1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
/*=========================================================================
*
* Copyright UMC Utrecht and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkAdvancedBSplineDeformableTransform.h"
#include "itkBSplineDeformableTransform.h" // original ITK
//#include "itkBSplineTransform.h" // new ITK4
#include "itkGridScheduleComputer.h"
#include <ctime>
#include <fstream>
#include <iomanip>
//-------------------------------------------------------------------------------------
int
main(int argc, char * argv[])
{
/** Some basic type definitions.
* NOTE: don't change the dimension or the spline order, since the
* hard-coded ground truth depends on this.
*/
const unsigned int Dimension = 3;
const unsigned int SplineOrder = 3;
using CoordinateRepresentationType = float;
// const double distance = 1e-3; // the allowable distance
// const double allowedTimeDifference = 0.1; // 10% is considered within limits
/** The number of calls to Evaluate(). Distinguish between
* Debug and Release mode.
*/
#ifndef NDEBUG
unsigned int N = static_cast<unsigned int>(1e3);
#else
unsigned int N = static_cast<unsigned int>(0.5e5);
#endif
std::cerr << "N = " << N << std::endl;
/** Check. */
if (argc != 2)
{
std::cerr << "ERROR: You should specify a text file with the B-spline transformation parameters." << std::endl;
return 1;
}
/** Other typedefs. */
using TransformType = itk::AdvancedBSplineDeformableTransform<CoordinateRepresentationType, Dimension, SplineOrder>;
using ITKTransformType = itk::BSplineDeformableTransform<
// typedef itk::BSplineTransform<
CoordinateRepresentationType,
Dimension,
SplineOrder>;
using JacobianType = TransformType::JacobianType;
using SpatialJacobianType = TransformType::SpatialJacobianType;
using SpatialHessianType = TransformType::SpatialHessianType;
using JacobianOfSpatialJacobianType = TransformType::JacobianOfSpatialJacobianType;
using JacobianOfSpatialHessianType = TransformType::JacobianOfSpatialHessianType;
using NonZeroJacobianIndicesType = TransformType::NonZeroJacobianIndicesType;
using NumberOfParametersType = TransformType::NumberOfParametersType;
using InputPointType = TransformType::InputPointType;
using OutputPointType = TransformType::OutputPointType;
using ParametersType = TransformType::ParametersType;
using InputImageType = itk::Image<CoordinateRepresentationType, Dimension>;
using RegionType = InputImageType::RegionType;
using SizeType = InputImageType::SizeType;
using IndexType = InputImageType::IndexType;
using SpacingType = InputImageType::SpacingType;
using OriginType = InputImageType::PointType;
using DirectionType = InputImageType::DirectionType;
/** Create the transform. */
auto transform = TransformType::New();
auto transformITK = ITKTransformType::New();
/** Setup the B-spline transform:
* (GridSize 44 43 35)
* (GridIndex 0 0 0)
* (GridSpacing 10.7832773148 11.2116431394 11.8648235177)
* (GridOrigin -237.6759555555 -239.9488431747 -344.2315805162)
*/
SizeType gridSize;
gridSize[0] = 44;
gridSize[1] = 43;
gridSize[2] = 35;
IndexType gridIndex{};
RegionType gridRegion;
gridRegion.SetSize(gridSize);
gridRegion.SetIndex(gridIndex);
SpacingType gridSpacing;
gridSpacing[0] = 10.7832773148;
gridSpacing[1] = 11.2116431394;
gridSpacing[2] = 11.8648235177;
OriginType gridOrigin;
gridOrigin[0] = -237.6759555555;
gridOrigin[1] = -239.9488431747;
gridOrigin[2] = -344.2315805162;
const auto gridDirection = DirectionType::GetIdentity();
