File: efence.c

package info (click to toggle)
electric-fence 2.1.14.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k, lenny
  • size: 140 kB
  • ctags: 116
  • sloc: ansic: 899; makefile: 85; sh: 7
file content (858 lines) | stat: -rw-r--r-- 24,205 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
/*
 * Electric Fence - Red-Zone memory allocator.
 * Bruce Perens, 1988, 1993
 * 
 * This is a special version of malloc() and company for debugging software
 * that is suspected of overrunning or underrunning the boundaries of a
 * malloc buffer, or touching free memory.
 *
 * It arranges for each malloc buffer to be followed (or preceded)
 * in the address space by an inaccessable virtual memory page,
 * and for free memory to be inaccessable. If software touches the
 * inaccessable page, it will get an immediate segmentation
 * fault. It is then trivial to uncover the offending code using a debugger.
 *
 * An advantage of this product over most malloc debuggers is that this one
 * detects reading out of bounds as well as writing, and this one stops on
 * the exact instruction that causes the error, rather than waiting until the
 * next boundary check.
 *
 * There is one product that debugs malloc buffer overruns
 * better than Electric Fence: "Purify" from Purify Systems, and that's only
 * a small part of what Purify does. I'm not affiliated with Purify, I just
 * respect a job well done.
 *
 * This version of malloc() should not be linked into production software,
 * since it tremendously increases the time and memory overhead of malloc().
 * Each malloc buffer will consume a minimum of two virtual memory pages,
 * this is 16 kilobytes on many systems. On some systems it will be necessary
 * to increase the amount of swap space in order to debug large programs that
 * perform lots of allocation, because of the per-buffer overhead.
 */
#include "efence.h"
#include <stdlib.h>
#include <unistd.h>
#include <memory.h>
#include <string.h>
#include <pthread.h>

#ifdef	malloc
#undef	malloc
#endif

#ifdef	calloc
#undef	calloc
#endif

static const char	version[] = "\n  Electric Fence 2.1"
 " Copyright (C) 1987-1998 Bruce Perens.\n";

/*
 * MEMORY_CREATION_SIZE is the amount of memory to get from the operating
 * system at one time. We'll break that memory down into smaller pieces for
 * malloc buffers. One megabyte is probably a good value.
 */
#define			MEMORY_CREATION_SIZE	1024 * 1024

/*
 * Enum Mode indicates the status of a malloc buffer.
 */
enum _Mode {
	NOT_IN_USE = 0,	/* Available to represent a malloc buffer. */
	FREE,		/* A free buffer. */
	ALLOCATED,	/* A buffer that is in use. */
	PROTECTED,	/* A freed buffer that can not be allocated again. */
	INTERNAL_USE	/* A buffer used internally by malloc(). */
};
typedef enum _Mode	Mode;

/*
 * Struct Slot contains all of the information about a malloc buffer except
 * for the contents of its memory.
 */
struct _Slot {
	void *		userAddress;
	void *		internalAddress;
	size_t		userSize;
	size_t		internalSize;
	Mode		mode;
};
typedef struct _Slot	Slot;

 /*
 * EF_DISABLE_BANNER is a global variable used to control whether
 * Electric Fence prints its usual startup message.  If the value is
 * -1, it will be set from the environment default to 0 at run time.
 */
int            EF_DISABLE_BANNER = -1;


/*
 * EF_ALIGNMENT is a global variable used to control the default alignment
 * of buffers returned by malloc(), calloc(), and realloc(). It is all-caps
 * so that its name matches the name of the environment variable that is used
 * to set it. This gives the programmer one less name to remember.
 * If the value is -1, it will be set from the environment or sizeof(int)
 * at run time.
 */
int		EF_ALIGNMENT = -1;

/*
 * EF_PROTECT_FREE is a global variable used to control the disposition of
 * memory that is released using free(). It is all-caps so that its name
 * matches the name of the environment variable that is used to set it.
 * If its value is greater non-zero, memory released by free is made
 * inaccessable and never allocated again. Any software that touches free
 * memory will then get a segmentation fault. If its value is zero, freed
 * memory will be available for reallocation, but will still be inaccessable
 * until it is reallocated.
 * If the value is -1, it will be set from the environment or to 0 at run-time.
 */
int		EF_PROTECT_FREE = -1;

