1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkSmartPointer.h"
#include "itkArray.h"
#include <vector>
#include <algorithm>
#include <iomanip>
// Report timings
#include <ctime>
#include "itkTimeProbe.h"
#include "itkTimeProbesCollectorBase.h"
// Multi-threading using ITK threads
#include "itkMultiThreaderBase.h"
// Single-threaded vector arithmetic using Eigen
#ifdef ELASTIX_USE_EIGEN
# include <Eigen/Dense>
# include <Eigen/Core>
#endif
#include <cassert>
// select double or float internal type of array
#if 0
typedef float InternalScalarType;
#else
typedef double InternalScalarType;
#endif
#ifdef ELASTIX_USE_EIGEN
# if 0
typedef Eigen::VectorXf ParametersTypeEigen;
# else
typedef Eigen::VectorXd ParametersTypeEigen;
# endif
#endif
class OptimizerTEMP : public itk::Object
{
public:
/** Standard class typedefs. */
using Self = OptimizerTEMP;
using Pointer = itk::SmartPointer<Self>;
itkNewMacro(Self);
using ParametersType = itk::Array<InternalScalarType>;
unsigned long m_NumberOfParameters;
ParametersType m_CurrentPosition;
ParametersType m_Gradient;
InternalScalarType m_LearningRate;
using ThreadInfoType = itk::MultiThreaderBase::WorkUnitInfo;
itk::MultiThreaderBase::Pointer m_Threader;
bool m_UseEigen;
bool m_UseMultiThreaded;
struct MultiThreaderParameterType
{
ParametersType * t_NewPosition;
Self * t_Optimizer;
};
OptimizerTEMP()
{
this->m_NumberOfParameters = 0;
this->m_LearningRate = 0.0;
this->m_Threader = itk::MultiThreaderBase::New();
this->m_Threader->SetNumberOfWorkUnits(8);
this->m_UseEigen = false;
this->m_UseMultiThreaded = false;
}
void
AdvanceOneStep()
{
const unsigned int spaceDimension = m_NumberOfParameters;
ParametersType & newPosition = this->m_CurrentPosition;
if (!this->m_UseMultiThreaded)
{
/** Get a pointer to the current position. */
const InternalScalarType * currentPosition = this->m_CurrentPosition.data_block();
const double learningRate = this->m_LearningRate;
const InternalScalarType * gradient = this->m_Gradient.data_block();
InternalScalarType * newPos = newPosition.data_block();
/** Update the new position. */
for (unsigned int j = 0; j < spaceDimension; ++j)
{
// newPosition[j] = currentPosition[j] - this->m_LearningRate * this->m_Gradient[j];
newPos[j] = currentPosition[j] - learningRate * gradient[j];
}
}
#ifdef ELASTIX_USE_EIGEN
else if (this->m_UseEigen)
{
/** Get a reference to the current position. */
const ParametersType & currentPosition = this->m_CurrentPosition;
const InternalScalarType learningRate = this->m_LearningRate;
/** Wrap itk::Arrays into Eigen jackets. */
Eigen::Map<ParametersTypeEigen> newPositionE(newPosition.data_block(), spaceDimension);
Eigen::Map<const ParametersTypeEigen> currentPositionE(currentPosition.data_block(), spaceDimension);
Eigen::Map<ParametersTypeEigen> gradientE(this->m_Gradient.data_block(), spaceDimension);
/** Update the new position. */
// Eigen::setNbThreads( this->m_Threader->GetNumberOfWorkUnits() );
newPositionE = currentPositionE - learningRate * gradientE;
}
#endif
else
{
/** Fill the threader parameter struct with information. */
MultiThreaderParameterType userData;
userData.t_NewPosition = &newPosition;
userData.t_Optimizer = this;
/** Call multi-threaded AdvanceOneStep(). */
this->m_Threader->SetSingleMethodAndExecute(AdvanceOneStepThreaderCallback, &userData);
}
} // end
/** The callback function. */
static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
AdvanceOneStepThreaderCallback(void * arg)
{
/** Get the current thread id and user data. */
assert(arg);
const auto & infoStruct = *static_cast<ThreadInfoType *>(arg);
itk::ThreadIdType threadID = infoStruct.WorkUnitID;
assert(infoStruct.UserData);
const auto & userData = *static_cast<MultiThreaderParameterType *>(infoStruct.UserData);
/** Call the real implementation. */
userData.t_Optimizer->ThreadedAdvanceOneStep2(threadID, *(userData.t_NewPosition));
return ITK_THREAD_RETURN_DEFAULT_VALUE;
} // end AdvanceOneStepThreaderCallback()
/** The threaded implementation of AdvanceOneStep(). */
inline void
ThreadedAdvanceOneStep(itk::ThreadIdType threadId, ParametersType & newPosition)
{
/** Compute the range for this thread. */
const unsigned int spaceDimension = m_NumberOfParameters;
const unsigned int subSize = static_cast<unsigned int>(
