1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
|
/* Report modules by examining dynamic linker data structures.
Copyright (C) 2008-2016 Red Hat, Inc.
Copyright (C) 2021 Mark J. Wielaard <mark@klomp.org>
This file is part of elfutils.
This file is free software; you can redistribute it and/or modify
it under the terms of either
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at
your option) any later version
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at
your option) any later version
or both in parallel, as here.
elfutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>. */
#include <config.h>
#include "libdwflP.h"
#include "memory-access.h"
#include "system.h"
#include <fcntl.h>
#ifdef HAVE_OPENAT2_RESOLVE_IN_ROOT
#include <linux/openat2.h>
#include <sys/syscall.h>
#include <unistd.h>
#endif
/* This element is always provided and always has a constant value.
This makes it an easy thing to scan for to discern the format. */
#define PROBE_TYPE AT_PHENT
#define PROBE_VAL32 sizeof (Elf32_Phdr)
#define PROBE_VAL64 sizeof (Elf64_Phdr)
static inline bool
do_check64 (const char *a64, uint_fast8_t *elfdata)
{
/* The AUXV pointer might not even be naturally aligned for 64-bit
data, because note payloads in a core file are not aligned. */
const char *typep = a64 + offsetof (Elf64_auxv_t, a_type);
uint64_t type = read_8ubyte_unaligned_noncvt (typep);
const char *valp = a64 + offsetof (Elf64_auxv_t, a_un.a_val);
uint64_t val = read_8ubyte_unaligned_noncvt (valp);
if (type == BE64 (PROBE_TYPE)
&& val == BE64 (PROBE_VAL64))
{
*elfdata = ELFDATA2MSB;
return true;
}
if (type == LE64 (PROBE_TYPE)
&& val == LE64 (PROBE_VAL64))
{
*elfdata = ELFDATA2LSB;
return true;
}
return false;
}
static inline bool
do_check32 (const char *a32, uint_fast8_t *elfdata)
{
/* The AUXV pointer might not even be naturally aligned for 32-bit
data, because note payloads in a core file are not aligned. */
const char *typep = a32 + offsetof (Elf32_auxv_t, a_type);
uint32_t type = read_4ubyte_unaligned_noncvt (typep);
const char *valp = a32 + offsetof (Elf32_auxv_t, a_un.a_val);
uint32_t val = read_4ubyte_unaligned_noncvt (valp);
if (type == BE32 (PROBE_TYPE)
&& val == BE32 (PROBE_VAL32))
{
*elfdata = ELFDATA2MSB;
return true;
}
if (type == LE32 (PROBE_TYPE)
&& val == LE32 (PROBE_VAL32))
{
*elfdata = ELFDATA2LSB;
return true;
}
return false;
}
/* Examine an auxv data block and determine its format.
Return true iff we figured it out. */
static bool
auxv_format_probe (const void *auxv, size_t size,
uint_fast8_t *elfclass, uint_fast8_t *elfdata)
{
for (size_t i = 0; i < size / sizeof (Elf64_auxv_t); ++i)
{
if (do_check64 (auxv + i * sizeof (Elf64_auxv_t), elfdata))
{
*elfclass = ELFCLASS64;
return true;
}
if (do_check32 (auxv + (i * 2) * sizeof (Elf32_auxv_t), elfdata)
|| do_check32 (auxv + (i * 2 + 1) * sizeof (Elf32_auxv_t), elfdata))
{
*elfclass = ELFCLASS32;
return true;
}
}
return false;
}
/* This is a Dwfl_Memory_Callback that wraps another memory callback.
If the underlying callback cannot fill the data, then this will
fall back to fetching data from module files. */
struct integrated_memory_callback
{
Dwfl_Memory_Callback *memory_callback;
void *memory_callback_arg;
void *buffer;
};
static bool
integrated_memory_callback (Dwfl *dwfl, int ndx,
void **buffer, size_t *buffer_available,
GElf_Addr vaddr,
size_t minread,
void *arg)
{
struct integrated_memory_callback *info = arg;
if (ndx == -1)
{
/* Called for cleanup. */
if (info->buffer != NULL)
{
/* The last probe buffer came from the underlying callback.
