1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.29
from ../tnf/type.tnf on 12 Febuary 2003 -->
<TITLE>Type analysis tasks - Basic Type Analysis</TITLE>
</HEAD>
<BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000EE" VLINK="#551A8B" ALINK="#FF0000" BACKGROUND="gifs/bg.gif">
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0" VALIGN=BOTTOM>
<TR VALIGN=BOTTOM>
<TD WIDTH="160" VALIGN=BOTTOM><IMG SRC="gifs/elilogo.gif" BORDER=0> </TD>
<TD WIDTH="25" VALIGN=BOTTOM><img src="gifs/empty.gif" WIDTH=25 HEIGHT=25></TD>
<TD ALIGN=LEFT WIDTH="600" VALIGN=BOTTOM><IMG SRC="gifs/title.gif"></TD>
</TR>
</TABLE>
<HR size=1 noshade width=785 align=left>
<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=0>
<TR>
<TD VALIGN=TOP WIDTH="160">
<h4>General Information</h4>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="index.html">Eli: Translator Construction Made Easy</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="gindex_toc.html">Global Index</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="faq_toc.html" >Frequently Asked Questions</a> </td></tr>
</table>
<h4>Tutorials</h4>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="EliRefCard_toc.html">Quick Reference Card</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="novice_toc.html">Guide For new Eli Users</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="news_toc.html">Release Notes of Eli</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="nametutorial_toc.html">Tutorial on Name Analysis</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="typetutorial_toc.html">Tutorial on Type Analysis</a></td></tr>
</table>
<h4>Reference Manuals</h4>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="ui_toc.html">User Interface</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="pp_toc.html">Eli products and parameters</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="lidoref_toc.html">LIDO Reference Manual</a></td></tr>
</table>
<h4>Libraries</h4>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="lib_toc.html">Eli library routines</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="modlib_toc.html">Specification Module Library</a></td></tr>
</table>
<h4>Translation Tasks</h4>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="lex_toc.html">Lexical analysis specification</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="syntax_toc.html">Syntactic Analysis Manual</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="comptrees_toc.html">Computation in Trees</a></td></tr>
</table>
<h4>Tools</h4>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="lcl_toc.html">LIGA Control Language</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="show_toc.html">Debugging Information for LIDO</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="gorto_toc.html">Graphical ORder TOol</a> </td></tr>
</table>
<p>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="fw_toc.html">FunnelWeb User's Manual</a> </td></tr>
</table>
<p>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="ptg_toc.html">Pattern-based Text Generator</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="deftbl_toc.html">Property Definition Language</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="oil_toc.html">Operator Identification Language</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="tp_toc.html">Tree Grammar Specification Language</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="clp_toc.html">Command Line Processing</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="cola_toc.html">COLA Options Reference Manual</a> </td></tr>
</table>
<p>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="idem_toc.html">Generating Unparsing Code</a> </td></tr>
</table>
<p>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="mon_toc.html">Monitoring a Processor's Execution</a> </td></tr>
</table>
<h4>Administration</h4>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="sysadmin_toc.html">System Administration Guide</a> </td></tr>
</table>
<HR WIDTH="100%">
<CENTER> <A HREF="mailto:elibugs@cs.colorado.edu"><IMG SRC="gifs/button_mail.gif" NOSAVE BORDER=0 HEIGHT=32 WIDTH=32></A><A HREF="mailto:elibugs@cs.colorado.edu">Questions, Comments, ....</A></CENTER>
</TD>
<TD VALIGN=TOP WIDTH="25"><img src="gifs/empty.gif" WIDTH=25 HEIGHT=25></TD>
<TD VALIGN=TOP WIDTH="600">
<H1>Type analysis tasks</H1>
<P>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT=""><A HREF="type_2.html"><IMG SRC="gifs/next.gif" ALT="Next Chapter" BORDER="0"></A>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT=""><A HREF="type_toc.html"><IMG SRC="gifs/up.gif" ALT="Table of Contents" BORDER="0"></A>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT="">
<HR size=1 noshade width=600 align=left>
<A NAME="IDX7"></A>
<H1><A NAME="SEC1" HREF="type_toc.html#SEC1">Basic Type Analysis</A></H1>
<P>
This module implements a set of concepts that are basic for
the type analysis task in many statically typed languages:
Definition and use of typed objects, notation of user defined
types, and definition and use of type identifiers.
