File: itkAdvanceOneStepParallellizationTest.cxx

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (314 lines) | stat: -rw-r--r-- 10,259 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include "itkSmartPointer.h"
#include "itkArray.h"
#include <vector>
#include <algorithm>
#include <iomanip>

// Report timings
#include <ctime>
#include "itkTimeProbe.h"
#include "itkTimeProbesCollectorBase.h"

// Multi-threading using ITK threads
#include "itkMultiThreaderBase.h"

// Single-threaded vector arithmetic using Eigen
#ifdef ELASTIX_USE_EIGEN
#  include <Eigen/Dense>
#  include <Eigen/Core>
#endif

#include <cassert>

// select double or float internal type of array
#if 0
typedef float InternalScalarType;
#else
typedef double InternalScalarType;
#endif

#ifdef ELASTIX_USE_EIGEN
#  if 0
typedef Eigen::VectorXf ParametersTypeEigen;
#  else
typedef Eigen::VectorXd ParametersTypeEigen;
#  endif
#endif

class OptimizerTEMP : public itk::Object
{
public:
  /** Standard class typedefs. */
  using Self = OptimizerTEMP;
  using Pointer = itk::SmartPointer<Self>;
  itkNewMacro(Self);

  using ParametersType = itk::Array<InternalScalarType>;

  unsigned long      m_NumberOfParameters;
  ParametersType     m_CurrentPosition;
  ParametersType     m_Gradient;
  InternalScalarType m_LearningRate;

  using ThreadInfoType = itk::MultiThreaderBase::WorkUnitInfo;
  itk::MultiThreaderBase::Pointer m_Threader;
  bool                            m_UseEigen;
  bool                            m_UseMultiThreaded;

  struct MultiThreaderParameterType
  {
    ParametersType * t_NewPosition;
    Self *           t_Optimizer;
  };

  OptimizerTEMP()
  {
    this->m_NumberOfParameters = 0;
    this->m_LearningRate = 0.0;
    this->m_Threader = itk::MultiThreaderBase::New();
    this->m_Threader->SetNumberOfWorkUnits(8);
    this->m_UseEigen = false;
    this->m_UseMultiThreaded = false;
  }


  void
  AdvanceOneStep()
  {
    const unsigned int spaceDimension = m_NumberOfParameters;
    ParametersType &   newPosition = this->m_CurrentPosition;

    if (!this->m_UseMultiThreaded)
    {
      /** Get a pointer to the current position. */
      const InternalScalarType * currentPosition = this->m_CurrentPosition.data_block();
      const double               learningRate = this->m_LearningRate;
      const InternalScalarType * gradient = this->m_Gradient.data_block();
      InternalScalarType *       newPos = newPosition.data_block();

      /** Update the new position. */
      for (unsigned int j = 0; j < spaceDimension; ++j)
      {
        // newPosition[j] = currentPosition[j] - this->m_LearningRate * this->m_Gradient[j];
        newPos[j] = currentPosition[j] - learningRate * gradient[j];
      }
    }
#ifdef ELASTIX_USE_EIGEN
    else if (this->m_UseEigen)
    {
      /** Get a reference to the current position. */
      const ParametersType &   currentPosition = this->m_CurrentPosition;
      const InternalScalarType learningRate = this->m_LearningRate;

      /** Wrap itk::Arrays into Eigen jackets. */
      Eigen::Map<ParametersTypeEigen>       newPositionE(newPosition.data_block(), spaceDimension);
      Eigen::Map<const ParametersTypeEigen> currentPositionE(currentPosition.data_block(), spaceDimension);
      Eigen::Map<ParametersTypeEigen>       gradientE(this->m_Gradient.data_block(), spaceDimension);

      /** Update the new position. */
      // Eigen::setNbThreads( this->m_Threader->GetNumberOfWorkUnits() );
      newPositionE = currentPositionE - learningRate * gradientE;
    }
#endif
    else
    {
      /** Fill the threader parameter struct with information. */
      MultiThreaderParameterType userData;
      userData.t_NewPosition = &newPosition;
      userData.t_Optimizer = this;

      /** Call multi-threaded AdvanceOneStep(). */
      this->m_Threader->SetSingleMethodAndExecute(AdvanceOneStepThreaderCallback, &userData);
    }
  } // end


  /** The callback function. */
  static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
  AdvanceOneStepThreaderCallback(void * arg)
  {
    /** Get the current thread id and user data. */
    assert(arg);
    const auto &      infoStruct = *static_cast<ThreadInfoType *>(arg);
    itk::ThreadIdType threadID = infoStruct.WorkUnitID;

    assert(infoStruct.UserData);
    const auto & userData = *static_cast<MultiThreaderParameterType *>(infoStruct.UserData);

    /** Call the real implementation. */
    userData.t_Optimizer->ThreadedAdvanceOneStep2(threadID, *(userData.t_NewPosition));

    return ITK_THREAD_RETURN_DEFAULT_VALUE;

  } // end AdvanceOneStepThreaderCallback()


  /** The threaded implementation of AdvanceOneStep(). */
  inline void
  ThreadedAdvanceOneStep(itk::ThreadIdType threadId, ParametersType & newPosition)
  {
    /** Compute the range for this thread. */
    const unsigned int spaceDimension = m_NumberOfParameters;
    const unsigned int subSize = static_cast<unsigned int>(
      std::ceil(static_cast<double>(spaceDimension) / static_cast<double>(this->m_Threader->GetNumberOfWorkUnits())));
    const unsigned int jmin = threadId * subSize;
    const unsigned int jmax = std::min((threadId + 1) * subSize, spaceDimension);

