File: itkAdvancedLinearInterpolatorTest.cxx

package info (click to toggle)
elastix 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,480 kB
  • sloc: cpp: 68,403; lisp: 4,118; python: 1,013; xml: 182; sh: 177; makefile: 33
file content (299 lines) | stat: -rw-r--r-- 10,634 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*=========================================================================
 *
 *  Copyright UMC Utrecht and contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
/** \file
 \brief Compare the advanced linear interpolator with the linear and 1st order B-spline.
 */

#include "itkLinearInterpolateImageFunction.h"
#include "itkAdvancedLinearInterpolateImageFunction.h"
#include "itkBSplineInterpolateImageFunction.h"

#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkImageFileWriter.h"
#include "itkTimeProbe.h"

#include <cmath> // For abs.

//-------------------------------------------------------------------------------------

// Test function templated over the dimension
template <unsigned int Dimension>
bool
TestInterpolators()
{
  using InputImageType = itk::Image<short, Dimension>;
  using SizeType = typename InputImageType::SizeType;
  using SpacingType = typename InputImageType::SpacingType;
  using OriginType = typename InputImageType::PointType;
  using RegionType = typename InputImageType::RegionType;
  // typedef typename RegionType::IndexType         IndexType;
  using DirectionType = typename InputImageType::DirectionType;
  using CoordRepType = double;
  using CoefficientType = double;

  using LinearInterpolatorType = itk::LinearInterpolateImageFunction<InputImageType, CoordRepType>;
  using AdvancedLinearInterpolatorType = itk::AdvancedLinearInterpolateImageFunction<InputImageType, CoordRepType>;
  using BSplineInterpolatorType = itk::BSplineInterpolateImageFunction<InputImageType, CoordRepType, CoefficientType>;
  using ContinuousIndexType = typename LinearInterpolatorType::ContinuousIndexType;
  using CovariantVectorType = typename AdvancedLinearInterpolatorType::CovariantVectorType;
  using OutputType = typename AdvancedLinearInterpolatorType::OutputType; // double scalar

  using IteratorType = itk::ImageRegionIterator<InputImageType>;
  using RandomNumberGeneratorType = itk::Statistics::MersenneTwisterRandomVariateGenerator;
  // typedef itk::ImageFileWriter< InputImageType >                 WriterType;

  RandomNumberGeneratorType::Pointer randomNum = RandomNumberGeneratorType::GetInstance();

  /** Create random input image. */
  SizeType    size;
  SpacingType spacing;
  OriginType  origin;
  for (unsigned int i = 0; i < Dimension; ++i)
  {
    size[i] = 10;
    spacing[i] = randomNum->GetUniformVariate(0.5, 2.0);
    origin[i] = randomNum->GetUniformVariate(-1, 0);
  }
  RegionType region;
  region.SetSize(size);

  /** Make sure to test for non-identity direction cosines. */
  DirectionType direction{};
  if constexpr (Dimension == 2)
  {
    direction[0][1] = -1.0;
    direction[1][0] = 1.0;
  }
  else if constexpr (Dimension == 3)
  {
    direction[0][2] = -1.0;
    direction[1][1] = 1.0;
    direction[2][0] = 1.0;
  }

  auto image = InputImageType::New();
  image->SetRegions(region);
  image->SetOrigin(origin);
  image->SetSpacing(spacing);
  image->SetDirection(direction);
  image->Allocate();

  // loop over image and fill with random values
  IteratorType it(image, image->GetLargestPossibleRegion());
  it.GoToBegin();

  while (!it.IsAtEnd())
  {
    it.Set(randomNum->GetUniformVariate(0, 255));
    ++it;
  }

  /** Write the image. */
  // auto writer = WriterType::New();
  // writer->SetInput( image );
  // writer->SetFileName( "image.mhd" );
  // writer->Update();

  /** Create and setup interpolators. */
  auto linear = LinearInterpolatorType::New();
  auto linearA = AdvancedLinearInterpolatorType::New();
  auto bspline = BSplineInterpolatorType::New();
  linear->SetInputImage(image);
  linearA->SetInputImage(image);
  bspline->SetSplineOrder(1); // prior to SetInputImage()
  bspline->SetInputImage(image);