<P>
The use of this module is demonstrated in
the following section, which intorduces a running example.
A complete executable specification for an example
is available in <CODE>$/Type/Examples/Type.fw</CODE>.
<P>
This module is instantiated by
<PRE>
$/Type/Typing.gnrc +referto=|KEY| :inst
</PRE>
The <CODE>referto</CODE> parameter modifies the names
of <CODE>Key</CODE> attributes, and hence, has to be the same as the
<CODE>referto</CODE> parameter used for the module instance that supplies
the key attributes.
<P>
The module uses the following basic concepts for implementation
of type analysis tasks:
<A NAME="IDX8"></A>
<A NAME="IDX9"></A>
<A NAME="IDX10"></A>
<P>
Types are represented by <CODE>DefTableKeys</CODE>.
Such a key is created for each program construct which
denotes a particular type.
The roles of this module associate the property <CODE>IsType</CODE>
(set to 1) to such type keys in order to distinguish them
from keys for other objects.
Further properties may be associated to characterize the particular type.
<CODE>NoKey</CODE> represents the unknown Type.
<A NAME="IDX11"></A>
<A NAME="IDX12"></A>
<P>
The property <CODE>TypeOf</CODE> is associated to typed objects
and states the type of the object.
<P>
Identifiers may be defined to denote types. They may be
introduced by type definitions.
In case of a type definition which simply renames the type given
by a type identifier, it is assumed that both type identifiers
refer to the same type.
<A NAME="IDX13"></A>
<A NAME="IDX14"></A>
<A NAME="IDX15"></A>
<A NAME="IDX16"></A>
<A NAME="IDX17"></A>
<P>
This module uses an instance of the <CODE>Defer</CODE> module
(see <A HREF="type_4.html#SEC9">Deferred Property Association</A>) to relate keys that represent the same type.
A type identifier key refers indirectly via the <CODE>Defer</CODE> relation
to a type key, where the type properties are associated to.
Let <CODE>k</CODE> be a type identifier; then a call <CODE>TransDefer (k)</CODE>
accesses the type key at the end of the <CODE>Defer</CODE> chain via
arbitrary many steps.
<P>
This module provides the following computational roles:
<A NAME="IDX18"></A>
<P>
<CODE>RootType</CODE>:
is inherited by the grammar root by default.
<A NAME="IDX19"></A>
<P>
<CODE>TypedDefinition</CODE>:
a definition that defines one or several typed objects.
<A NAME="IDX20"></A>
<P>
<CODE>TypedDefId</CODE>:
a defining occurrence of an identifier for a typed object.
<A NAME="IDX21"></A>
<P>
<CODE>TypedUseId</CODE>:
an applied occurrence of an identifier for a typed object.
<A NAME="IDX22"></A>
<P>
<CODE>ChkTypedUseId</CODE>:
checks that the key represents a typed object.
<A NAME="IDX23"></A>
<P>
<CODE>TypeDefDefId</CODE>:
a defining occurrence of a type identifer.
<A NAME="IDX24"></A>
<P>
<CODE>ChkTypeDefDefId</CODE>:
checks that a type identifer is defined acyclic.
<A NAME="IDX25"></A>
<P>
<CODE>TypeDefUseId</CODE>:
an applied occurrence of a type identifer.
<A NAME="IDX26"></A>
<P>
<CODE>ChkTypeDefUseId</CODE>:
checks that the key represents a type.
<A NAME="IDX27"></A>
<P>
<CODE>TypeDenotation</CODE>:
a type denotation.
