1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef elxMultiMetricMultiResolutionRegistration_h
#define elxMultiMetricMultiResolutionRegistration_h
#include "elxIncludes.h" // include first to avoid MSVS warning
#include "itkMultiMetricMultiResolutionImageRegistrationMethod.h"
namespace elastix
{
/**
* \class MultiMetricMultiResolutionRegistration
* \brief A registration framework based on the
* itk::MultiMetricMultiResolutionImageRegistrationMethod.
*
* This MultiMetricMultiResolutionRegistration gives a framework for
* registration with a multi-resolution approach, using multiple metrics.
* The metrics can use the same pair of images/image pyramids/interpolators
* /masks, but also different pairs of fixed/moving images etc.
* If the metrics use the same moving image and the same moving image
* pyramid, they can use the same interpolator. If multiple moving images
* are used, enter multiple interpolators, possibly of the same type:
* Like this for example:\n
* <tt>(Interpolator "BSplineInterpolator" "BSplineInterpolator")</tt>\n
* For each metric a different instance of an image sampler can be used:\n
* <tt>(ImageSampler "Random" "Random")</tt>\n
* or:\n
* <tt>(ImageSampler "Random" "Full")</tt>\n
*
* Note, that the number of metrics should always be larger than or equal
* to the number of fixed/moving images, interpolators, image pyramids etc.
* Also, when all metrics need an image sampler, for each fixed image pyramid,
* an image sampler must be provided. In some cases, one sampler can be
* used for all metrics. This is the case when multiple metrics are desired,
* but
* \li 1 fixed image is used, and
* \li 1 fixed image pyramid is used.
* This will save a bit of memory and computation time.
* In general however, it is better to use the same number of samplers as
* metrics.
*
* The parameters used in this class are:\n
* \parameter Registration: Select this registration framework as follows:\n
* <tt>(Registration "MultiMetricMultiResolutionRegistration")</tt>
* \parameter NumberOfResolutions: the number of resolutions used. \n
* example: <tt>(NumberOfResolutions 4)</tt> \n
* The default is 3.\n
* \parameter Metric\<i\>Weight: The weight for the i-th metric,
* in each resolution. \n
* example: <tt>(Metric0Weight 0.5 0.5 0.8)</tt> \n
* example: <tt>(Metric1Weight 0.5 0.5 0.2)</tt> \n
* The default is 1 / numberOfMetrics.
* \parameter Metric\<i\>RelativeWeight: The relative weight \f$rw_i\f$
* for the i-th metric, in each resolution. \n
* This is an alternative to the default Metric\<i\>Weight and can
* be selected with the parameter UseRelativeWeights. The weight \f$w_i\f$
* is computed in each iteration based on the magnitude of the metric
* derivative (gradient) \f$|g_i|\f$ related to that of the first metric
* \f$|g_0|\f$. It is done such that the fraction \f$|g_0|/|g_i|\f$ is
* identical to \f$rw_0/rw_i\f$, so
* \f[w_i = rw_i |g_0|/|g_i|.\f]
* example: <tt>(Metric0RelativeWeight 0.5 0.5 0.8)</tt> \n
* example: <tt>(Metric1RelativeWeight 0.5 0.5 0.2)</tt> \n
* The default is 1 / numberOfMetrics.
* \parameter UseRelativeWeights: Whether relative weights are used
* or simple static, fixed weights. \n
* example: <tt>(UseRelativeWeights "false" "true")</tt> \n
* The default is "false", which means using Metric\<i\>Weight.
* \parameter Metric\<i\>Use: Whether the i-th metric is only computed or
* also used, in each resolution. \n
* example: <tt>(Metric0Use "false" "true")</tt> \n
* example: <tt>(Metric1Use "true" "false")</tt> \n
* The default is "true".
*
* \ingroup Registrations
*/
template <class TElastix>
class ITK_TEMPLATE_EXPORT MultiMetricMultiResolutionRegistration
: public itk::MultiMetricMultiResolutionImageRegistrationMethod<typename RegistrationBase<TElastix>::FixedImageType,
typename RegistrationBase<TElastix>::MovingImageType>
, public RegistrationBase<TElastix>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(MultiMetricMultiResolutionRegistration);
/** Standard ITK: Self */
using Self = MultiMetricMultiResolutionRegistration;
/** Standard ITK: Superclasses. */
using Superclass1 =
itk::MultiMetricMultiResolutionImageRegistrationMethod<typename RegistrationBase<TElastix>::FixedImageType,
typename RegistrationBase<TElastix>::MovingImageType>;
using Superclass2 = RegistrationBase<TElastix>;
/** Standard ITK: SmartPointers */
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(MultiMetricMultiResolutionRegistration, MultiMetricMultiResolutionImageRegistrationMethod);
/** Name of this class.
