1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef elxOptimizerBase_h
#define elxOptimizerBase_h
/** Needed for the macros */
#include "elxMacro.h"
#include "elxBaseComponentSE.h"
#include "itkOptimizer.h"
namespace elastix
{
/**
* \class OptimizerBase
* \brief This class is the elastix base class for all Optimizers.
*
* This class contains all the common functionality for Optimizers.
*
* The parameters used in this class are:
* \parameter NewSamplesEveryIteration: if this flag is set to "true" some
* optimizers ask the metric to select a new set of spatial samples in
* every iteration. This, if used in combination with the correct optimizer (such as the
* StandardGradientDescent), and ImageSampler (Random, RandomCoordinate, or RandomSparseMask),
* allows for a very low number of spatial samples (around 2000), even with large images
* and transforms with a large number of parameters.\n
* Choose one from {"true", "false"} for every resolution.\n
* example: <tt>(NewSamplesEveryIteration "true" "true" "true")</tt> \n
* Default is "false" for every resolution.\n
*
* \ingroup Optimizers
* \ingroup ComponentBaseClasses
*/
template <class TElastix>
class ITK_TEMPLATE_EXPORT OptimizerBase : public BaseComponentSE<TElastix>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(OptimizerBase);
/** Standard ITK-stuff. */
using Self = OptimizerBase;
using Superclass = BaseComponentSE<TElastix>;
/** Run-time type information (and related methods). */
itkTypeMacro(OptimizerBase, BaseComponentSE);
/** Typedefs inherited from Elastix. */
using typename Superclass::ElastixType;
using typename Superclass::RegistrationType;
/** ITKBaseType. */
using ITKBaseType = itk::Optimizer;
/** Typedef needed for the SetCurrentPositionPublic function. */
using ParametersType = typename ITKBaseType::ParametersType;
/** Retrieves this object as ITKBaseType. */
ITKBaseType *
GetAsITKBaseType()
{
return &(this->GetSelf());
}
/** Retrieves this object as ITKBaseType, to use in const functions. */
const ITKBaseType *
GetAsITKBaseType() const
{
return &(this->GetSelf());
}
/** Add empty SetCurrentPositionPublic, so this function is known in every inherited class. */
virtual void
SetCurrentPositionPublic(const ParametersType & param);
/** Execute stuff before each new pyramid resolution:
* \li Find out if new samples are used every new iteration in this resolution.
*/
void
BeforeEachResolutionBase() override;
/** Execute stuff after registration:
* \li Compute and print MD5 hash of the transform parameters.
*/
void
AfterRegistrationBase() override;
/** Method that sets the scales defined by a sinus
* scale[i] = amplitude^( sin(i/nrofparam*2pi*frequency) )
*/
virtual void
SetSinusScales(double amplitude, double frequency, unsigned long numberOfParameters);
protected:
/** The constructor. */
OptimizerBase() = default;
/** The destructor. */
~OptimizerBase() override = default;
/** Force the metric to base its computation on a new subset of image samples.
* Not every metric may have implemented this.
*/
virtual void
SelectNewSamples();
/** Check whether the user asked to select new samples every iteration. */
virtual bool
GetNewSamplesEveryIteration() const;
struct SettingsType
{
double a, A, alpha, fmax, fmin, omega;
};
using SettingsVectorType = typename std::vector<SettingsType>;
/** Print the contents of the settings vector to log::info. */
static void
PrintSettingsVector(const SettingsVectorType & settings);
private:
elxDeclarePureVirtualGetSelfMacro(ITKBaseType);
/** Member variable to store the user preference for using new
* samples each iteration.
*/
bool m_NewSamplesEveryIteration{ false };
};
} // end namespace elastix
#ifndef ITK_MANUAL_INSTANTIATION
# include "elxOptimizerBase.hxx"
#endif
#endif // end #ifndef elxOptimizerBase_h
|