transform->SetGridOrigin(gridOrigin);
transform->SetGridSpacing(gridSpacing);
transform->SetGridRegion(gridRegion);
transform->SetGridDirection(gridDirection);
transformITK->SetGridOrigin(gridOrigin);
transformITK->SetGridSpacing(gridSpacing);
transformITK->SetGridRegion(gridRegion);
transformITK->SetGridDirection(gridDirection);
// ParametersType fixPar( Dimension * ( 3 + Dimension ) );
// fixPar[ 0 ] = gridSize[ 0 ]; fixPar[ 1 ] = gridSize[ 1 ]; fixPar[ 2 ] = gridSize[ 2 ];
// fixPar[ 3 ] = gridOrigin[ 0 ]; fixPar[ 4 ] = gridOrigin[ 1 ]; fixPar[ 5 ] = gridOrigin[ 2 ];
// fixPar[ 6 ] = gridSpacing[ 0 ]; fixPar[ 7 ] = gridSpacing[ 1 ]; fixPar[ 8 ] = gridSpacing[ 2 ];
// fixPar[ 9 ] = gridDirection[ 0 ][ 0 ]; fixPar[ 10 ] = gridDirection[ 0 ][ 1 ]; fixPar[ 11 ] = gridDirection[ 0 ][ 2
// ]; fixPar[ 12 ] = gridDirection[ 1 ][ 0 ]; fixPar[ 13 ] = gridDirection[ 1 ][ 1 ]; fixPar[ 14 ] = gridDirection[ 1
// ][ 2 ]; fixPar[ 15 ] = gridDirection[ 2 ][ 0 ]; fixPar[ 16 ] = gridDirection[ 2 ][ 1 ]; fixPar[ 17 ] =
// gridDirection[ 2 ][ 2 ]; transformITK->SetFixedParameters( fixPar );
/** Now read the parameters as defined in the file par.txt. */
ParametersType parameters(transform->GetNumberOfParameters());
std::ifstream input(argv[1]);
if (input.is_open())
{
for (unsigned int i = 0; i < parameters.GetSize(); ++i)
{
input >> parameters[i];
}
}
else
{
std::cerr << "ERROR: could not open the text file containing the parameter values." << std::endl;
return 1;
}
transform->SetParameters(parameters);
transformITK->SetParameters(parameters);
/** Get the number of nonzero Jacobian indices. */
const NumberOfParametersType nonzji = transform->GetNumberOfNonZeroJacobianIndices();
/** Declare variables. */
InputPointType inputPoint;
inputPoint.Fill(4.1f);
JacobianType jacobian;
SpatialJacobianType spatialJacobian;
SpatialHessianType spatialHessian;
JacobianOfSpatialJacobianType jacobianOfSpatialJacobian;
JacobianOfSpatialHessianType jacobianOfSpatialHessian;
NonZeroJacobianIndicesType nzji;
/** Resize some of the variables. */
nzji.resize(nonzji);
jacobian.set_size(Dimension, nonzji);
jacobianOfSpatialJacobian.resize(nonzji);
jacobianOfSpatialHessian.resize(nonzji);
jacobian.Fill(0.0);
/**
*
* Call functions for testing that they don't crash.
*
*/
/** The Jacobian. */
transform->GetJacobian(inputPoint, jacobian, nzji);
/** The spatial Jacobian. */
transform->GetSpatialJacobian(inputPoint, spatialJacobian);
/** The spatial Hessian. */
transform->GetSpatialHessian(inputPoint, spatialHessian);
/** The Jacobian of the spatial Jacobian. */
transform->GetJacobianOfSpatialJacobian(inputPoint, jacobianOfSpatialJacobian, nzji);
transform->GetJacobianOfSpatialJacobian(inputPoint, spatialJacobian, jacobianOfSpatialJacobian, nzji);
/** The Jacobian of the spatial Hessian. */
transform->GetJacobianOfSpatialHessian(inputPoint, jacobianOfSpatialHessian, nzji);
transform->GetJacobianOfSpatialHessian(inputPoint, spatialHessian, jacobianOfSpatialHessian, nzji);
// /***/
// transform->GetSpatialHessian( inputPoint, spatialHessian );
// for ( unsigned int i = 0; i < Dimension; ++i )
// {
// std::cerr << spatialHessian[ i ] << std::endl;
// }
//
// /***/
// transform->GetJacobianOfSpatialHessian( inputPoint,
// spatialHessian, jacobianOfSpatialHessian, nzji );
// for ( unsigned int mu = 0; mu < 2; ++mu )
// {
// for ( unsigned int i = 0; i < Dimension; ++i )
// {
// std::cerr << jacobianOfSpatialHessian[ mu ][ i ] << std::endl;
// }
// }
/**
*
* Call functions for timing.