Let it do its cleanup. */
assert (*buffer == info->buffer); /* XXX */
*buffer = info->buffer;
info->buffer = NULL;
return (*info->memory_callback) (dwfl, ndx, buffer, buffer_available,
vaddr, minread,
info->memory_callback_arg);
}
*buffer = NULL;
*buffer_available = 0;
return false;
}
if (*buffer != NULL)
/* For a final-read request, we only use the underlying callback. */
return (*info->memory_callback) (dwfl, ndx, buffer, buffer_available,
vaddr, minread, info->memory_callback_arg);
/* Let the underlying callback try to fill this request. */
if ((*info->memory_callback) (dwfl, ndx, &info->buffer, buffer_available,
vaddr, minread, info->memory_callback_arg))
{
*buffer = info->buffer;
return true;
}
/* Now look for module text covering this address. */
Dwfl_Module *mod;
(void) INTUSE(dwfl_addrsegment) (dwfl, vaddr, &mod);
if (mod == NULL)
return false;
Dwarf_Addr bias;
Elf_Scn *scn = INTUSE(dwfl_module_address_section) (mod, &vaddr, &bias);
if (unlikely (scn == NULL))
{
#if 0 // XXX would have to handle ndx=-1 cleanup calls passed down.
/* If we have no sections we can try to fill it from the module file
based on its phdr mappings. */
if (likely (mod->e_type != ET_REL) && mod->main.elf != NULL)
return INTUSE(dwfl_elf_phdr_memory_callback)
(dwfl, 0, buffer, buffer_available,
vaddr - mod->main.bias, minread, mod->main.elf);
#endif
return false;
}
Elf_Data *data = elf_rawdata (scn, NULL);
if (unlikely (data == NULL))
// XXX throw error?
return false;
if (unlikely (data->d_size < vaddr))
return false;
/* Provide as much data as we have. */
void *contents = data->d_buf + vaddr;
size_t avail = data->d_size - vaddr;
if (unlikely (avail < minread))
return false;
/* If probing for a string, make sure it's terminated. */
if (minread == 0 && unlikely (memchr (contents, '\0', avail) == NULL))
return false;
/* We have it! */
*buffer = contents;
*buffer_available = avail;
return true;
}
static size_t
addrsize (uint_fast8_t elfclass)
{
return elfclass * 4;
}
struct memory_closure
{
Dwfl *dwfl;
Dwfl_Memory_Callback *callback;
void *arg;
};
static inline int
release_buffer (struct memory_closure *closure,
void **buffer, size_t *buffer_available, int result)
{
if (*buffer != NULL)
(*closure->callback) (closure->dwfl, -1, buffer, buffer_available, 0, 0,
closure->arg);
return result;
}
static inline bool
read_addrs (struct memory_closure *closure,
uint_fast8_t elfclass, uint_fast8_t elfdata,
void **buffer, size_t *buffer_available,
GElf_Addr vaddr, GElf_Addr *read_vaddr,
size_t n, GElf_Addr *addrs /* [4] */)
{
size_t nb = n * addrsize (elfclass); /* Address words -> bytes to read. */
Dwfl *dwfl = closure->dwfl;
/* Read a new buffer if the old one doesn't cover these words. */
if (*buffer == NULL
|| vaddr < *read_vaddr
|| nb > *buffer_available
|| vaddr - (*read_vaddr) > *buffer_available - nb)
{
release_buffer (closure, buffer, buffer_available, 0);
*read_vaddr = vaddr;
int segndx = INTUSE(dwfl_addrsegment) (dwfl, vaddr, NULL);
if (unlikely (segndx < 0)
|| unlikely (! (*closure->callback) (dwfl, segndx,
buffer, buffer_available,
vaddr, nb, closure->arg)))
return true;
}
unsigned char *addr = vaddr - (*read_vaddr) + (*buffer);
if (elfclass == ELFCLASS32)
{
if (elfdata == ELFDATA2MSB)
for (size_t i = 0; i < n; ++i)
addrs[i] = BE32 (read_4ubyte_unaligned_noncvt (addr + i * 4));
else
for (size_t i = 0; i < n; ++i)
addrs[i] = LE32 (read_4ubyte_unaligned_noncvt (addr + i * 4));
}
else
{
if (elfdata == ELFDATA2MSB)
for (size_t i = 0; i < n; ++i)
addrs[i] = BE64 (read_8ubyte_unaligned_noncvt (addr + i * 8));
else
for (size_t i = 0; i < n; ++i)
addrs[i] = LE64 (read_8ubyte_unaligned_noncvt (addr + i * 8));
}
return false;
}
/* Report a module for each struct link_map in the linked list at r_map
in the struct r_debug at R_DEBUG_VADDR. For r_debug_info description
see dwfl_link_map_report in libdwflP.h. If R_DEBUG_INFO is not NULL then no
modules get added to DWFL, caller has to add them from filled in
R_DEBUG_INFO.
For each link_map entry, if an existing module resides at its address,
this just modifies that module's name and suggested file name. If
no such module exists, this calls dwfl_report_elf on the l_name string.