std::ceil(static_cast<double>(spaceDimension) / static_cast<double>(this->m_Threader->GetNumberOfWorkUnits())));
const unsigned int jmin = threadId * subSize;
const unsigned int jmax = std::min((threadId + 1) * subSize, spaceDimension);
/** Get a reference to the current position. */
const ParametersType & currentPosition = this->m_CurrentPosition;
const double learningRate = this->m_LearningRate;
const ParametersType & gradient = this->m_Gradient;
/** Advance one step: mu_{k+1} = mu_k - a_k * gradient_k */
for (unsigned int j = jmin; j < jmax; ++j)
{
newPosition[j] = currentPosition[j] - learningRate * gradient[j];
}
} // end ThreadedAdvanceOneStep()
/** The threaded implementation of AdvanceOneStep(). */
inline void
ThreadedAdvanceOneStep2(itk::ThreadIdType threadId, ParametersType & newPosition)
{
/** Compute the range for this thread. */
const unsigned int spaceDimension = m_NumberOfParameters;
const unsigned int subSize = static_cast<unsigned int>(
std::ceil(static_cast<double>(spaceDimension) / static_cast<double>(this->m_Threader->GetNumberOfWorkUnits())));
const unsigned int jmin = threadId * subSize;
const unsigned int jmax = std::min((threadId + 1) * subSize, spaceDimension);
/** Get a pointer to the current position. */
const InternalScalarType * currentPosition = this->m_CurrentPosition.data_block();
const double learningRate = this->m_LearningRate;
const InternalScalarType * gradient = this->m_Gradient.data_block();
InternalScalarType * newPos = newPosition.data_block();
/** Advance one step: mu_{k+1} = mu_k - a_k * gradient_k */
for (unsigned int j = jmin; j < jmax; ++j)
{
newPos[j] = currentPosition[j] - learningRate * gradient[j];
}
} // end ThreadedAdvanceOneStep()
};
// end class Optimizer
//-------------------------------------------------------------------------------------
int
main()
{
// Declare and setup
std::cout << std::fixed << std::showpoint << std::setprecision(8);
std::cout << "RESULTS FOR InternalScalarType = " << typeid(InternalScalarType).name() << "\n\n" << std::endl;
/** Typedefs. */
using OptimizerClass = OptimizerTEMP;
using ParametersType = OptimizerClass::ParametersType;
auto optimizer = OptimizerClass::New();
// test parameters
std::vector<unsigned int> arraySizes;
arraySizes.push_back(1e2);
arraySizes.push_back(1e3);
arraySizes.push_back(1e4);
arraySizes.push_back(1e5);
arraySizes.push_back(1e6);
arraySizes.push_back(1e7);
std::vector<unsigned int> repetitions;
repetitions.push_back(2e7);
repetitions.push_back(2e6);
repetitions.push_back(2e5);
repetitions.push_back(2e4);
repetitions.push_back(1e3);
repetitions.push_back(1e2);
/** For all sizes. */
for (unsigned int s = 0; s < arraySizes.size(); ++s)
{
std::cout << "Array size = " << arraySizes[s] << std::endl;
/** Setup. */
itk::TimeProbesCollectorBase timeCollector;
repetitions[s] = 1; // outcomment this line for full testing
ParametersType newPos(arraySizes[s]);
ParametersType curPos(arraySizes[s]);
ParametersType gradient(arraySizes[s]);
for (unsigned int i = 0; i < arraySizes[s]; ++i)
{
curPos[i] = 2.1;
gradient[i] = 2.1;
}
optimizer->m_NumberOfParameters = arraySizes[s];
optimizer->m_LearningRate = 3.67;
optimizer->m_CurrentPosition = curPos;
optimizer->m_Gradient = gradient;
/** Time the ITK single-threaded implementation. */
optimizer->m_UseEigen = false;
optimizer->m_UseMultiThreaded = false;
for (unsigned int i = 0; i < repetitions[s]; ++i)
{
timeCollector.Start("st");
optimizer->AdvanceOneStep();
timeCollector.Stop("st");
}
/** Time the ITK multi-threaded implementation. */
optimizer->m_UseEigen = false;
optimizer->m_UseMultiThreaded = true;
unsigned int rep = repetitions[s] / 1000.0;
if (rep < 10)
{
rep = 10;
}
for (unsigned int i = 0; i < rep; ++i)
{
timeCollector.Start("ITK (mt)");
optimizer->AdvanceOneStep();
timeCollector.Stop("ITK (mt)");
}
/** Time the Eigen single-threaded implementation. */
#ifdef ELASTIX_USE_EIGEN
optimizer->m_UseEigen = true;
optimizer->m_UseMultiThreaded = true;
for (unsigned int i = 0; i < repetitions[s]; ++i)
{
timeCollector.Start("Eigen (st)");
optimizer->AdvanceOneStep();
timeCollector.Stop("Eigen (st)");
}
#endif
// Report timings for this array size
timeCollector.Report(std::cout, false, true);
std::cout << std::endl;
} // end loop over array sizes
return EXIT_SUCCESS;
} // end main
|