  /** Test some points. */
  const unsigned int count = 12;
  double             darray1[12][Dimension];
  if constexpr (Dimension == 2)
  {
    double darray2[12][2] = { { 0.1, 0.2 }, { 3.4, 5.8 }, { 4.0, 6.0 }, { 2.1, 8.0 },  { -0.1, -0.1 }, { 0.0, 0.0 },
                              { 1.3, 1.0 }, { 2.0, 5.7 }, { 9.5, 9.1 }, { 2.0, -0.1 }, { -0.1, 2.0 },  { 12.7, 15.3 } };
    for (unsigned int i = 0; i < 12; ++i)
    {
      for (unsigned int j = 0; j < Dimension; ++j)
      {
        darray1[i][j] = darray2[i][j];
      }
    }
  }
  else if constexpr (Dimension == 3)
  {
    // double darray2[count][3] =
    //{ { 0.0, 0.0, 0.0}, { 0.1, 0.0, 0.0}, { 0.2, 0.0, 0.0} }; // x, y=z=0, works
    //{ { 0.0, 0.5, 0.0}, { 0.1, 0.5, 0.0}, { 0.2, 0.5, 0.0} }; // x, z=0, works
    //{ { 0.0, 0.0, 0.5}, { 0.1, 0.0, 0.5}, { 0.2, 0.0, 0.5} }; // x, y=0, works
    //{ { 0.0, 0.2, 0.2}, { 0.0, 0.4, 0.4}, { 0.0, 0.5, 0.5} }; // x=0, y=z, works
    //{ { 0.0, 0.0, 0.0}, { 0.0, 0.1, 0.0}, { 0.0, 0.2, 0.0} }; // y, works
    //{ { 0.0, 0.0, 0.0}, { 0.0, 0.0, 0.1}, { 0.0, 0.0, 0.2} }; // z, works
    //{ { 0.0, 0.0, 0.0}, { 0.2, 0.1, 0.0}, { 0.5, 0.2, 0.0} }; // xy, works
    //{ { 0.0, 0.0, 0.0}, { 0.3, 0.0, 0.1}, { 0.5, 0.0, 0.2} }; // xz, works
    //{ { 0.0, 0.0, 0.0}, { 0.0, 0.1, 0.1}, { 0.0, 0.4, 0.2} }; // yz, works
    double darray2[12][3] = { { 0.1, 0.2, 0.1 },    { 3.4, 5.8, 4.7 },  { 4.0, 6.0, 5.0 },  { 2.1, 8.0, 3.4 },
                              { -0.1, -0.1, -0.1 }, { 0.0, 0.0, 0.0 },  { 1.3, 1.0, 1.4 },  { 2.0, 5.7, 7.5 },
                              { 9.5, 9.1, 9.3 },    { 2.0, -0.1, 5.3 }, { -0.1, 2.0, 4.0 }, { 12.7, 15.3, 14.1 } };
    for (unsigned int i = 0; i < count; ++i)
    {
      for (unsigned int j = 0; j < Dimension; ++j)
      {
        darray1[i][j] = darray2[i][j];
      }
    }
  }

  /** Compare results. */
  OutputType          valueLinA, valueBSpline, valueBSpline2;
  CovariantVectorType derivLinA, derivBSpline, derivBSpline2;
  for (unsigned int i = 0; i < count; ++i)
  {
    ContinuousIndexType cindex(&darray1[i][0]);

    linearA->EvaluateValueAndDerivativeAtContinuousIndex(cindex, valueLinA, derivLinA);
    valueBSpline = bspline->EvaluateAtContinuousIndex(cindex);
    derivBSpline = bspline->EvaluateDerivativeAtContinuousIndex(cindex);
    bspline->EvaluateValueAndDerivativeAtContinuousIndex(cindex, valueBSpline2, derivBSpline2);

    std::cout << "cindex: " << cindex << std::endl;