    /** Get a reference to the current position. */
    const ParametersType & currentPosition = this->m_CurrentPosition;
    const double           learningRate = this->m_LearningRate;
    const ParametersType & gradient = this->m_Gradient;

    /** Advance one step: mu_{k+1} = mu_k - a_k * gradient_k */
    for (unsigned int j = jmin; j < jmax; ++j)
    {
      newPosition[j] = currentPosition[j] - learningRate * gradient[j];
    }

  } // end ThreadedAdvanceOneStep()


  /** The threaded implementation of AdvanceOneStep(). */
  inline void
  ThreadedAdvanceOneStep2(itk::ThreadIdType threadId, ParametersType & newPosition)
  {
    /** Compute the range for this thread. */
    const unsigned int spaceDimension = m_NumberOfParameters;
    const unsigned int subSize = static_cast<unsigned int>(
      std::ceil(static_cast<double>(spaceDimension) / static_cast<double>(this->m_Threader->GetNumberOfWorkUnits())));
    const unsigned int jmin = threadId * subSize;
    const unsigned int jmax = std::min((threadId + 1) * subSize, spaceDimension);

    /** Get a pointer to the current position. */
    const InternalScalarType * currentPosition = this->m_CurrentPosition.data_block();
    const double               learningRate = this->m_LearningRate;
    const InternalScalarType * gradient = this->m_Gradient.data_block();
    InternalScalarType *       newPos = newPosition.data_block();

    /** Advance one step: mu_{k+1} = mu_k - a_k * gradient_k */
    for (unsigned int j = jmin; j < jmax; ++j)
    {
      newPos[j] = currentPosition[j] - learningRate * gradient[j];
    }

  } // end ThreadedAdvanceOneStep()
};

// end class Optimizer

//-------------------------------------------------------------------------------------

int
main()
{
  // Declare and setup
  std::cout << std::fixed << std::showpoint << std::setprecision(8);
  std::cout << "RESULTS FOR InternalScalarType = " << typeid(InternalScalarType).name() << "\n\n" << std::endl;

  /** Typedefs. */
  using OptimizerClass = OptimizerTEMP;
  using ParametersType = OptimizerClass::ParametersType;

  auto optimizer = OptimizerClass::New();

  // test parameters
  std::vector<unsigned int> arraySizes;
  arraySizes.push_back(1e2);
  arraySizes.push_back(1e3);
  arraySizes.push_back(1e4);
  arraySizes.push_back(1e5);
  arraySizes.push_back(1e6);
  arraySizes.push_back(1e7);
  std::vector<unsigned int> repetitions;
  repetitions.push_back(2e7);
  repetitions.push_back(2e6);
  repetitions.push_back(2e5);
  repetitions.push_back(2e4);
  repetitions.push_back(1e3);
  repetitions.push_back(1e2);

  /** For all sizes. */
  for (unsigned int s = 0; s < arraySizes.size(); ++s)
  {
    std::cout << "Array size = " << arraySizes[s] << std::endl;

    /** Setup. */
    itk::TimeProbesCollectorBase timeCollector;
    repetitions[s] = 1; // outcomment this line for full testing

    ParametersType newPos(arraySizes[s]);
    ParametersType curPos(arraySizes[s]);
    ParametersType gradient(arraySizes[s]);
    for (unsigned int i = 0; i < arraySizes[s]; ++i)
    {
      curPos[i] = 2.1;
      gradient[i] = 2.1;
    }
    optimizer->m_NumberOfParameters = arraySizes[s];
    optimizer->m_LearningRate = 3.67;
    optimizer->m_CurrentPosition = curPos;
    optimizer->m_Gradient = gradient;

    /** Time the ITK single-threaded implementation. */
    optimizer->m_UseEigen = false;
    optimizer->m_UseMultiThreaded = false;
    for (unsigned int i = 0; i < repetitions[s]; ++i)
    {
      timeCollector.Start("st");
      optimizer->AdvanceOneStep();
      timeCollector.Stop("st");
    }

    /** Time the ITK multi-threaded implementation. */
    optimizer->m_UseEigen = false;
    optimizer->m_UseMultiThreaded = true;
    unsigned int rep = repetitions[s] / 1000.0;
    if (rep < 10)
    {
      rep = 10;
    }
    for (unsigned int i = 0; i < rep; ++i)
    {
      timeCollector.Start("ITK (mt)");
      optimizer->AdvanceOneStep();
      timeCollector.Stop("ITK (mt)");
    }

    /** Time the Eigen single-threaded implementation. */
#ifdef ELASTIX_USE_EIGEN
    optimizer->m_UseEigen = true;
    optimizer->m_UseMultiThreaded = true;
    for (unsigned int i = 0; i < repetitions[s]; ++i)
    {
      timeCollector.Start("Eigen (st)");
      optimizer->AdvanceOneStep();
      timeCollector.Stop("Eigen (st)");
    }
#endif

    // Report timings for this array size
    timeCollector.Report(std::cout, false, true);
    std::cout << std::endl;

  } // end loop over array sizes

  return EXIT_SUCCESS;

} // end main