Returns the number of modules found, or -1 for errors. */
static int
report_r_debug (uint_fast8_t elfclass, uint_fast8_t elfdata,
Dwfl *dwfl, GElf_Addr r_debug_vaddr,
Dwfl_Memory_Callback *memory_callback,
void *memory_callback_arg,
struct r_debug_info *r_debug_info)
{
/* Skip r_version, to aligned r_map field. */
GElf_Addr read_vaddr = r_debug_vaddr + addrsize (elfclass);
void *buffer = NULL;
size_t buffer_available = 0;
GElf_Addr addrs[4];
struct memory_closure memory_closure = { dwfl, memory_callback,
memory_callback_arg };
if (unlikely (read_addrs (&memory_closure, elfclass, elfdata,
&buffer, &buffer_available, read_vaddr, &read_vaddr,
1, addrs)))
return release_buffer (&memory_closure, &buffer, &buffer_available, -1);
GElf_Addr next = addrs[0];
Dwfl_Module **lastmodp = &dwfl->modulelist;
int result = 0;
/* There can't be more elements in the link_map list than there are
segments. A segment is created for each PT_LOAD and there can be
up to 5 per module (-z separate-code, tends to create four LOAD
segments, gold has -z text-unlikely-segment, which might result
in creating that number of load segments) DWFL->lookup_elts is
probably twice the number of modules, so that multiplied by max
PT_LOADs is certainly above the upper bound. If we iterate too
many times, there must be a loop in the pointers due to link_map
clobberation. */
#define MAX_PT_LOAD 5
size_t iterations = 0;
while (next != 0 && ++iterations < dwfl->lookup_elts * MAX_PT_LOAD)
{
if (read_addrs (&memory_closure, elfclass, elfdata,
&buffer, &buffer_available, next, &read_vaddr,
4, addrs))
return release_buffer (&memory_closure, &buffer, &buffer_available, -1);
/* Unused: l_addr is the difference between the address in memory
and the ELF file when the core was created. We need to
recalculate the difference below because the ELF file we use
might be differently pre-linked. */
// GElf_Addr l_addr = addrs[0];
GElf_Addr l_name = addrs[1];
GElf_Addr l_ld = addrs[2];
next = addrs[3];
/* If a clobbered or truncated memory image has no useful pointer,
just skip this element. */
if (l_ld == 0)
continue;
/* Fetch the string at the l_name address. */
const char *name = NULL;
if (buffer != NULL
&& read_vaddr <= l_name
&& l_name + 1 - read_vaddr < buffer_available
&& memchr (l_name - read_vaddr + buffer, '\0',
buffer_available - (l_name - read_vaddr)) != NULL)
name = l_name - read_vaddr + buffer;
else
{
release_buffer (&memory_closure, &buffer, &buffer_available, 0);
read_vaddr = l_name;
int segndx = INTUSE(dwfl_addrsegment) (dwfl, l_name, NULL);
if (likely (segndx >= 0)
&& (*memory_callback) (dwfl, segndx,
&buffer, &buffer_available,
l_name, 0, memory_callback_arg))
name = buffer;
}
if (name != NULL && name[0] == '\0')
name = NULL;
if (iterations == 1
&& dwfl->user_core != NULL
&& dwfl->user_core->executable_for_core != NULL)
name = dwfl->user_core->executable_for_core;
struct r_debug_info_module *r_debug_info_module = NULL;
if (r_debug_info != NULL)
{
/* Save link map information about valid shared library (or
executable) which has not been found on disk. */
const char *name1 = name == NULL ? "" : name;
r_debug_info_module = malloc (sizeof (*r_debug_info_module)
+ strlen (name1) + 1);
if (unlikely (r_debug_info_module == NULL))
release_buffer (&memory_closure, &buffer,
&buffer_available, result);
r_debug_info_module->fd = -1;
r_debug_info_module->elf = NULL;
r_debug_info_module->l_ld = l_ld;
r_debug_info_module->start = 0;
r_debug_info_module->end = 0;
r_debug_info_module->disk_file_has_build_id = false;
strcpy (r_debug_info_module->name, name1);
r_debug_info_module->next = r_debug_info->module;
r_debug_info->module = r_debug_info_module;
}
Dwfl_Module *mod = NULL;
if (name != NULL)
{
/* This code is mostly inlined dwfl_report_elf. */
char *sysroot_name = NULL;
const char *sysroot = dwfl->sysroot;
int fd;
/* Don't use the sysroot if the path is already inside it. */
bool name_in_sysroot = sysroot && startswith (name, sysroot);
if (sysroot && !name_in_sysroot)
{
const char *n = NULL;
if (asprintf (&sysroot_name, "%s%s", sysroot, name) < 0)
return release_buffer (&memory_closure, &buffer, &buffer_available, -1);
n = name;
name = sysroot_name;