*
*/
clock_t startClock, endClock, clockITK;
/** Time the implementation of the Jacobian. */
startClock = clock();
for (unsigned int i = 0; i < N * 10; ++i)
{
transform->GetJacobian(inputPoint, jacobian, nzji);
}
endClock = clock();
clockITK = endClock - startClock;
std::cerr << "The elapsed time for the Jacobian is: " << clockITK / 1000.0 << " s." << std::endl;
/** Time the implementation of the spatial Jacobian. */
startClock = clock();
for (unsigned int i = 0; i < N; ++i)
{
transform->GetSpatialJacobian(inputPoint, spatialJacobian);
}
endClock = clock();
clockITK = endClock - startClock;
std::cerr << "The elapsed time for the spatial Jacobian is: " << clockITK / 1000.0 << " s." << std::endl;
/** Time the implementation of the spatial Hessian. */
startClock = clock();
for (unsigned int i = 0; i < N; ++i)
{
transform->GetSpatialHessian(inputPoint, spatialHessian);
}
endClock = clock();
clockITK = endClock - startClock;
std::cerr << "The elapsed time for the spatial Hessian is: " << clockITK / 1000.0 << " s." << std::endl;
/** Time the implementation of the Jacobian of the spatial Jacobian. */
startClock = clock();
for (unsigned int i = 0; i < N; ++i)
{
transform->GetJacobianOfSpatialJacobian(inputPoint, jacobianOfSpatialJacobian, nzji);
}
endClock = clock();
clockITK = endClock - startClock;
std::cerr << "The elapsed time for the Jacobian of the spatial Jacobian is: " << clockITK / 1000.0 << " s."
<< std::endl;
/** Time the implementation of the Jacobian of the spatial Hessian. */
startClock = clock();
for (unsigned int i = 0; i < N; ++i)
{
transform->GetJacobianOfSpatialHessian(inputPoint, jacobianOfSpatialHessian, nzji);
}
endClock = clock();
clockITK = endClock - startClock;
std::cerr << "The elapsed time for the Jacobian of the spatial Hessian is: " << clockITK / 1000.0 << " s."
<< std::endl;
/** Time the implementation of the spatial Jacobian and its Jacobian. */
startClock = clock();
for (unsigned int i = 0; i < N; ++i)
{
transform->GetSpatialJacobian(inputPoint, spatialJacobian);
transform->GetJacobianOfSpatialJacobian(inputPoint, jacobianOfSpatialJacobian, nzji);
}
endClock = clock();
clockITK = endClock - startClock;
std::cerr << "The elapsed time for the (Jacobian of the) spatial Jacobian (2 func) is: " << clockITK / 1000.0 << " s."
<< std::endl;
/** Time the implementation of the spatial Jacobian and its Jacobian. */
startClock = clock();
for (unsigned int i = 0; i < N; ++i)
{
transform->GetJacobianOfSpatialJacobian(inputPoint, spatialJacobian, jacobianOfSpatialJacobian, nzji);
}
endClock = clock();
clockITK = endClock - startClock;
std::cerr << "The elapsed time for the (Jacobian of the) spatial Jacobian (1 func) is: " << clockITK / 1000.0 << " s."
<< std::endl;
/** Time the implementation of the spatial Hessian. */
startClock = clock();
for (unsigned int i = 0; i < N; ++i)
{
transform->GetSpatialHessian(inputPoint, spatialHessian);
transform->GetJacobianOfSpatialHessian(inputPoint, jacobianOfSpatialHessian, nzji);
}
endClock = clock();
clockITK = endClock - startClock;
std::cerr << "The elapsed time for the (Jacobian of the) spatial Hessian (2 func) is: " << clockITK / 1000.0 << " s."
