1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/* Functions to compute SHA1 message digest of files or memory blocks.
according to the definition of SHA1 in FIPS 180-1 from April 1997.
Copyright (C) 2008 Red Hat, Inc.
This file is part of Red Hat elfutils.
Written by Ulrich Drepper <drepper@redhat.com>, 2008.
Red Hat elfutils is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by the
Free Software Foundation; version 2 of the License.
Red Hat elfutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with Red Hat elfutils; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA.
Red Hat elfutils is an included package of the Open Invention Network.
An included package of the Open Invention Network is a package for which
Open Invention Network licensees cross-license their patents. No patent
license is granted, either expressly or impliedly, by designation as an
included package. Should you wish to participate in the Open Invention
Network licensing program, please visit www.openinventionnetwork.com
<http://www.openinventionnetwork.com>. */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <endian.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include "sha1.h"
#if __BYTE_ORDER == __LITTLE_ENDIAN
# include <byteswap.h>
# define SWAP(n) bswap_32 (n)
#else
# define SWAP(n) (n)
#endif
/* This array contains the bytes used to pad the buffer to the next
64-byte boundary. */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
/* Initialize structure containing state of computation. */
void
sha1_init_ctx (ctx)
struct sha1_ctx *ctx;
{
ctx->A = 0x67452301;
ctx->B = 0xefcdab89;
ctx->C = 0x98badcfe;
ctx->D = 0x10325476;
ctx->E = 0xc3d2e1f0;
ctx->total[0] = ctx->total[1] = 0;
ctx->buflen = 0;
}
/* Put result from CTX in first 20 bytes following RESBUF. The result
must be in little endian byte order.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32 bits value. */
void *
sha1_read_ctx (ctx, resbuf)
const struct sha1_ctx *ctx;
void *resbuf;
{
((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
return resbuf;
}
static void
be64_copy (char *dest, uint64_t x)
{
for (size_t i = 8; i-- > 0; x >>= 8)
dest[i] = (uint8_t) x;
}
/* Process the remaining bytes in the internal buffer and the usual
prolog according to the standard and write the result to RESBUF.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32 bits value. */
void *
sha1_finish_ctx (ctx, resbuf)
struct sha1_ctx *ctx;
void *resbuf;
{
/* Take yet unprocessed bytes into account. */
sha1_uint32 bytes = ctx->buflen;
size_t pad;
/* Now count remaining bytes. */
ctx->total[0] += bytes;
if (ctx->total[0] < bytes)
++ctx->total[1];
pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
memcpy (&ctx->buffer[bytes], fillbuf, pad);
/* Put the 64-bit file length in *bits* at the end of the buffer. */
const uint64_t bit_length = ((ctx->total[0] << 3)
+ ((uint64_t) ((ctx->total[1] << 3) |
(ctx->total[0] >> 29)) << 32));
be64_copy (&ctx->buffer[bytes + pad], bit_length);
/* Process last bytes. */
sha1_process_block (ctx->buffer, bytes + pad + 8, ctx);
return sha1_read_ctx (ctx, resbuf);
}
void
sha1_process_bytes (buffer, len, ctx)
const void *buffer;
size_t len;
struct sha1_ctx *ctx;
{
/* When we already have some bits in our internal buffer concatenate
both inputs first. */
if (ctx->buflen != 0)
{