#ifdef HAVE_OPENAT2_RESOLVE_IN_ROOT
int sysrootfd, err;
struct open_how how = {
.flags = O_RDONLY,
.resolve = RESOLVE_IN_ROOT,
};
sysrootfd = open (sysroot, O_DIRECTORY|O_PATH);
if (sysrootfd < 0)
return -1;
fd = syscall (SYS_openat2, sysrootfd, n, &how, sizeof(how));
err = fd < 0 ? -errno : 0;
close (sysrootfd);
/* Fallback to regular open() if openat2 is not available. */
if (fd < 0 && err == -ENOSYS)
#endif
{
fd = open (name, O_RDONLY);
}
}
else
fd = open (name, O_RDONLY);
if (fd >= 0)
{
Elf *elf;
Dwfl_Error error = __libdw_open_file (&fd, &elf, true, false);
GElf_Addr elf_dynamic_vaddr;
if (error == DWFL_E_NOERROR
&& __libdwfl_dynamic_vaddr_get (elf, &elf_dynamic_vaddr))
{
const void *build_id_bits;
GElf_Addr build_id_elfaddr;
int build_id_len;
bool valid = true;
if (__libdwfl_find_elf_build_id (NULL, elf, &build_id_bits,
&build_id_elfaddr,
&build_id_len) > 0
&& build_id_elfaddr != 0)
{
if (r_debug_info_module != NULL)
r_debug_info_module->disk_file_has_build_id = true;
GElf_Addr build_id_vaddr = (build_id_elfaddr
- elf_dynamic_vaddr + l_ld);
release_buffer (&memory_closure, &buffer,
&buffer_available, 0);
int segndx = INTUSE(dwfl_addrsegment) (dwfl,
build_id_vaddr,
NULL);
if (! (*memory_callback) (dwfl, segndx,
&buffer, &buffer_available,
build_id_vaddr, build_id_len,
memory_callback_arg))
{
/* File has valid build-id which cannot be read from
memory. This happens for core files without bit 4
(0x10) set in Linux /proc/PID/coredump_filter. */
}
else
{
if (memcmp (build_id_bits, buffer, build_id_len) != 0)
/* File has valid build-id which does not match
the one in memory. */
valid = false;
release_buffer (&memory_closure, &buffer,
&buffer_available, 0);
}
}
if (valid)
{
// It is like l_addr but it handles differently prelinked
// files at core dumping vs. core loading time.
GElf_Addr base = l_ld - elf_dynamic_vaddr;
if (r_debug_info_module == NULL)
{
// XXX hook for sysroot
mod = __libdwfl_report_elf (dwfl, xbasename (name),
name, fd, elf, base,
true, true);
if (mod != NULL)
{
elf = NULL;
fd = -1;
}
}
else if (__libdwfl_elf_address_range (elf, base, true,
true, NULL, NULL,
&r_debug_info_module->start,
&r_debug_info_module->end,
NULL, NULL))
{
r_debug_info_module->elf = elf;
r_debug_info_module->fd = fd;
elf = NULL;
fd = -1;
}
}
if (elf != NULL)
elf_end (elf);
if (fd != -1)
close (fd);
}
}
free(sysroot_name);
}
if (mod != NULL)
{
++result;
/* Move this module to the end of the list, so that we end
up with a list in the same order as the link_map chain. */
if (mod->next != NULL)
{
if (*lastmodp != mod)
{
lastmodp = &dwfl->modulelist;
while (*lastmodp != mod)
lastmodp = &(*lastmodp)->next;
}
*lastmodp = mod->next;
mod->next = NULL;
while (*lastmodp != NULL)
lastmodp = &(*lastmodp)->next;
*lastmodp = mod;
}
lastmodp = &mod->next;
}
}
return release_buffer (&memory_closure, &buffer, &buffer_available, result);
}
static GElf_Addr
consider_executable (Dwfl_Module *mod, GElf_Addr at_phdr, GElf_Addr at_entry,
uint_fast8_t *elfclass, uint_fast8_t *elfdata,
Dwfl_Memory_Callback *memory_callback,
void *memory_callback_arg)
{
GElf_Ehdr ehdr;
if (unlikely (gelf_getehdr (mod->main.elf, &ehdr) == NULL))
return 0;
if (at_entry != 0)
{
/* If we have an AT_ENTRY value, reject this executable if
its entry point address could not have supplied that. */
if (ehdr.e_entry == 0)
return 0;
if (mod->e_type == ET_EXEC)
{
if (ehdr.e_entry != at_entry)
return 0;
}
else
{
/* It could be a PIE. */
}
}
// XXX this could be saved in the file cache: phdr vaddr, DT_DEBUG d_val vaddr
/* Find the vaddr of the DT_DEBUG's d_ptr. This is the memory
address where &r_debug was written at runtime. */
GElf_Xword align = mod->dwfl->segment_align;
GElf_Addr d_val_vaddr = 0;
size_t phnum;
if (elf_getphdrnum (mod->main.elf, &phnum) != 0)
return 0;
for (size_t i = 0; i < phnum; ++i)
{
GElf_Phdr phdr_mem;
GElf_Phdr *phdr = gelf_getphdr (mod->main.elf, i, &phdr_mem);
if (phdr == NULL)
break;
if (phdr->p_align > 1 && (align == 0 || phdr->p_align < align))
align = phdr->p_align;
if (at_phdr != 0
&& phdr->p_type == PT_LOAD
&& (phdr->p_offset & -align) == (ehdr.e_phoff & -align))
{
/* This is the segment that would map the phdrs.
