1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef elxSimultaneousPerturbation_h
#define elxSimultaneousPerturbation_h
#include "elxIncludes.h" // include first to avoid MSVS warning
#include "itkSPSAOptimizer.h"
namespace elastix
{
/**
* \class SimultaneousPerturbation
* \brief An optimizer based on the itk::SPSAOptimizer.
*
* The ITK doxygen help gives more information about this optimizer.
*
* This optimizer supports the NewSamplesEveryIteration parameter.
*
* The parameters used in this class are:
* \parameter Optimizer: Select this optimizer as follows:\n
* <tt>(Optimizer "SimultaneousPerturbation")</tt>
* \parameter MaximumNumberOfIterations: The maximum number of iterations in each resolution. \n
* example: <tt>(MaximumNumberOfIterations 100 100 50)</tt> \n
* Default value: 500.
* \parameter NumberOfPerturbations: The number of perturbation used to
* construct a gradient estimate \f$g_k\f$. \n
* \f$q =\f$ NumberOfPerturbations \n
* \f$g_k = 1/q \sum_{j = 1..q} g^(j)_k\f$ \n
* This parameter can be defined for each resolution. \n
* example: <tt>(NumberOfPerturbations 1 1 2)</tt> \n
* Default value: 1.
* \parameter SP_a: The gain \f$a(k)\f$ at each iteration \f$k\f$ is defined by \n
* \f$a(k) = SP\_a / (SP\_A + k + 1)^{SP\_alpha}\f$. \n
* SP_a can be defined for each resolution. \n
* example: <tt>(SP_a 3200.0 3200.0 1600.0)</tt> \n
* The default value is 400.0. Tuning this variable for you specific problem is recommended.
* \parameter SP_A: The gain \f$a(k)\f$ at each iteration \f$k\f$ is defined by \n
* \f$a(k) = SP\_a / (SP\_A + k + 1)^{SP\_alpha}\f$. \n
* SP_A can be defined for each resolution. \n
* example: <tt>(SP_A 50.0 50.0 100.0)</tt> \n
* The default/recommended value is 50.0.
* \parameter SP_alpha: The gain \f$a(k)\f$ at each iteration \f$k\f$ is defined by \n
* \f$a(k) = SP\_a / (SP\_A + k + 1)^{SP\_alpha}\f$. \n
* SP_alpha can be defined for each resolution. \n
* example: <tt>(SP_alpha 0.602 0.602 0.602)</tt> \n
* The default/recommended value is 0.602.
* \parameter SP_c: The perturbation step size \f$c(k)\f$ at each iteration \f$k\f$ is defined by \n
* \f$c(k) = SP\_c / ( k + 1)^{SP\_gamma}\f$. \n
* SP_c can be defined for each resolution. \n
* example: <tt>(SP_c 2.0 1.0 1.0)</tt> \n
* The default value is 1.0.
* \parameter SP_gamma: The perturbation step size \f$c(k)\f$ at each iteration \f$k\f$ is defined by \n
* \f$c(k) = SP\_c / ( k + 1)^{SP\_gamma}\f$. \n
* SP_gamma can be defined for each resolution. \n
* example: <tt>(SP_gamma 0.101 0.101 0.101)</tt> \n
* The default/recommended value is 0.101.
* \parameter ShowMetricValues: Defines whether to compute/show the metric value in each iteration. \n
* This flag can NOT be defined for each resolution. \n
* example: <tt>(ShowMetricValues "true" )</tt> \n
* Default value: "false". Note that turning this flag on increases computation time.
*
*
* \ingroup Optimizers
*/
template <class TElastix>
class ITK_TEMPLATE_EXPORT SimultaneousPerturbation
: public itk::SPSAOptimizer
, public OptimizerBase<TElastix>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(SimultaneousPerturbation);
/** Standard ITK.*/
using Self = SimultaneousPerturbation;
using Superclass1 = SPSAOptimizer;
using Superclass2 = OptimizerBase<TElastix>;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(SimultaneousPerturbation, SPSAOptimizer);
/** Name of this class.
* Use this name in the parameter file to select this specific optimizer. \n
* example: <tt>(Optimizer "SimultaneousPerturbation")</tt>\n
*/
elxClassNameMacro("SimultaneousPerturbation");
/** Typedef's inherited from Superclass1.*/
using Superclass1::CostFunctionType;
using Superclass1::CostFunctionPointer;
/** Typedef's inherited from Elastix.*/
using typename Superclass2::ElastixType;
using typename Superclass2::RegistrationType;
using ITKBaseType = typename Superclass2::ITKBaseType;
/** Typedef for the ParametersType. */
using typename Superclass1::ParametersType;
/** Methods that take care of setting parameters and printing progress information.*/
void
BeforeRegistration() override;
void
BeforeEachResolution() override;
void
AfterEachResolution() override;
void
AfterEachIteration() override;
void
AfterRegistration() override;
/** Override the SetInitialPosition.
* Override the implementation in itkOptimizer.h, to
* ensure that the scales array and the parameters
* array have the same size. */
void
SetInitialPosition(const ParametersType & param) override;
protected:
SimultaneousPerturbation();
~SimultaneousPerturbation() override = default;
bool m_ShowMetricValues;
private:
elxOverrideGetSelfMacro;
};
} // end namespace elastix
#ifndef ITK_MANUAL_INSTANTIATION
# include "elxSimultaneousPerturbation.hxx"
#endif
#endif // end #ifndef elxSimultaneousPerturbation_h
|