size_t left_over = ctx->buflen;
size_t add = 128 - left_over > len ? len : 128 - left_over;
memcpy (&ctx->buffer[left_over], buffer, add);
ctx->buflen += add;
if (ctx->buflen > 64)
{
sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
ctx->buflen &= 63;
/* The regions in the following copy operation cannot overlap. */
memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
ctx->buflen);
}
buffer = (const char *) buffer + add;
len -= add;
}
/* Process available complete blocks. */
if (len >= 64)
{
#if !_STRING_ARCH_unaligned
/* To check alignment gcc has an appropriate operator. Other
compilers don't. */
# if __GNUC__ >= 2
# define UNALIGNED_P(p) (((sha1_uintptr) p) % __alignof__ (sha1_uint32) != 0)
# else
# define UNALIGNED_P(p) (((sha1_uintptr) p) % sizeof (sha1_uint32) != 0)
# endif
if (UNALIGNED_P (buffer))
while (len > 64)
{
sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
buffer = (const char *) buffer + 64;
len -= 64;
}
else
#endif
{
sha1_process_block (buffer, len & ~63, ctx);
buffer = (const char *) buffer + (len & ~63);
len &= 63;
}
}
/* Move remaining bytes in internal buffer. */
if (len > 0)
{
size_t left_over = ctx->buflen;
memcpy (&ctx->buffer[left_over], buffer, len);
left_over += len;
if (left_over >= 64)
{
sha1_process_block (ctx->buffer, 64, ctx);
left_over -= 64;
memcpy (ctx->buffer, &ctx->buffer[64], left_over);
}
ctx->buflen = left_over;
}
}
/* These are the four functions used in the four steps of the SHA1 algorithm
and defined in the FIPS 180-1. */
/* #define FF(b, c, d) ((b & c) | (~b & d)) */
#define FF(b, c, d) (d ^ (b & (c ^ d)))
#define FG(b, c, d) (b ^ c ^ d)
/* define FH(b, c, d) ((b & c) | (b & d) | (c & d)) */
#define FH(b, c, d) (((b | c) & d) | (b & c))
/* It is unfortunate that C does not provide an operator for cyclic
rotation. Hope the C compiler is smart enough. */
#define CYCLIC(w, s) (((w) << s) | ((w) >> (32 - s)))
/* Magic constants. */
#define K0 0x5a827999
#define K1 0x6ed9eba1
#define K2 0x8f1bbcdc
#define K3 0xca62c1d6
/* Process LEN bytes of BUFFER, accumulating context into CTX.
It is assumed that LEN % 64 == 0. */
void
sha1_process_block (buffer, len, ctx)
const void *buffer;
size_t len;
struct sha1_ctx *ctx;
{
sha1_uint32 computed_words[16];
#define W(i) computed_words[(i) % 16]
const sha1_uint32 *words = buffer;
size_t nwords = len / sizeof (sha1_uint32);
const sha1_uint32 *endp = words + nwords;
sha1_uint32 A = ctx->A;
sha1_uint32 B = ctx->B;
sha1_uint32 C = ctx->C;
sha1_uint32 D = ctx->D;
sha1_uint32 E = ctx->E;
/* First increment the byte count. FIPS 180-1 specifies the possible
length of the file up to 2^64 bits. Here we only compute the
number of bytes. Do a double word increment. */
ctx->total[0] += len;
if (ctx->total[0] < len)
++ctx->total[1];
/* Process all bytes in the buffer with 64 bytes in each round of
the loop. */
while (words < endp)
{
sha1_uint32 A_save = A;
sha1_uint32 B_save = B;
sha1_uint32 C_save = C;
sha1_uint32 D_save = D;
sha1_uint32 E_save = E;
/* First round: using the given function, the context and a constant
the next context is computed. Because the algorithms processing
unit is a 32-bit word and it is determined to work on words in
little endian byte order we perhaps have to change the byte order
before the computation. */
#define OP(i, a, b, c, d, e) \
do \
{ \
W (i) = SWAP (*words); \