If we have an AT_PHDR value, reject this executable
if its phdr mapping could not have supplied that. */
if (mod->e_type == ET_EXEC)
{
if (ehdr.e_phoff - phdr->p_offset + phdr->p_vaddr != at_phdr)
return 0;
}
else
{
/* It could be a PIE. If the AT_PHDR value and our
phdr address don't match modulo ALIGN, then this
could not have been the right PIE. */
if (((ehdr.e_phoff - phdr->p_offset + phdr->p_vaddr) & -align)
!= (at_phdr & -align))
return 0;
/* Calculate the bias applied to the PIE's p_vaddr values. */
GElf_Addr bias = (at_phdr - (ehdr.e_phoff - phdr->p_offset
+ phdr->p_vaddr));
/* Final sanity check: if we have an AT_ENTRY value,
reject this PIE unless its biased e_entry matches. */
if (at_entry != 0 && at_entry != ehdr.e_entry + bias)
return 0;
/* If we're changing the module's address range,
we've just invalidated the module lookup table. */
GElf_Addr mod_bias = dwfl_adjusted_address (mod, 0);
if (bias != mod_bias)
{
mod->low_addr -= mod_bias;
mod->high_addr -= mod_bias;
mod->low_addr += bias;
mod->high_addr += bias;
free (mod->dwfl->lookup_module);
mod->dwfl->lookup_module = NULL;
}
}
}
if (phdr->p_type == PT_DYNAMIC)
{
Elf_Data *data = elf_getdata_rawchunk (mod->main.elf, phdr->p_offset,
phdr->p_filesz, ELF_T_DYN);
if (data == NULL)
continue;
const size_t entsize = gelf_fsize (mod->main.elf,
ELF_T_DYN, 1, EV_CURRENT);
const size_t n = data->d_size / entsize;
for (size_t j = 0; j < n; ++j)
{
GElf_Dyn dyn_mem;
GElf_Dyn *dyn = gelf_getdyn (data, j, &dyn_mem);
if (dyn != NULL && dyn->d_tag == DT_DEBUG)
{
d_val_vaddr = phdr->p_vaddr + entsize * j + entsize / 2;
break;
}
}
}
}
if (d_val_vaddr != 0)
{
/* Now we have the final address from which to read &r_debug. */
d_val_vaddr = dwfl_adjusted_address (mod, d_val_vaddr);
void *buffer = NULL;
size_t buffer_available = addrsize (ehdr.e_ident[EI_CLASS]);
int segndx = INTUSE(dwfl_addrsegment) (mod->dwfl, d_val_vaddr, NULL);
if ((*memory_callback) (mod->dwfl, segndx,
&buffer, &buffer_available,
d_val_vaddr, buffer_available,
memory_callback_arg))
{
const union
{
Elf32_Addr a32;
Elf64_Addr a64;
} *u = buffer;
GElf_Addr vaddr;
if (ehdr.e_ident[EI_CLASS] == ELFCLASS32)
vaddr = (ehdr.e_ident[EI_DATA] == ELFDATA2MSB
? BE32 (u->a32) : LE32 (u->a32));
else
vaddr = (ehdr.e_ident[EI_DATA] == ELFDATA2MSB
? BE64 (u->a64) : LE64 (u->a64));
(*memory_callback) (mod->dwfl, -1, &buffer, &buffer_available, 0, 0,
memory_callback_arg);
if (*elfclass == ELFCLASSNONE)
*elfclass = ehdr.e_ident[EI_CLASS];
else if (*elfclass != ehdr.e_ident[EI_CLASS])
return 0;
if (*elfdata == ELFDATANONE)
*elfdata = ehdr.e_ident[EI_DATA];
else if (*elfdata != ehdr.e_ident[EI_DATA])
return 0;
return vaddr;
}
}
return 0;
}
/* Try to find an existing executable module with a DT_DEBUG. */
static GElf_Addr
find_executable (Dwfl *dwfl, GElf_Addr at_phdr, GElf_Addr at_entry,
