File: type_2.html

package info (click to toggle)
eli-doc 4.4.0-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 13,256 kB
  • ctags: 4,583
  • sloc: makefile: 42
file content (597 lines) | stat: -rw-r--r-- 25,194 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.29
     from ../tnf/type.tnf on 12 Febuary 2003 -->

<TITLE>Type analysis tasks - Properties of Types</TITLE>
</HEAD>
<BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000EE" VLINK="#551A8B" ALINK="#FF0000" BACKGROUND="gifs/bg.gif">
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0" VALIGN=BOTTOM>
<TR VALIGN=BOTTOM>
<TD WIDTH="160" VALIGN=BOTTOM><IMG SRC="gifs/elilogo.gif" BORDER=0>&nbsp;</TD>
<TD WIDTH="25" VALIGN=BOTTOM><img src="gifs/empty.gif" WIDTH=25 HEIGHT=25></TD>
<TD ALIGN=LEFT WIDTH="600" VALIGN=BOTTOM><IMG SRC="gifs/title.gif"></TD>
</TR>
</TABLE>

<HR size=1 noshade width=785 align=left>
<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=0>
<TR>
<TD VALIGN=TOP WIDTH="160">
<h4>General Information</h4>

<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="index.html">Eli: Translator Construction Made Easy</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="gindex_toc.html">Global Index</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="faq_toc.html" >Frequently Asked Questions</a> </td></tr>
</table>

<h4>Tutorials</h4>

<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="EliRefCard_toc.html">Quick Reference Card</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="novice_toc.html">Guide For new Eli Users</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="news_toc.html">Release Notes of Eli</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="nametutorial_toc.html">Tutorial on Name Analysis</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="typetutorial_toc.html">Tutorial on Type Analysis</a></td></tr>
</table>

<h4>Reference Manuals</h4>

<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="ui_toc.html">User Interface</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="pp_toc.html">Eli products and parameters</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="lidoref_toc.html">LIDO Reference Manual</a></td></tr>
</table>

<h4>Libraries</h4>

<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="lib_toc.html">Eli library routines</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="modlib_toc.html">Specification Module Library</a></td></tr>
</table>

<h4>Translation Tasks</h4>

<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="lex_toc.html">Lexical analysis specification</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="syntax_toc.html">Syntactic Analysis Manual</a></td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="comptrees_toc.html">Computation in Trees</a></td></tr>
</table>

<h4>Tools</h4>

<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="lcl_toc.html">LIGA Control Language</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="show_toc.html">Debugging Information for LIDO</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="gorto_toc.html">Graphical ORder TOol</a> </td></tr>
</table>
<p>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="fw_toc.html">FunnelWeb User's Manual</a> </td></tr>
</table>
<p>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="ptg_toc.html">Pattern-based Text Generator</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="deftbl_toc.html">Property Definition Language</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="oil_toc.html">Operator Identification Language</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="tp_toc.html">Tree Grammar Specification Language</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="clp_toc.html">Command Line Processing</a> </td></tr>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="cola_toc.html">COLA Options Reference Manual</a> </td></tr>
</table>
<p>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="idem_toc.html">Generating Unparsing Code</a> </td></tr>
</table>
<p>
<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="mon_toc.html">Monitoring a Processor's Execution</a> </td></tr>
</table>

<h4>Administration</h4>

<table BORDER=0 CELLSPACING=0 CELLPADDING=0>
<tr valign=top><td><img src="gifs/gelbekugel.gif" WIDTH=7 HEIGHT=7 ALT=" o"> </td><td><a href="sysadmin_toc.html">System Administration Guide</a> </td></tr>
</table>

<HR WIDTH="100%">
<CENTER>&nbsp;<A HREF="mailto:elibugs@cs.colorado.edu"><IMG SRC="gifs/button_mail.gif" NOSAVE BORDER=0 HEIGHT=32 WIDTH=32></A><A HREF="mailto:elibugs@cs.colorado.edu">Questions, Comments, ....</A></CENTER>

</TD>
<TD VALIGN=TOP WIDTH="25"><img src="gifs/empty.gif" WIDTH=25 HEIGHT=25></TD>