<P>
At least the roles <CODE>TypedDefinition</CODE>,
<CODE>TypedDefId</CODE>, <CODE>TypedUseId</CODE>,
and <CODE>TypeDefUseId</CODE>
are used. Those are sufficient for languages that have only
predefined types. User defined types require additionally the use of
<CODE>TypeDenotation</CODE>.
For definitions of names that denote types
<CODE>TypeDefDefId</CODE> and <CODE>ChkTypeDefDefId</CODE> are necessary.
<P>
The roles are described as follows:
<A NAME="IDX28"></A>
<A NAME="IDX29"></A>
<P>
<CODE>TypedDefinition</CODE>
is a context where one or several typed objects are defined
in its subtree, using the role <CODE>TypedDefId</CODE>.
They all have the same type which is to be computed as
the attribute <CODE>THIS.Type</CODE>.
<A NAME="IDX30"></A>
<A NAME="IDX31"></A>
<P>
<CODE>TypedDefId</CODE>
is a defining occurrence of an identifier for a typed object.
The <CODE>TypeOf</CODE> property is associated to <CODE>THIS.KEYKey</CODE>.
It is obtained from the attribute <CODE>INH.Type</CODE>.
A default computation for <CODE>INH.Type</CODE> is provided
that takes the type from <CODE>INCLUDING TypedDefinition.Type</CODE>.
Further properties may be associated to the object along
with its type. Then the postcondition of their computation should
be <CODE>INH.GotProp</CODE> which is empty by default. It guarantees that
the property values can be accessed where the typed object is used.
<P>
An attribute <CODE>SYNT.TypeIsSet</CODE> represents the state
where the <CODE>TypeOf</CODE> property of this <CODE>TypedDefId</CODE> has been
set. The default computations of <CODE>TypedDefId</CODE> and <CODE>TypedUseId</CODE>
are set up such that the <CODE>TypeOf</CODE> properties of all
<CODE>TypedDefId</CODE> are set before any <CODE>TypeOf</CODE> property of
a <CODE>TypedUseId</CODE> is accessed. In cases where a different dependency
pattern is needed, it can be obtained by overriding the
computations of <CODE>SYNT.TypeIsSet</CODE> in the two contexts.
An example for a different dependency pattern is a left-to-right
chain which may allow to set the type in a defining occurrence using
applied occurrences that have been set before.
<A NAME="IDX33"></A>
<A NAME="IDX32"></A>
<P>
<CODE>TypedUseId</CODE>
is an applied occurrence of an identifier for a typed object.
The attribute <CODE>SYNT.Type</CODE> is the type associated to the object.
The <CODE>Defer</CODE> chain is already walked down to the type key.
See the explanation of the attribute <CODE>SYNT.TypeIsSet</CODE>
for the role <CODE>TypedDefId</CODE>.
<P>
<CODE>ChkTypedUseId</CODE>
checks that the key represents a typed object, and issues an error
message otherwise.
<P>
Types are denoted either by a used occurrence of a type identifier,
role <CODE>TypeDefUseId</CODE>, or by some composite <CODE>TypeDenotation</CODE>.
Either role provides a <CODE>Type</CODE> attribute representing the denoted
type.
<P>
<CODE>TypeDefUseId</CODE>
is an applied occurrence of a type identifier.
The <CODE>Type</CODE> attribute is its key which is related to the
type key by the <CODE>Defer</CODE> relation.
<P>
<CODE>ChkTypeDefUseId</CODE>
is usually inherited along with <CODE>TypeDefUseId</CODE>.
It issues an error message if the identifier does not
denote a type.
<P>
<CODE>TypeDenotation</CODE>
characterizes a context that denotes a user defined type,
e.g. an array type.
The attribute <CODE>SYNT.Type</CODE> is a new, unique type key.
If the type rules of the language state that a thus denoted
type is equivalent to any other type, suitable functions
that check for type equivalence have to be used.
