrationType::ITKBaseType;
  using TransformType = typename itkRegistrationType::TransformType;
  using JacobianType = typename TransformType::JacobianType;
  using JacobianValueType = typename JacobianType::ValueType;
  using typename Superclass2::SettingsType;
  using typename Superclass2::SettingsVectorType;
  using OutputImageType = typename ElastixType::FixedImageType;

  using PreconditionerEstimationType =
    itk::ComputePreconditionerUsingDisplacementDistribution<FixedImageType, TransformType>;
  using PreconditionerEstimationPointer = typename PreconditionerEstimationType::Pointer;

  using ComputeDisplacementDistributionType = itk::ComputeDisplacementDistribution<FixedImageType, TransformType>;

  /** Samplers: */
  using ImageSamplerBaseType = itk::ImageSamplerBase<FixedImageType>;
  using ImageSamplerBasePointer = typename ImageSamplerBaseType::Pointer;
  using ImageRandomSamplerBaseType = itk::ImageRandomSamplerBase<FixedImageType>;
  using ImageRandomSamplerBasePointer = typename ImageRandomSamplerBaseType::Pointer;
  using ImageRandomCoordinateSamplerType = itk::ImageRandomCoordinateSampler<FixedImageType>;
  using ImageRandomCoordinateSamplerPointer = typename ImageRandomCoordinateSamplerType::Pointer;
  using ImageRandomSamplerType = itk::ImageRandomSampler<FixedImageType>;
  using ImageRandomSamplerPointer = typename ImageRandomSamplerType::Pointer;
  using ImageGridSamplerType = itk::ImageGridSampler<FixedImageType>;
  using ImageGridSamplerPointer = typename ImageGridSamplerType::Pointer;
  using ImageSampleContainerType = typename ImageGridSamplerType::ImageSampleContainerType;
  using ImageSampleContainerPointer = typename ImageSampleContainerType::Pointer;

  /** Other protected typedefs */
  using RandomGeneratorType = itk::Statistics::MersenneTwisterRandomVariateGenerator;
  using RandomGeneratorPointer = typename RandomGeneratorType::Pointer;

  /** Typedefs for support of sparse Jacobians and AdvancedTransforms. */
  using TransformJacobianType = JacobianType;
  itkStaticConstMacro(FixedImageDimension, unsigned int, FixedImageType::ImageDimension);
  itkStaticConstMacro(MovingImageDimension, unsigned int, MovingImageType::ImageDimension);
  using CoordinateRepresentationType = typename TransformType::ScalarType;

  using AdvancedTransformType =
    itk::AdvancedTransform<CoordinateRepresentationType, Self::FixedImageDimension, Self::MovingImageDimension>;
  using AdvancedTransformPointer = typename AdvancedTransformType::Pointer;
  using NonZeroJacobianIndicesType = typename AdvancedTransformType::NonZeroJacobianIndicesType;

  using AdvancedBSplineDeformableTransformType =
    itk::AdvancedBSplineDeformableTransformBase<CoordinateRepresentationType, Self::FixedImageDimension>;
  using BSplineTransformBasePointer = typename AdvancedBSplineDeformableTransformType::Pointer;

  /** Variable to store the automatically determined settings for each resolution. */
  SettingsVectorType m_SettingsVector;

  /** Some options for automatic parameter estimation. */
  SizeValueType m_NumberOfGradientMeasurements;
  SizeValueType m_NumberOfJacobianMeasurements;
  SizeValueType m_NumberOfSamplesForNoiseCompensationFactor;
  SizeValueType m_NumberOfSamplesForPrecondition;
  SizeValueType m_NumberOfSpatialSamples;

  /** The transform stored as AdvancedTransform */
  AdvancedTransformPointer m_AdvancedTransform;

  /** RandomGenerator for AddRandomPerturbation. */
  RandomGeneratorPointer m_RandomGenerator;

  double m_SigmoidScaleFactor;
  double m_NoiseFactor;
  double m_GlobalStepSize;
  double m_RegularizationKappa;
  double m_ConditionNumber;

  /** Select different method to estimate some reasonable values for the parameters
   * SP_a, SP_alpha (=1), SigmoidMin, SigmoidMax (=1), and
   * SigmoidScale.
   */
  virtual void
  AutomaticPreconditionerEstimation();

  /** Measure some derivatives, exact and approximated. Returns
   * the squared magnitude of the gradient and approximation error.
   * Needed for the automatic parameter estimation.
   * Gradients are measured at position mu_n, which are generated according to:
   * mu_n - mu_0 ~ N(0, perturbationSigma^2 I );
   * gg = g^T g, etc.
   */
  virtual void
  SampleGradients(const ParametersType & mu0, double perturbationSigma, double & gg, double & ee);

  /** Helper function, which calls GetScaledValueAndDerivative and does
   * some exception handling. Used by SampleGradients.
   */
  virtual void
  GetScaledDerivativeWithExceptionHandling(const ParametersType & parameters, DerivativeType & derivative);

  /** Helper function that adds a random perturbation delta to the input
   * parameters, with delta ~ sigma * N(0,I). Used by SampleGradients.
   */
  virtual void
  AddRandomPerturbation(ParametersType & parameters, double sigma);

private:
  elxOverrideGetSelfMacro;

  bool   m_AutomaticParameterEstimation;
  double m_MaximumStepLength;
  double m_MaximumStepLengthRatio;

  /** Private variables for the sampling attempts. */
  SizeValueType m_MaximumNumberOfSamplingAttempts;
  SizeValueType m_CurrentNumberOfSamplingAttempts;
  SizeValueType m_PreviousErrorAtIteration;
  bool          m_AutomaticParameterEstimationDone;

  /** Private variables for band size estimation of covariance matrix. */
  SizeValueType m_MaxBandCovSize;
  SizeValueType m_NumberOfBandStructureSamples;

  /** The flag of using noise compensation. */
  bool m_UseNoiseCompensation;
  bool m_OriginalButSigmoidToDefault;
};

} // end namespace elastix

#ifndef ITK_MANUAL_INSTANTIATION
#  include "elxPreconditionedStochasticGradientDescent.hxx"
#endif

#endif // end #ifndef elxPreconditionedStochasticGradientDescent_h