/*
 * EF_PROTECT_BELOW is used to modify the behavior of the allocator. When
 * its value is non-zero, the allocator will place an inaccessable page
 * immediately _before_ the malloc buffer in the address space, instead
 * of _after_ it. Use this to detect malloc buffer under-runs, rather than
 * over-runs. It won't detect both at the same time, so you should test your
 * software twice, once with this value clear, and once with it set.
 * If the value is -1, it will be set from the environment or to zero at
 * run-time
 */
int		EF_PROTECT_BELOW = -1;

/*
 * EF_ALLOW_MALLOC_0 is set if Electric Fence is to allow malloc(0). I
 * trap malloc(0) by default because it is a common source of bugs.
 */
int		EF_ALLOW_MALLOC_0 = -1;

/*
 * EF_FREE_WIPES is set if Electric Fence is to wipe the memory content
 * of freed blocks.  This makes it easier to check if memory is freed or
 * not
 */
int            EF_FREE_WIPES = -1;

/*
 * allocationList points to the array of slot structures used to manage the
 * malloc arena.
 */
static Slot *		allocationList = 0;

/*
 * allocationListSize is the size of the allocation list. This will always
 * be a multiple of the page size.
 */
static size_t		allocationListSize = 0;

/*
 * slotCount is the number of Slot structures in allocationList.
 */
static size_t		slotCount = 0;

/*
 * unUsedSlots is the number of Slot structures that are currently available
 * to represent new malloc buffers. When this number gets too low, we will
 * create new slots.
 */
static size_t		unUsedSlots = 0;

/*
 * slotsPerPage is the number of slot structures that fit in a virtual
 * memory page.
 */
static size_t		slotsPerPage = 0;

/*
 * internalUse is set when allocating and freeing the allocatior-internal
 * data structures.
 */
static int		internalUse = 0;

/*
 * noAllocationListProtection is set to tell malloc() and free() not to
 * manipulate the protection of the allocation list. This is only set in
 * realloc(), which does it to save on slow system calls, and in
 * allocateMoreSlots(), which does it because it changes the allocation list.
 */
static int		noAllocationListProtection = 0;

/*
 * bytesPerPage is set at run-time to the number of bytes per virtual-memory
 * page, as returned by Page_Size().
 */
static size_t		bytesPerPage = 0;

 /*
 * mutex to enable multithreaded operation
 */
static pthread_mutex_t mutex ;
static pid_t mutexpid=0;
static int locknr=0;


static void lock() {
    if (pthread_mutex_trylock(&mutex)) {
       if (mutexpid==getpid()) {
           locknr++;
           return;
       } else {
           pthread_mutex_lock(&mutex);
       }
    } 
    mutexpid=getpid();
    locknr=1;
}

static void unlock() {
    locknr--;
    if (!locknr) {
       mutexpid=0;
       pthread_mutex_unlock(&mutex);
    }
}

/*
 * internalError is called for those "shouldn't happen" errors in the
 * allocator.
 */
static void
internalError(void)
{
	EF_Abort("Internal error in allocator.");
}

/*
 * initialize sets up the memory allocation arena and the run-time
 * configuration information.
 */
static void
initialize(void)
{
	size_t	size = MEMORY_CREATION_SIZE;
	size_t	slack;
	char *	string;
	Slot *	slot;

       if ( EF_DISABLE_BANNER == -1 ) {
               if ( (string = getenv("EF_DISABLE_BANNER")) != 0 )
                       EF_DISABLE_BANNER = atoi(string);
               else
                       EF_DISABLE_BANNER = 0;
       }

       if ( EF_DISABLE_BANNER == 0 )
               EF_Print(version);

	/*
	 * Import the user's environment specification of the default
	 * alignment for malloc(). We want that alignment to be under
	 * user control, since smaller alignment lets us catch more bugs,
	 * however some software will break if malloc() returns a buffer
	 * that is not word-aligned.
	 *
	 * I would like
	 * alignment to be zero so that we could catch all one-byte
	 * overruns, however if malloc() is asked to allocate an odd-size
	 * buffer and returns an address that is not word-aligned, or whose
	 * size is not a multiple of the word size, software breaks.
	 * This was the case with the Sun string-handling routines,
	 * which can do word fetches up to three bytes beyond the end of a
	 * string. I handle this problem in part by providing
	 * byte-reference-only versions of the string library functions, but
	 * there are other functions that break, too. Some in X Windows, one
	 * in Sam Leffler's TIFF library, and doubtless many others.
	 */
	if ( EF_ALIGNMENT == -1 ) {
		if ( (string = getenv("EF_ALIGNMENT")) != 0 )
			EF_ALIGNMENT = (size_t)atoi(string);
		else
			EF_ALIGNMENT = sizeof(int);
	}