<A NAME="IDX34"></A>
<A NAME="IDX35"></A>
<P>
Any property that further describes the type has
to be associated to <CODE>SYNT.Type</CODE> by computations that
establish the postcondition <CODE>SYNT.GotType</CODE>.
(Its default is the empty postcondition.)
It guarantees that the properties
can be accessed when an object having that type is used
(role <CODE>TypedUseId</CODE>).
<P>
<CODE>TypeDefDefId</CODE>
is a defining occurrences of a type identifier.
Its key is related by the <CODE>Defer</CODE> relation to the
attribute <CODE>THIS.Type</CODE>. Its computation has to be provided.
<P>
<CODE>ChkTypeDefDefId</CODE>
checks that its attribute <CODE>THIS.Type</CODE> refers to a type,
and that the type does not refer to itself.
It is usually inherited along with <CODE>TypeDefDefId</CODE>.
<P>
<CODE>RootType</CODE>
is inherited by the grammar root by default.
It ensures that all <CODE>TypeOf</CODE> and <CODE>Defer</CODE> properties
are established when a <CODE>Type</CODE> attribute
is computed. (The same holds for properties that are defined
along with types.)
That condition is provided by the
condition attribute <CODE>SYNT.GotType</CODE>.
Computations that access type properties, e.g.
those which decompose composite types,
have to be specified to depend on <CODE>INCLUDING RootType.GotType</CODE>.
<A NAME="IDX36"></A>
<A NAME="IDX37"></A>
<A NAME="IDX38"></A>
<P>
<H2><A NAME="SEC2" HREF="type_toc.html#SEC2">Example for Basic Type Analysis</A></H2>
<P>
The use of the basic type module is demonstrated by introducing type analysis
to our running example.
A complete executable specification of our running example for the type
analysis task
is available in <CODE>$/Type/Examples/Type.fw</CODE>.
<P>
For the moment we assume the there are only three predefined
types <CODE>int</CODE>, <CODE>float</CODE>, and <CODE>bool</CODE>. They are represented
by the keys <CODE>intType</CODE>, <CODE>realType</CODE>, and <CODE>boolType</CODE>
as introduced in (see <A HREF="name_3.html#SEC6">Predefined Identifiers of Name analysis according to scope rules</A>).
<A NAME="IDX39"></A>
<P>
We add a <CODE>.pdl</CODE> specification which states that those keys are types
and which defines the types of the constants <CODE>true</CODE> and <CODE>false</CODE>.
A <CODE>voidType</CODE> is introduced here although there is no predefined
identifier to denote it. It enables us to express that in certain
contexts type coercion to <CODE>voidType</CODE> is to be applied.
<PRE>
intType -> IsType = {1};
realType -> IsType = {1};
boolType -> IsType = {1};
voidType -> IsType = {1};
trueKey -> TypeOf = {boolType};
falseKey-> TypeOf = {boolType};
intKey -> Defer = {intType};
realKey -> Defer = {realType};
boolKey -> Defer = {boolType};
</PRE>
The last group relates the keys of the predefined type identifiers
to the type keys.
It is not recommended to use <CODE>intKey</CODE> etc. themselves
as type keys. In that case it would not be possible to have
different predefined type identifiers that could denote the same types.
<A NAME="IDX40"></A>
<A NAME="IDX41"></A>
<A NAME="IDX42"></A>
<A NAME="IDX43"></A>
<A NAME="IDX44"></A>
<A NAME="IDX45"></A>
<A NAME="IDX46"></A>
<P>
The following association of module roles to grammar symbols
in our <CODE>.lido</CODE> specification is obvious:
<PRE>
SYMBOL DefIdent INHERITS TypedDefId END;
SYMBOL UseIdent INHERITS TypedUseId, ChkTypedUseId END;
SYMBOL TypeUseIdent INHERITS TypeDefUseId, ChkTypeDefUseId END;
</PRE>
<P>
Our language construct <CODE>ObjDecl</CODE> defines typed objects.