uint_fast8_t *elfclass, uint_fast8_t *elfdata,
Dwfl_Memory_Callback *memory_callback,
void *memory_callback_arg)
{
for (Dwfl_Module *mod = dwfl->modulelist; mod != NULL; mod = mod->next)
if (mod->main.elf != NULL)
{
GElf_Addr r_debug_vaddr = consider_executable (mod, at_phdr, at_entry,
elfclass, elfdata,
memory_callback,
memory_callback_arg);
if (r_debug_vaddr != 0)
return r_debug_vaddr;
}
return 0;
}
int
dwfl_link_map_report (Dwfl *dwfl, const void *auxv, size_t auxv_size,
Dwfl_Memory_Callback *memory_callback,
void *memory_callback_arg,
struct r_debug_info *r_debug_info)
{
GElf_Addr r_debug_vaddr = 0;
uint_fast8_t elfclass = ELFCLASSNONE;
uint_fast8_t elfdata = ELFDATANONE;
if (likely (auxv != NULL)
&& likely (auxv_format_probe (auxv, auxv_size, &elfclass, &elfdata)))
{
GElf_Addr entry = 0;
GElf_Addr phdr = 0;
GElf_Xword phent = 0;
GElf_Xword phnum = 0;
#define READ_AUXV32(ptr) read_4ubyte_unaligned_noncvt (ptr)
#define READ_AUXV64(ptr) read_8ubyte_unaligned_noncvt (ptr)
#define AUXV_SCAN(NN, BL) do \
{ \
const Elf##NN##_auxv_t *av = auxv; \
for (size_t i = 0; i < auxv_size / sizeof av[0]; ++i) \
{ \
const char *typep = auxv + i * sizeof (Elf##NN##_auxv_t); \
typep += offsetof (Elf##NN##_auxv_t, a_type); \
uint##NN##_t type = READ_AUXV##NN (typep); \
const char *valp = auxv + i * sizeof (Elf##NN##_auxv_t); \
valp += offsetof (Elf##NN##_auxv_t, a_un.a_val); \
uint##NN##_t val = BL##NN (READ_AUXV##NN (valp)); \
if (type == BL##NN (AT_ENTRY)) \
entry = val; \
else if (type == BL##NN (AT_PHDR)) \
phdr = val; \
else if (type == BL##NN (AT_PHNUM)) \
phnum = val; \
else if (type == BL##NN (AT_PHENT)) \
phent = val; \
else if (type == BL##NN (AT_PAGESZ)) \
{ \
if (val > 1 \
&& (dwfl->segment_align == 0 \
|| val < dwfl->segment_align)) \
dwfl->segment_align = val; \
} \
} \
} \
while (0)
if (elfclass == ELFCLASS32)
{
if (elfdata == ELFDATA2MSB)
AUXV_SCAN (32, BE);
else
AUXV_SCAN (32, LE);
}
else
{
if (elfdata == ELFDATA2MSB)
AUXV_SCAN (64, BE);
else
AUXV_SCAN (64, LE);
}
/* If we found the phdr dimensions, search phdrs for PT_DYNAMIC. */
GElf_Addr dyn_vaddr = 0;
GElf_Xword dyn_filesz = 0;
GElf_Addr dyn_bias = (GElf_Addr) -1;
if (phdr != 0 && phnum != 0
&& ((elfclass == ELFCLASS32 && phent == sizeof (Elf32_Phdr))
|| (elfclass == ELFCLASS64 && phent == sizeof (Elf64_Phdr))))
{
Dwfl_Module *phdr_mod;
int phdr_segndx = INTUSE(dwfl_addrsegment) (dwfl, phdr, &phdr_mod);
Elf_Data in =
{
.d_type = ELF_T_PHDR,
.d_version = EV_CURRENT,
.d_size = phnum * phent,
.d_buf = NULL
};
bool in_ok = (*memory_callback) (dwfl, phdr_segndx, &in.d_buf,
&in.d_size, phdr, phnum * phent,
memory_callback_arg);
bool in_from_exec = false;
if (! in_ok
&& dwfl->user_core != NULL
&& dwfl->user_core->executable_for_core != NULL)
{
/* AUXV -> PHDR -> DYNAMIC
Both AUXV and DYNAMIC should be always present in a core file.