	/*
	 * See if the user wants to protect the address space below a buffer,
	 * rather than that above a buffer.
	 */
	if ( EF_PROTECT_BELOW == -1 ) {
		if ( (string = getenv("EF_PROTECT_BELOW")) != 0 )
			EF_PROTECT_BELOW = (atoi(string) != 0);
		else
			EF_PROTECT_BELOW = 0;
	}

	/*
	 * See if the user wants to protect memory that has been freed until
	 * the program exits, rather than until it is re-allocated.
	 */
	if ( EF_PROTECT_FREE == -1 ) {
		if ( (string = getenv("EF_PROTECT_FREE")) != 0 )
			EF_PROTECT_FREE = (atoi(string) != 0);
		else
			EF_PROTECT_FREE = 0;
	}

	/*
	 * See if the user wants to allow malloc(0).
	 */
	if ( EF_ALLOW_MALLOC_0 == -1 ) {
		if ( (string = getenv("EF_ALLOW_MALLOC_0")) != 0 )
			EF_ALLOW_MALLOC_0 = (atoi(string) != 0);
		else
			EF_ALLOW_MALLOC_0 = 0;
	}

	/*
	 * See if the user wants us to wipe out freed memory.
	 */
	if ( EF_FREE_WIPES == -1 ) {
	        if ( (string = getenv("EF_FREE_WIPES")) != 0 )
	                EF_FREE_WIPES = (atoi(string) != 0);
	        else
	                EF_FREE_WIPES = 0;
	}

	/*
	 * Get the run-time configuration of the virtual memory page size.
 	 */
	bytesPerPage = Page_Size();

	/*
	 * Figure out how many Slot structures to allocate at one time.
	 */
	slotCount = slotsPerPage = bytesPerPage / sizeof(Slot);
	allocationListSize = bytesPerPage;

	if ( allocationListSize > size )
		size = allocationListSize;

	if ( (slack = size % bytesPerPage) != 0 )
		size += bytesPerPage - slack;

	/*
	 * Allocate memory, and break it up into two malloc buffers. The
	 * first buffer will be used for Slot structures, the second will
	 * be marked free.
	 */
	slot = allocationList = (Slot *)Page_Create(size);
	memset((char *)allocationList, 0, allocationListSize);

	slot[0].internalSize = slot[0].userSize = allocationListSize;
	slot[0].internalAddress = slot[0].userAddress = allocationList;
	slot[0].mode = INTERNAL_USE;
	if ( size > allocationListSize ) {
		slot[1].internalAddress = slot[1].userAddress
		 = ((char *)slot[0].internalAddress) + slot[0].internalSize;
		slot[1].internalSize
		 = slot[1].userSize = size - slot[0].internalSize;
		slot[1].mode = FREE;
	}

	/*
	 * Deny access to the free page, so that we will detect any software
	 * that treads upon free memory.
	 */
	Page_DenyAccess(slot[1].internalAddress, slot[1].internalSize);

	/*
	 * Account for the two slot structures that we've used.
	 */
	unUsedSlots = slotCount - 2;
}

/*
 * allocateMoreSlots is called when there are only enough slot structures
 * left to support the allocation of a single malloc buffer.
 */
static void
allocateMoreSlots(void)
{
	size_t	newSize = allocationListSize + bytesPerPage;
	void *	newAllocation;
	void *	oldAllocation = allocationList;

	Page_AllowAccess(allocationList, allocationListSize);
	noAllocationListProtection = 1;
	internalUse = 1;

	newAllocation = malloc(newSize);
	memcpy(newAllocation, allocationList, allocationListSize);
	memset(&(((char *)newAllocation)[allocationListSize]), 0, bytesPerPage);

	allocationList = (Slot *)newAllocation;
	allocationListSize = newSize;
	slotCount += slotsPerPage;
	unUsedSlots += slotsPerPage;

	free(oldAllocation);

	/*
	 * Keep access to the allocation list open at this point, because
	 * I am returning to memalign(), which needs that access.
 	 */
	noAllocationListProtection = 0;
	internalUse = 0;
}