e = CYCLIC (a, 5) + FF (b, c, d) + e + W (i) + K0; \
++words; \
b = CYCLIC (b, 30); \
} \
while (0)
/* Steps 0 to 15. */
OP (0, A, B, C, D, E);
OP (1, E, A, B, C, D);
OP (2, D, E, A, B, C);
OP (3, C, D, E, A, B);
OP (4, B, C, D, E, A);
OP (5, A, B, C, D, E);
OP (6, E, A, B, C, D);
OP (7, D, E, A, B, C);
OP (8, C, D, E, A, B);
OP (9, B, C, D, E, A);
OP (10, A, B, C, D, E);
OP (11, E, A, B, C, D);
OP (12, D, E, A, B, C);
OP (13, C, D, E, A, B);
OP (14, B, C, D, E, A);
OP (15, A, B, C, D, E);
/* For the remaining 64 steps we have a more complicated
computation of the input data-derived values. Redefine the
macro to take an additional second argument specifying the
function to use and a new last parameter for the magic
constant. */
#undef OP
#define OP(i, f, a, b, c, d, e, K) \
do \
{ \
W (i) = CYCLIC (W (i - 3) ^ W (i - 8) ^ W (i - 14) ^ W (i - 16), 1);\
e = CYCLIC (a, 5) + f (b, c, d) + e + W (i) + K; \
b = CYCLIC (b, 30); \
} \
while (0)
/* Steps 16 to 19. */
OP (16, FF, E, A, B, C, D, K0);
OP (17, FF, D, E, A, B, C, K0);
OP (18, FF, C, D, E, A, B, K0);
OP (19, FF, B, C, D, E, A, K0);
/* Steps 20 to 39. */
OP (20, FG, A, B, C, D, E, K1);
OP (21, FG, E, A, B, C, D, K1);
OP (22, FG, D, E, A, B, C, K1);
OP (23, FG, C, D, E, A, B, K1);
OP (24, FG, B, C, D, E, A, K1);
OP (25, FG, A, B, C, D, E, K1);
OP (26, FG, E, A, B, C, D, K1);
OP (27, FG, D, E, A, B, C, K1);
OP (28, FG, C, D, E, A, B, K1);
OP (29, FG, B, C, D, E, A, K1);
OP (30, FG, A, B, C, D, E, K1);
OP (31, FG, E, A, B, C, D, K1);
OP (32, FG, D, E, A, B, C, K1);
OP (33, FG, C, D, E, A, B, K1);
OP (34, FG, B, C, D, E, A, K1);
OP (35, FG, A, B, C, D, E, K1);
OP (36, FG, E, A, B, C, D, K1);
OP (37, FG, D, E, A, B, C, K1);
OP (38, FG, C, D, E, A, B, K1);
OP (39, FG, B, C, D, E, A, K1);
/* Steps 40 to 59. */
OP (40, FH, A, B, C, D, E, K2);
OP (41, FH, E, A, B, C, D, K2);
OP (42, FH, D, E, A, B, C, K2);
OP (43, FH, C, D, E, A, B, K2);
OP (44, FH, B, C, D, E, A, K2);
OP (45, FH, A, B, C, D, E, K2);
OP (46, FH, E, A, B, C, D, K2);
OP (47, FH, D, E, A, B, C, K2);
OP (48, FH, C, D, E, A, B, K2);
OP (49, FH, B, C, D, E, A, K2);
OP (50, FH, A, B, C, D, E, K2);
OP (51, FH, E, A, B, C, D, K2);
OP (52, FH, D, E, A, B, C, K2);
OP (53, FH, C, D, E, A, B, K2);
OP (54, FH, B, C, D, E, A, K2);
OP (55, FH, A, B, C, D, E, K2);
OP (56, FH, E, A, B, C, D, K2);
OP (57, FH, D, E, A, B, C, K2);
OP (58, FH, C, D, E, A, B, K2);
OP (59, FH, B, C, D, E, A, K2);
/* Steps 60 to 79. */
OP (60, FG, A, B, C, D, E, K3);
OP (61, FG, E, A, B, C, D, K3);
OP (62, FG, D, E, A, B, C, K3);
OP (63, FG, C, D, E, A, B, K3);
OP (64, FG, B, C, D, E, A, K3);
OP (65, FG, A, B, C, D, E, K3);
OP (66, FG, E, A, B, C, D, K3);
OP (67, FG, D, E, A, B, C, K3);
OP (68, FG, C, D, E, A, B, K3);
OP (69, FG, B, C, D, E, A, K3);
OP (70, FG, A, B, C, D, E, K3);
OP (71, FG, E, A, B, C, D, K3);
OP (72, FG, D, E, A, B, C, K3);
OP (73, FG, C, D, E, A, B, K3);
OP (74, FG, B, C, D, E, A, K3);
OP (75, FG, A, B, C, D, E, K3);
OP (76, FG, E, A, B, C, D, K3);
OP (77, FG, D, E, A, B, C, K3);
OP (78, FG, C, D, E, A, B, K3);
OP (79, FG, B, C, D, E, A, K3);
/* Add the starting values of the context. */
A += A_save;
B += B_save;
C += C_save;
D += D_save;
E += E_save;
}
/* Put checksum in context given as argument. */
ctx->A = A;
ctx->B = B;
ctx->C = C;
ctx->D = D;
ctx->E = E;
}
|