<< std::endl;
/** Additional checks. */
if (!transform->GetHasNonZeroSpatialHessian())
{
std::cerr << "ERROR: GetHasNonZeroSpatialHessian() should return true." << std::endl;
return 1;
}
if (!transform->GetHasNonZeroJacobianOfSpatialHessian())
{
std::cerr << "ERROR: GetHasNonZeroJacobianOfSpatialHessian() should return true." << std::endl;
return 1;
}
/** These should return the same values as the original ITK functions. */
OutputPointType opp1 = transform->TransformPoint(inputPoint);
OutputPointType opp2 = transformITK->TransformPoint(inputPoint);
double differenceNorm = 0.0;
for (unsigned int i = 0; i < Dimension; ++i)
{
differenceNorm += (opp1[i] - opp2[i]) * (opp1[i] - opp2[i]);
}
if (std::sqrt(differenceNorm) > 1e-10)
{
std::cerr << "ERROR: Advanced B-spline TransformPoint() returning incorrect result." << std::endl;
return 1;
}
JacobianType jacobianITK{};
transformITK->ComputeJacobianWithRespectToParameters(inputPoint, jacobianITK);
JacobianType jacobianElastix;
jacobianElastix.set_size(Dimension, nzji.size());
jacobianElastix.fill(0.0);
transform->GetJacobian(inputPoint, jacobianElastix, nzji);
// ITK4 B-spline is non-local and returns a full matrix. Cannot compute diff like this anymore:
// JacobianType jacobianDifferenceMatrix = jacobianElastix - jacobianITK;
// I believe there are future plans to re-enable local support B-splines
double jacDiff = 0.0;
for (unsigned int i = 0; i < nzji.size(); ++i)
{
for (unsigned int j = 0; j < Dimension; ++j)
{
jacDiff += vnl_math::sqr(jacobianElastix[j][i] - jacobianITK[j][nzji[i]]);
}
}
// if ( jacobianDifferenceMatrix.frobenius_norm() > 1e-10 )
if (std::sqrt(jacDiff) > 1e-10)
{
std::cerr << "ERROR: Advanced B-spline GetJacobian() returning incorrect result." << std::endl;
return 1;
}
//// Check
// JacobianType jacobian1, jacobian2;
// jacobian1.set_size( Dimension, nzji.size() ); jacobian2.set_size( Dimension, nzji.size() );
// jacobian1.fill( 0.0 ); jacobian2.Fill( 0.0 );
// transform->GetJacobian( inputPoint, jacobian1, nzji );
// transform->GetJacobian_opt( inputPoint, jacobian2, nzji );
// JacobianType jacobianDifferenceMatrix = jacobian1 - jacobian2;
// if ( jacobianDifferenceMatrix.frobenius_norm () > 1e-10 )
//{
// std::cerr << "ERROR: Advanced B-spline GetJacobian_opt() returning incorrect result." << std::endl;
// return 1;
//}
//// Check
// SpatialHessianType spatialHessian1, spatialHessian2;
// JacobianOfSpatialHessianType jacobianOfSpatialHessian1, jacobianOfSpatialHessian2;
// NonZeroJacobianIndicesType nzji1, nzji2;
// transform->GetJacobianOfSpatialHessian( inputPoint,
// spatialHessian1, jacobianOfSpatialHessian1, nzji1 );
// transform->GetJacobianOfSpatialHessian_opt( inputPoint,
// spatialHessian2, jacobianOfSpatialHessian2, nzji2 );
// double shDiff = 0.0;
// for( unsigned int i = 0; i < Dimension; i++ ) {
// for( unsigned int j = 0; j < Dimension; j++ ) {
// for( unsigned int k = 0; k < Dimension; k++ ) {
// shDiff += vnl_math::sqr( spatialHessian1[i][j][k] - spatialHessian2[i][j][k] );
// } } }
// double jshDiff = 0.0;
// for( unsigned int mu = 0; mu < nzji.size(); mu++ ) {
// for( unsigned int i = 0; i < Dimension; i++ ) {
// for( unsigned int j = 0; j < Dimension; j++ ) {
// for( unsigned int k = 0; k < Dimension; k++ ) {
// jshDiff += vnl_math::sqr( jacobianOfSpatialHessian1[mu][i][j][k] - jacobianOfSpatialHessian2[mu][i][j][k] );
// } } } }
// if ( std::sqrt( shDiff ) > 1e-8 )
//{
// std::cerr << "ERROR: Advanced B-spline GetJacobianOfSpatialHessian_opt() "
// << "returning incorrect spatial Hessian result: MSD = "
// << std::sqrt( shDiff ) << std::endl;
// return 1;
//}
// if ( std::sqrt( jshDiff ) > 1e-8 )
//{
// std::cerr << "ERROR: Advanced B-spline GetJacobianOfSpatialHessian_opt() "
// << "returning incorrect Jacobian of spatial Hessian result: MSD = "
// << std::sqrt( jshDiff ) << std::endl;
// return 1;
//}
if ((transform->GetParameters() - transformITK->GetParameters()).two_norm() > 1e-10)
{
std::cerr << "ERROR: Advanced B-spline GetParameters() returning incorrect result." << std::endl;
return 1;
}
if ((transform->GetFixedParameters() - transformITK->GetFixedParameters()).two_norm() > 1e-10)
{
std::cerr << "ERROR: Advanced B-spline GetFixedParameters() returning incorrect result." << std::endl;
return 1;
}
/** Exercise PrintSelf(). */
transform->Print(std::cerr);
/** Return a value. */
return 0;
} // end main
|