/*
 * This is the memory allocator. When asked to allocate a buffer, allocate
 * it in such a way that the end of the buffer is followed by an inaccessable
 * memory page. If software overruns that buffer, it will touch the bad page
 * and get an immediate segmentation fault. It's then easy to zero in on the
 * offending code with a debugger.
 *
 * There are a few complications. If the user asks for an odd-sized buffer,
 * we would have to have that buffer start on an odd address if the byte after
 * the end of the buffer was to be on the inaccessable page. Unfortunately,
 * there is lots of software that asks for odd-sized buffers and then
 * requires that the returned address be word-aligned, or the size of the
 * buffer be a multiple of the word size. An example are the string-processing
 * functions on Sun systems, which do word references to the string memory
 * and may refer to memory up to three bytes beyond the end of the string.
 * For this reason, I take the alignment requests to memalign() and valloc()
 * seriously, and 
 * 
 * Electric Fence wastes lots of memory. I do a best-fit allocator here
 * so that it won't waste even more. It's slow, but thrashing because your
 * working set is too big for a system's RAM is even slower. 
 */
extern C_LINKAGE void *
memalign(size_t alignment, size_t userSize)
{
	register Slot *	slot;
	register size_t	count;
	Slot *		fullSlot = 0;
	Slot *		emptySlots[2];
	size_t		internalSize;
	size_t		slack;
	char *		address;

	if ( allocationList == 0 )
		initialize();

	if ( userSize == 0 && !EF_ALLOW_MALLOC_0 )
		EF_Abort("Allocating 0 bytes, probably a bug.");

	/*
	 * If EF_PROTECT_BELOW is set, all addresses returned by malloc()
	 * and company will be page-aligned.
 	 */
	if ( !EF_PROTECT_BELOW && alignment > 1 ) {
		if ( (slack = userSize % alignment) != 0 )
			userSize += alignment - slack;
	}

	/*
	 * The internal size of the buffer is rounded up to the next page-size
	 * boudary, and then we add another page's worth of memory for the
	 * dead page.
	 */
	internalSize = userSize + bytesPerPage;
	if ( (slack = internalSize % bytesPerPage) != 0 )
		internalSize += bytesPerPage - slack;

	/*
	 * These will hold the addresses of two empty Slot structures, that
	 * can be used to hold information for any memory I create, and any
	 * memory that I mark free.
	 */
	emptySlots[0] = 0;
	emptySlots[1] = 0;

	/*
	 * The internal memory used by the allocator is currently
	 * inaccessable, so that errant programs won't scrawl on the
	 * allocator's arena. I'll un-protect it here so that I can make
	 * a new allocation. I'll re-protect it before I return.
 	 */
	if ( !noAllocationListProtection )
		Page_AllowAccess(allocationList, allocationListSize);

	/*
	 * If I'm running out of empty slots, create some more before
	 * I don't have enough slots left to make an allocation.
	 */
	if ( !internalUse && unUsedSlots < 7 ) {
		allocateMoreSlots();
	}
	
	/*
	 * Iterate through all of the slot structures. Attempt to find a slot
	 * containing free memory of the exact right size. Accept a slot with
	 * more memory than we want, if the exact right size is not available.
	 * Find two slot structures that are not in use. We will need one if
	 * we split a buffer into free and allocated parts, and the second if
	 * we have to create new memory and mark it as free.
	 *
	 */
	
	for ( slot = allocationList, count = slotCount ; count > 0; count-- ) {
		if ( slot->mode == FREE
		 && slot->internalSize >= internalSize ) {
			if ( !fullSlot
			 ||slot->internalSize < fullSlot->internalSize){
				fullSlot = slot;
				if ( slot->internalSize == internalSize
				 && emptySlots[0] )
					break;	/* All done, */
			}
		}
		else if ( slot->mode == NOT_IN_USE ) {
			if ( !emptySlots[0] )
				emptySlots[0] = slot;
			else if ( !emptySlots[1] )
				emptySlots[1] = slot;
			else if ( fullSlot
			 && fullSlot->internalSize == internalSize )
				break;	/* All done. */
		}
		slot++;
	}
	if ( !emptySlots[0] )
		internalError();

	if ( !fullSlot ) {
		/*
		 * I get here if I haven't been able to find a free buffer
		 * with all of the memory I need. I'll have to create more
		 * memory. I'll mark it all as free, and then split it into
		 * free and allocated portions later.
		 */
		size_t	chunkSize = MEMORY_CREATION_SIZE;

		if ( !emptySlots[1] )
			internalError();

		if ( chunkSize < internalSize )
			chunkSize = internalSize;

		if ( (slack = chunkSize % bytesPerPage) != 0 )
			chunkSize += bytesPerPage - slack;