PHDR may be missing in core file, try to read it from
EXECUTABLE_FOR_CORE to find where DYNAMIC is located in the
core file. */
int fd = open (dwfl->user_core->executable_for_core, O_RDONLY);
Elf *elf;
Dwfl_Error error = DWFL_E_ERRNO;
if (fd != -1)
error = __libdw_open_file (&fd, &elf, true, false);
if (error != DWFL_E_NOERROR)
{
__libdwfl_seterrno (error);
return false;
}
GElf_Ehdr ehdr_mem, *ehdr = gelf_getehdr (elf, &ehdr_mem);
if (ehdr == NULL)
{
elf_end (elf);
close (fd);
__libdwfl_seterrno (DWFL_E_LIBELF);
return false;
}
size_t e_phnum;
if (elf_getphdrnum (elf, &e_phnum) != 0)
{
elf_end (elf);
close (fd);
__libdwfl_seterrno (DWFL_E_LIBELF);
return false;
}
if (e_phnum != phnum || ehdr->e_phentsize != phent)
{
elf_end (elf);
close (fd);
__libdwfl_seterrno (DWFL_E_BADELF);
return false;
}
off_t off = ehdr->e_phoff;
assert (in.d_buf == NULL);
/* Note this in the !in_ok path. That means memory_callback
failed. But the callback might still have reset the d_size
value (to zero). So explicitly set it here again. */
if (unlikely (phnum > SIZE_MAX / phent))
{
__libdwfl_seterrno (DWFL_E_NOMEM);
return false;
}
in.d_size = phnum * phent;
in.d_buf = malloc (in.d_size);
if (unlikely (in.d_buf == NULL))
{
elf_end (elf);
close (fd);
__libdwfl_seterrno (DWFL_E_NOMEM);
return false;
}
ssize_t nread = pread_retry (fd, in.d_buf, in.d_size, off);
elf_end (elf);
close (fd);
if (nread != (ssize_t) in.d_size)
{
free (in.d_buf);
__libdwfl_seterrno (DWFL_E_ERRNO);
return false;
}
in_ok = true;
in_from_exec = true;
}
if (in_ok)
{
if (unlikely (phnum > SIZE_MAX / phent))
{
__libdwfl_seterrno (DWFL_E_NOMEM);
return false;
}
size_t nbytes = phnum * phent;
/* We can only process as many bytes/phnum as there are
in in.d_size. The data might have been truncated. */
if (nbytes > in.d_size)
{
nbytes = in.d_size;
phnum = nbytes / phent;
if (phnum == 0)
{
__libdwfl_seterrno (DWFL_E_BADELF);
return false;
}
}
void *buf = malloc (nbytes);
Elf32_Phdr (*p32)[phnum] = buf;
Elf64_Phdr (*p64)[phnum] = buf;
if (unlikely (buf == NULL))
{
__libdwfl_seterrno (DWFL_E_NOMEM);
return false;
}
Elf_Data out =
{
.d_type = ELF_T_PHDR,
.d_version = EV_CURRENT,
.d_size = nbytes,
.d_buf = buf
};
if (in.d_size > out.d_size)
{
in.d_size = out.d_size;
phnum = in.d_size / phent;
if (phnum == 0)
{
free (buf);
__libdwfl_seterrno (DWFL_E_BADELF);
return false;
}
}
bool is32 = (elfclass == ELFCLASS32);
size_t phdr_align = (is32
? __alignof__ (Elf32_Phdr)
: __alignof__ (Elf64_Phdr));
if (!in_from_exec
&& ((uintptr_t) in.d_buf & (phdr_align - 1)) != 0)
{
memcpy (out.d_buf, in.d_buf, in.d_size);
in.d_buf = out.d_buf;
}
if (likely ((elfclass == ELFCLASS32
? elf32_xlatetom : elf64_xlatetom)
(&out, &in, elfdata) != NULL))
{
for (size_t i = 0; i < phnum; ++i)
{
GElf_Word type = (is32
? (*p32)[i].p_type
: (*p64)[i].p_type);
GElf_Addr vaddr = (is32
? (*p32)[i].p_vaddr
: (*p64)[i].p_vaddr);
GElf_Xword filesz = (is32
? (*p32)[i].p_filesz
: (*p64)[i].p_filesz);
if (type == PT_PHDR)
{
if (dyn_bias == (GElf_Addr) -1
/* Do a sanity check on the putative address. */
&& ((vaddr & (dwfl->segment_align - 1))
== (phdr & (dwfl->segment_align - 1))))
{
dyn_bias = phdr - vaddr;
if (dyn_vaddr != 0)
break;
}
}
else if (type == PT_DYNAMIC)
{
dyn_vaddr = vaddr;
dyn_filesz = filesz;
if (dyn_bias != (GElf_Addr) -1)
break;
}
}
}
if (in_from_exec)
free (in.d_buf);
else
(*memory_callback) (dwfl, -1, &in.d_buf, &in.d_size, 0, 0,
memory_callback_arg);
free (buf);
}
else
/* We could not read the executable's phdrs from the
memory image. If we have a presupplied executable,
we can still use the AT_PHDR and AT_ENTRY values to
verify it, and to adjust its bias if it's a PIE.
If there was an ET_EXEC module presupplied that contains
the AT_PHDR address, then we only consider that one.