It specifies that the <CODE>Type</CODE> attribute is taken
from the <CODE>TypeDenoter</CODE>. Until now, a <CODE>TypeDenoter</CODE>
can have only one form: <CODE>TypeUseIdent</CODE>.
Its key is taken to represent the denoted type:
<PRE>
SYMBOL ObjDecl INHERITS TypedDefinition END;
RULE: ObjDecl ::= TypeDenoter DefIdent COMPUTE
ObjDecl.Type = TypeDenoter.Type;
END;
RULE: TypeDenoter ::= TypeUseIdent COMPUTE
TypeDenoter.Type = TypeUseIdent.Type;
END;
ATTR Type: DefTableKey;
</PRE>
The last line allows us to use <CODE>Type</CODE> attributes without
specifying their type repeatedly.
<P>
The types of literal expressions are then specified by
<PRE>
RULE: Expression ::= IntNumber COMPUTE
Expression.Type = intType;
END;
RULE: Expression ::= RealNumber COMPUTE
Expression.Type = realType;
END;
</PRE>
<P>
Computations like the following propagate type information
upwards through adjacent contexts:
<PRE>
RULE: Expression ::= Variable COMPUTE
Expression.Type = Variable.Type;
END;
RULE: Variable ::= UseIdent COMPUTE
Variable.Type = UseIdent.Type;
END;
</PRE>
<P>
Occurrences of <CODE>Expression</CODE> in certain contexts require
that their type is compatible to a type imposed by the context.
Hence, we introduce an inherited attribute <CODE>ReqType</CODE> and a check
for compatibility.
The two rules demonstrate how such type requirements are imposed:
<PRE>
SYMBOL Expression: ReqType: DefTableKey;
SYMBOL Expression COMPUTE
IF (NOT (Compatible (THIS.ReqType, THIS.Type)),
message (FATAL, "expression does not have the required type",
0, COORDREF));
END;
RULE: Statement ::= Expression ';' COMPUTE
Expression.ReqType = voidKey;
END;
RULE: Statement ::= Variable '=' Expression ';' COMPUTE
Expression.ReqType = Variable.Type;
END;
</PRE>
<P>
The function <CODE>Compatible</CODE> needs to be
implemented according to the type rules of the particular language.
(An example implementation is shown in <CODE>$/Type/Examples/Type.fw</CODE>).
<A NAME="IDX47"></A>
<A NAME="IDX48"></A>
<A NAME="IDX49"></A>
<P>
We now introduce type definitions to our language.
The concrete production is
<PRE>
Declaration: 'type' TypeDenoter TypeDefIdent ';'.
TypeDefIdent: Ident.
</PRE>
From the view of language design such type definitions only make sense
if there are other than the predefined types that can be given a name.
In (see <A HREF="type_2.html#SEC3">Properties of Types</A>) it is demonstrated how to introduce
some common types.
<P>
The <CODE>TypeDefIdent</CODE> has the role of a defining type identifier
occurrence that renames the type of the <CODE>TypeDenoter</CODE>:
<PRE>
SYMBOL TypeDefIdent INHERITS
IdDefScope, IdentOcc,
TypeDefDefId, ChkTypeDefDefId
END;
RULE: Declaration ::= 'type' TypeDenoter TypeDefIdent ';' COMPUTE
TypeDefIdent.Type = TypeDenoter.Type;
END;
</PRE>
<A NAME="IDX50"></A>
<P>
<HR size=1 noshade width=600 align=left>
<P>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT=""><A HREF="type_2.html"><IMG SRC="gifs/next.gif" ALT="Next Chapter" BORDER="0"></A>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT=""><A HREF="type_toc.html"><IMG SRC="gifs/up.gif" ALT="Table of Contents" BORDER="0"></A>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT="">
<HR size=1 noshade width=600 align=left>
</TD>
</TR>
</TABLE>
</BODY></HTML>
|