    if (linear->IsInsideBuffer(cindex))
    {
      std::cout << "linear:   " << linear->EvaluateAtContinuousIndex(cindex) << "   ---" << std::endl;
    }
    else
    {
      std::cout << "linear:   ---    ---" << std::endl;
    }
    std::cout << "linearA:  " << valueLinA << "   " << derivLinA << std::endl;
    std::cout << "B-spline: " << valueBSpline << "   " << derivBSpline << std::endl;
    std::cout << "B-spline: " << valueBSpline2 << "   " << derivBSpline2 << "\n" << std::endl;

    if (std::abs(valueLinA - valueBSpline) > 1.0e-3)
    {
      std::cerr << "ERROR: there is a difference in the interpolated value, between the linear and the 1st-order "
                   "B-spline interpolator."
                << std::endl;
      return false;
    }
    if (std::abs(valueBSpline - valueBSpline2) > 1.0e-3)
    {
      std::cerr << "ERROR: there is a difference in the interpolated value, within the 1st-order B-spline interpolator "
                   "(inconsistency)."
                << std::endl;
      return false;
    }
    if ((derivLinA - derivBSpline).GetVnlVector().magnitude() > 1.0e-3)
    {
      std::cerr << "ERROR: there is a difference in the interpolated gradient, between the linear and the 1st-order "
                   "B-spline interpolator."
                << std::endl;
      return false;
    }
    if ((derivBSpline - derivBSpline2).GetVnlVector().magnitude() > 1.0e-3)
    {
      std::cerr << "ERROR: there is a difference in the interpolated gradient, within the 1st-order B-spline "
                   "interpolator (inconsistency)."
                << std::endl;
      return false;
    }
  }

  /** Measure the run times, but only in release mode. */
#ifdef NDEBUG
  std::cout << std::endl;
  ContinuousIndexType cindex(&darray1[1][0]);
  std::cout << "cindex: " << cindex << std::endl;
  OutputType          value;
  CovariantVectorType deriv;
  const unsigned int  runs = 1e5;

  itk::TimeProbe timer;
  timer.Start();
  for (unsigned int i = 0; i < runs; ++i)
  {
    value = linear->EvaluateAtContinuousIndex(cindex);
  }
  timer.Stop();
  std::cout << "linear  (value) : " << 1.0e3 * timer.GetMean() / static_cast<double>(runs) << " ms" << std::endl;

  timer.Reset();
  timer.Start();
  for (unsigned int i = 0; i < runs; ++i)
  {
    linearA->EvaluateValueAndDerivativeAtContinuousIndex(cindex, value, deriv);
  }
  timer.Stop();
  std::cout << "linearA (v&d)   : " << 1.0e3 * timer.GetMean() / static_cast<double>(runs) << " ms" << std::endl;

  timer.Reset();
  timer.Start();
  for (unsigned int i = 0; i < runs; ++i)
  {
    value = bspline->EvaluateAtContinuousIndex(cindex);
  }
  timer.Stop();
  std::cout << "B-spline (value): " << 1.0e3 * timer.GetMean() / static_cast<double>(runs) << " ms" << std::endl;

  timer.Reset();
  timer.Start();
  for (unsigned int i = 0; i < runs; ++i)
  {
    value = bspline->EvaluateAtContinuousIndex(cindex);
    deriv = bspline->EvaluateDerivativeAtContinuousIndex(cindex);
  }
  timer.Stop();
  std::cout << "B-spline (v+d)  : " << 1.0e3 * timer.GetMean() / static_cast<double>(runs) << " ms" << std::endl;

  timer.Reset();
  timer.Start();
  for (unsigned int i = 0; i < runs; ++i)
  {
    bspline->EvaluateValueAndDerivativeAtContinuousIndex(cindex, value, deriv);
  }
  timer.Stop();
  std::cout << "B-spline (v&d)  : " << 1.0e3 * timer.GetMean() / static_cast<double>(runs) << " ms" << std::endl;
#endif

  return true;

} // end TestInterpolator()


int
main()
{
  // 2D tests
  bool success = TestInterpolators<2>();
  if (!success)
  {
    return EXIT_FAILURE;
  }

  std::cerr << "\n\n\n-----------------------------------\n\n\n";

  // 3D tests
  success = TestInterpolators<3>();
  if (!success)
  {
    return EXIT_FAILURE;
  }

  return EXIT_SUCCESS;
} // end main