* Use this name in the parameter file to select this specific registration framework. \n
* example: <tt>(Registration "MultiMetricMultiResolutionRegistration")</tt>\n
*/
elxClassNameMacro("MultiMetricMultiResolutionRegistration");
/** Typedef's inherited from Superclass1. */
/** Type of the Fixed image. */
using typename Superclass1::FixedImageType;
using typename Superclass1::FixedImageConstPointer;
using typename Superclass1::FixedImageRegionType;
/** Type of the Moving image. */
using typename Superclass1::MovingImageType;
using typename Superclass1::MovingImageConstPointer;
/** Type of the metric. */
using typename Superclass1::MetricType;
using typename Superclass1::MetricPointer;
/** Type of the Transform . */
using typename Superclass1::TransformType;
using typename Superclass1::TransformPointer;
/** Type of the Interpolator. */
using typename Superclass1::InterpolatorType;
using typename Superclass1::InterpolatorPointer;
/** Type of the optimizer. */
using typename Superclass1::OptimizerType;
using typename Superclass1::OptimizerPointer;
/** Type of the Fixed image multiresolution pyramid. */
using typename Superclass1::FixedImagePyramidType;
using typename Superclass1::FixedImagePyramidPointer;
/** Type of the moving image multiresolution pyramid. */
using typename Superclass1::MovingImagePyramidType;
using typename Superclass1::MovingImagePyramidPointer;
/** Type of the Transformation parameters. This is the same type used to
* represent the search space of the optimization algorithm.
*/
using typename Superclass1::ParametersType;
/** The CombinationMetric type, which is used internally by the Superclass1. */
using typename Superclass1::CombinationMetricType;
using typename Superclass1::CombinationMetricPointer;
/** Typedef's from Elastix. */
using typename Superclass2::ElastixType;
using RegistrationType = typename Superclass2::RegistrationType;
using ITKBaseType = typename Superclass2::ITKBaseType;
using typename Superclass2::UseMaskErosionArrayType;
/** Get the dimension of the fixed image. */
itkStaticConstMacro(FixedImageDimension, unsigned int, Superclass2::FixedImageDimension);
/** Get the dimension of the moving image. */
itkStaticConstMacro(MovingImageDimension, unsigned int, Superclass2::MovingImageDimension);
/** Execute stuff before the actual registration:
* \li Connect all components to the registration framework.
* \li Set the number of resolution levels.
* \li Set the fixed image regions.
* \li Add the sub metric columns to the iteration info object.
*/
void
BeforeRegistration() override;
/** Execute stuff before each resolution:
* \li Update masks with an erosion.
* \li Set the metric weights.
*/
void
BeforeEachResolution() override;
/** Execute stuff after each iteration
* \li Print the latest computed submetric values to screen.
*/
void
AfterEachIteration() override;
protected:
/** The constructor. */
MultiMetricMultiResolutionRegistration();
/** The destructor. */
~MultiMetricMultiResolutionRegistration() override = default;
/** Typedef's for mask support. */
using typename Superclass2::MaskPixelType;
using typename Superclass2::FixedMaskImageType;
using typename Superclass2::MovingMaskImageType;
using typename Superclass2::FixedMaskImagePointer;
using typename Superclass2::MovingMaskImagePointer;
using typename Superclass2::FixedMaskSpatialObjectType;
using typename Superclass2::MovingMaskSpatialObjectType;
using typename Superclass2::FixedMaskSpatialObjectPointer;
using typename Superclass2::MovingMaskSpatialObjectPointer;
/** Function to update masks. */
void
UpdateFixedMasks(unsigned int level);
void
UpdateMovingMasks(unsigned int level);
/** Read the components from m_Elastix and set them in the Registration class. */
virtual void
SetComponents();
bool m_ShowExactMetricValue;
private:
elxOverrideGetSelfMacro;
};
} // end namespace elastix
#ifndef ITK_MANUAL_INSTANTIATION
# include "elxMultiMetricMultiResolutionRegistration.hxx"
#endif
#endif // end #ifndef elxMultiMetricMultiResolutionRegistration_h
|