		/* Use up one of the empty slots to make the full slot. */
		fullSlot = emptySlots[0];
		emptySlots[0] = emptySlots[1];
		fullSlot->internalAddress = Page_Create(chunkSize);
		fullSlot->internalSize = chunkSize;
		fullSlot->mode = FREE;
		unUsedSlots--;
	}

	/*
	 * If I'm allocating memory for the allocator's own data structures,
	 * mark it INTERNAL_USE so that no errant software will be able to
	 * free it.
	 */
	if ( internalUse )
		fullSlot->mode = INTERNAL_USE;
	else
		fullSlot->mode = ALLOCATED;

	/*
	 * If the buffer I've found is larger than I need, split it into
	 * an allocated buffer with the exact amount of memory I need, and
	 * a free buffer containing the surplus memory.
	 */
	if ( fullSlot->internalSize > internalSize ) {
		emptySlots[0]->internalSize
		 = fullSlot->internalSize - internalSize;
		emptySlots[0]->internalAddress
		 = ((char *)fullSlot->internalAddress) + internalSize;
		emptySlots[0]->mode = FREE;
		fullSlot->internalSize = internalSize;
		unUsedSlots--;
	}

	if ( !EF_PROTECT_BELOW ) {
		/*
		 * Arrange the buffer so that it is followed by an inaccessable
		 * memory page. A buffer overrun that touches that page will
		 * cause a segmentation fault.
		 */
		address = (char *)fullSlot->internalAddress;

		/* Set up the "live" page. */
		if ( internalSize - bytesPerPage > 0 )
				Page_AllowAccess(
				 fullSlot->internalAddress
				,internalSize - bytesPerPage);
			
		address += internalSize - bytesPerPage;

		/* Set up the "dead" page. */
		Page_DenyAccess(address, bytesPerPage);

		/* Figure out what address to give the user. */
		address -= userSize;
	}
	else {	/* EF_PROTECT_BELOW != 0 */
		/*
		 * Arrange the buffer so that it is preceded by an inaccessable
		 * memory page. A buffer underrun that touches that page will
		 * cause a segmentation fault.
		 */
		address = (char *)fullSlot->internalAddress;

		/* Set up the "dead" page. */
		Page_DenyAccess(address, bytesPerPage);
			
		address += bytesPerPage;

		/* Set up the "live" page. */
		if ( internalSize - bytesPerPage > 0 )
			Page_AllowAccess(address, internalSize - bytesPerPage);
	}

	fullSlot->userAddress = address;
	fullSlot->userSize = userSize;

	/*
	 * Make the pool's internal memory inaccessable, so that the program
	 * being debugged can't stomp on it.
	 */
	if ( !internalUse )
		Page_DenyAccess(allocationList, allocationListSize);

	return address;
}

/*
 * Find the slot structure for a user address.
 */
static Slot *
slotForUserAddress(void * address)
{
	register Slot *	slot = allocationList;
	register size_t	count = slotCount;
	
	for ( ; count > 0; count-- ) {
		if ( slot->userAddress == address )
			return slot;
		slot++;
	}

	return 0;
}

/*
 * Find the slot structure for an internal address.
 */
static Slot *
slotForInternalAddress(void * address)
{
	register Slot *	slot = allocationList;
	register size_t	count = slotCount;
	
	for ( ; count > 0; count-- ) {
		if ( slot->internalAddress == address )
			return slot;
		slot++;
	}
	return 0;
}

/*
 * Given the internal address of a buffer, find the buffer immediately
 * before that buffer in the address space. This is used by free() to
 * coalesce two free buffers into one.
 */
static Slot *
slotForInternalAddressPreviousTo(void * address)
{
	register Slot *	slot = allocationList;
	register size_t	count = slotCount;
	
	for ( ; count > 0; count-- ) {
		if ( ((char *)slot->internalAddress)
		 + slot->internalSize == address )
			return slot;
		slot++;
	}
	return 0;
}

extern C_LINKAGE void
free(void * address)
{
	Slot *	slot;
	Slot *	previousSlot = 0;
	Slot *	nextSlot = 0;

        lock();

        if ( address == 0 ) {
                unlock();
                return;
        }

	if ( allocationList == 0 )
		EF_Abort("free() called before first malloc().");

	if ( !noAllocationListProtection )
		Page_AllowAccess(allocationList, allocationListSize);