We'll either accept it if its phdr location and e_entry
make sense or reject it if they don't. If there is no
presupplied ET_EXEC, then look for a presupplied module,
which might be a PIE (ET_DYN) that needs its bias adjusted. */
r_debug_vaddr = ((phdr_mod == NULL
|| phdr_mod->main.elf == NULL
|| phdr_mod->e_type != ET_EXEC)
? find_executable (dwfl, phdr, entry,
&elfclass, &elfdata,
memory_callback,
memory_callback_arg)
: consider_executable (phdr_mod, phdr, entry,
&elfclass, &elfdata,
memory_callback,
memory_callback_arg));
}
/* If we found PT_DYNAMIC, search it for DT_DEBUG. */
if (dyn_filesz != 0)
{
if (dyn_bias != (GElf_Addr) -1)
dyn_vaddr += dyn_bias;
Elf_Data in =
{
.d_type = ELF_T_DYN,
.d_version = EV_CURRENT,
.d_size = dyn_filesz,
.d_buf = NULL
};
int dyn_segndx = dwfl_addrsegment (dwfl, dyn_vaddr, NULL);
if ((*memory_callback) (dwfl, dyn_segndx, &in.d_buf, &in.d_size,
dyn_vaddr, dyn_filesz, memory_callback_arg))
{
size_t entsize = (elfclass == ELFCLASS32
? sizeof (Elf32_Dyn) : sizeof (Elf64_Dyn));
if (unlikely (dyn_filesz > SIZE_MAX / entsize))
{
__libdwfl_seterrno (DWFL_E_NOMEM);
return false;
}
/* We can only process as many bytes as there are in
in.d_size. The data might have been truncated. */
if (dyn_filesz > in.d_size)
dyn_filesz = in.d_size;
if (dyn_filesz / entsize == 0)
{
__libdwfl_seterrno (DWFL_E_BADELF);
return false;
}
void *buf = malloc (dyn_filesz);
if (unlikely (buf == NULL))
{
__libdwfl_seterrno (DWFL_E_NOMEM);
return false;
}
Elf_Data out =
{
.d_type = ELF_T_DYN,
.d_version = EV_CURRENT,
.d_size = dyn_filesz,
.d_buf = buf
};
if (in.d_size > out.d_size)
in.d_size = out.d_size;
size_t dyn_align = (elfclass == ELFCLASS32
? __alignof__ (Elf32_Dyn)
: __alignof__ (Elf64_Dyn));
if (((uintptr_t) in.d_buf & (dyn_align - 1)) != 0)
{
memcpy (out.d_buf, in.d_buf, in.d_size);
in.d_buf = out.d_buf;
}
if (likely ((elfclass == ELFCLASS32
? elf32_xlatetom : elf64_xlatetom)
(&out, &in, elfdata) != NULL))
{
/* We are looking for DT_DEBUG. */
if (elfclass == ELFCLASS32)
{
Elf32_Dyn (*d32)[dyn_filesz / sizeof (Elf32_Dyn)] = buf;
size_t n = dyn_filesz / sizeof (Elf32_Dyn);
for (size_t i = 0; i < n; ++i)
if ((*d32)[i].d_tag == DT_DEBUG)
{
r_debug_vaddr = (*d32)[i].d_un.d_val;
break;
}
}
else
{
Elf64_Dyn (*d64)[dyn_filesz / sizeof (Elf64_Dyn)] = buf;
size_t n = dyn_filesz / sizeof (Elf64_Dyn);
for (size_t i = 0; i < n; ++i)
if ((*d64)[i].d_tag == DT_DEBUG)
{
r_debug_vaddr = (*d64)[i].d_un.d_val;
break;
}
}
}
(*memory_callback) (dwfl, -1, &in.d_buf, &in.d_size, 0, 0,
memory_callback_arg);
free (buf);
}
}
}
else
/* We have to look for a presupplied executable file to determine
the vaddr of its dynamic section and DT_DEBUG therein. */
r_debug_vaddr = find_executable (dwfl, 0, 0, &elfclass, &elfdata,
memory_callback, memory_callback_arg);
if (r_debug_vaddr == 0)
return 0;
/* For following pointers from struct link_map, we will use an
integrated memory access callback that can consult module text
elided from the core file. This is necessary when the l_name
pointer for the dynamic linker's own entry is a pointer into the
executable's .interp section. */
struct integrated_memory_callback mcb =
{
.memory_callback = memory_callback,
.memory_callback_arg = memory_callback_arg
};
/* Now we can follow the dynamic linker's library list. */
return report_r_debug (elfclass, elfdata, dwfl, r_debug_vaddr,
&integrated_memory_callback, &mcb, r_debug_info);
}
INTDEF (dwfl_link_map_report)
|