	slot = slotForUserAddress(address);

	if ( !slot )
		EF_Abort("free(%a): address not from malloc().", address);

	if ( slot->mode != ALLOCATED ) {
		if ( internalUse && slot->mode == INTERNAL_USE )
			/* Do nothing. */;
		else {
			EF_Abort(
			 "free(%a): freeing free memory."
			,address);
		}
	}

	if ( EF_PROTECT_FREE )
		slot->mode = PROTECTED;
	else
		slot->mode = FREE;

       if ( EF_FREE_WIPES )
               memset(slot->userAddress, 0xbd, slot->userSize);

	previousSlot = slotForInternalAddressPreviousTo(slot->internalAddress);
	nextSlot = slotForInternalAddress(
	 ((char *)slot->internalAddress) + slot->internalSize);

	if ( previousSlot
	 && (previousSlot->mode == FREE || previousSlot->mode == PROTECTED) ) {
		/* Coalesce previous slot with this one. */
		previousSlot->internalSize += slot->internalSize;
		if ( EF_PROTECT_FREE )
			previousSlot->mode = PROTECTED;

		slot->internalAddress = slot->userAddress = 0;
		slot->internalSize = slot->userSize = 0;
		slot->mode = NOT_IN_USE;
		slot = previousSlot;
		unUsedSlots++;
	}
	if ( nextSlot
	 && (nextSlot->mode == FREE || nextSlot->mode == PROTECTED) ) {
		/* Coalesce next slot with this one. */
		slot->internalSize += nextSlot->internalSize;
		nextSlot->internalAddress = nextSlot->userAddress = 0;
		nextSlot->internalSize = nextSlot->userSize = 0;
		nextSlot->mode = NOT_IN_USE;
		unUsedSlots++;
	}

	slot->userAddress = slot->internalAddress;
	slot->userSize = slot->internalSize;

	/*
	 * Free memory is _always_ set to deny access. When EF_PROTECT_FREE
	 * is true, free memory is never reallocated, so it remains access
	 * denied for the life of the process. When EF_PROTECT_FREE is false, 
	 * the memory may be re-allocated, at which time access to it will be
	 * allowed again.
	 */
	Page_DenyAccess(slot->internalAddress, slot->internalSize);

	if ( !noAllocationListProtection )
		Page_DenyAccess(allocationList, allocationListSize);

        unlock();
}

extern C_LINKAGE void *
realloc(void * oldBuffer, size_t newSize)
{
 	void *	newBuffer;
 	
 	if (oldBuffer && newSize==0) {
 		free(oldBuffer);
 		return NULL;
 	}
 	newBuffer = malloc(newSize);

        lock();

	if ( oldBuffer ) {
		size_t	size;
		Slot *	slot;

		Page_AllowAccess(allocationList, allocationListSize);
		noAllocationListProtection = 1;
		
		slot = slotForUserAddress(oldBuffer);

		if ( slot == 0 )
			EF_Abort(
			 "realloc(%a, %d): address not from malloc()."
			,oldBuffer
			,newSize);

		if ( newSize < (size = slot->userSize) )
			size = newSize;

		if ( size > 0 )
			memcpy(newBuffer, oldBuffer, size);

		free(oldBuffer);
		noAllocationListProtection = 0;
		Page_DenyAccess(allocationList, allocationListSize);

		if ( size < newSize )
			memset(&(((char *)newBuffer)[size]), 0, newSize - size);
		
		/* Internal memory was re-protected in free() */
	}
	unlock();

	return newBuffer;
}

extern C_LINKAGE void *
malloc(size_t size)
{
        void  *allocation;   
 
        if ( allocationList == 0 ) {
                pthread_mutex_init(&mutex, NULL); 
                initialize();   /* This sets EF_ALIGNMENT */
        }       
        lock();
        allocation=memalign(EF_ALIGNMENT, size); 

        unlock();

	return allocation;
}

extern C_LINKAGE void *
calloc(size_t nelem, size_t elsize)
{
	size_t	size = nelem * elsize;
        void * allocation;
        
        lock();
       
        allocation = malloc(size);
        memset(allocation, 0, size);
        unlock();

	return allocation;
}

/*
 * This will catch more bugs if you remove the page alignment, but it
 * will break some software.
 */
extern C_LINKAGE void *
valloc (size_t size)
{
        void * allocation;
       
        lock();
        allocation= memalign(bytesPerPage, size);
        unlock();
       
        return allocation;
}