<TD VALIGN=TOP WIDTH="600">
<H1>Type analysis tasks</H1>
<P>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT=""><A HREF="type_1.html"><IMG SRC="gifs/prev.gif" ALT="Previous Chapter" BORDER="0"></A>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT=""><A HREF="type_3.html"><IMG SRC="gifs/next.gif" ALT="Next Chapter" BORDER="0"></A>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT=""><A HREF="type_toc.html"><IMG SRC="gifs/up.gif" ALT="Table of Contents" BORDER="0"></A>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT="">
<HR size=1 noshade width=600 align=left>
<H1><A NAME="SEC3" HREF="type_toc.html#SEC3">Properties of Types</A></H1>
<P>
In general it is necessary to associate properties to
types that carry characterizing information which is either
used for purposes of type analysis, e.g. to check compatibility
of two types or to determine the element type of an array, or for
translation purposes, e.g. the size of data objects in the
target code. It is an important design issue in type analysis
to identify the characterizing properties of types.
<P>
In this section four common type classes are used to demonstrate
principles of type properties, and their use in type analysis.
Solutions for other types may be derived from these by
analogy.
Here only properties are described that are used in type analysis
itself, disregarding properties for the transformation task.
<P>
For our solution we use the module for basic type analysis
(see  <A HREF="type_1.html#SEC1">Basic Type Analysis</A>)
and some modules of the property library (see  <A HREF="prop_toc.html">Property Library of Association of properties to definition</A>).
<P>
<DL COMPACT>
<DT><CODE>ArrayType</CODE>
<DD>Array Types
<DT><CODE>PointerType</CODE>
<DD>Pointer Types
<DT><CODE>FunctionType</CODE>
<DD>Function Types
<DT><CODE>ScopeTypes</CODE>
<DD>Types Having Scope Properties
</DL>
<A NAME="IDX51"></A>
<P>
Array types and pointer types are used to demonstrate 
how new types are introduced
by declarations in a program, as opposed to predefined types,
and that type properties refer to other types.
<P>
Function types are used to demonstrate type properties that are
lists of types which are specified using the <CODE>LidoList</CODE> module.
<P>
Record types are used to demonstrate type properties that are
scopes which are specified using modules of the <CODE>Name</CODE> library.
<A NAME="IDX52"></A>
<A NAME="IDX53"></A>
<P>
<H2><A NAME="SEC4" HREF="type_toc.html#SEC4">Array Types</A></H2>
<P>
In this section we use array types to demonstrate how new types are introduced
by declarations in a program, as opposed to predefined types.
Furthermore it is shown how type properties refer to other types.
We assume that an array is described by the type and the number of its elements,
like in C. 
The denotation of an array type shall introduce a new type that is diffierent
from any other type, as in Pascal. For ease of our example we do not
consider type rules that allow two different array types to be compatible.
<P>
The language of our running example is extended by <CODE>TypeDenoter</CODE>s
for arrays and by indexed <CODE>Variable</CODE>s as specified by the
concrete productions:
<PRE>
   TypeDenoter:    ArrayType.
   ArrayType:      TypeDenoter '[' IntNumber ']'.
   Variable:       Variable '[' Expression ']'.
</PRE>
The form chosen for <CODE>TypeDenoter</CODE>s keeps the grammar simple and
orthogonal, but leads to a bit unconventional notation for declaration
of array variables and array type names:
<PRE>
   type int[10]   Vector;
   var  Vector    v;
   var  float[5]  a;

   v[6] = 1; a[3] = 2.5;
</PRE>
<P>
An array type is described here by two properties introduced by the
<CODE>.pdl</CODE> specification
<PRE>
   ElemType:       DefTableKey;
   ElemNo:         int;
</PRE>
<P>
The rule that any type denoter introduces a new array type is reflected
by using the module role <CODE>TypeDenotation</CODE> unchanged 
(see  <A HREF="type_1.html#SEC1">Basic Type Analysis</A>).
It provides a computation for <CODE>ArrayType.Type</CODE> being
a new, unique type key:
<A NAME="IDX54"></A>
<P>
<PRE>
   SYMBOL ArrayType INHERITS TypeDenotation END;

   RULE: ArrayType ::= TypeDenoter '[' IntNumber ']' COMPUTE
     ArrayType.GotType =
       ORDER
         (ResetElemType (ArrayType.Type, TypeDenoter.Type),
          ResetElemNo (ArrayType.Type, IntNumber));
   END;

   RULE: TypeDenoter ::= ArrayType COMPUTE
     TypeDenoter.Type = ArrayType.Type;
   END;
</PRE>
Association of the type properties establishes the postcondition
<CODE>ArrayType.GotType</CODE>. The module roles ensure that the
properties are set before accessed.
<P>
In the context of an indexed <CODE>Variable</CODE> the type
is expected to be an array type, as checked in the second
computation.
The first computation accesses the element type.
The call of <CODE>TransDefer</CODE> ensures that <CODE>Type</CODE>
attributes in expression contexts are type keys rather than
deferred keys. This is a convention that is introduced by the
module roles, and is carried on here.
<PRE>
   RULE: Variable ::= Variable '[' Expression ']' COMPUTE
     Variable[1].Type =
        TransDefer (GetElemType (Variable[2].Type, NoKey));

     IF (EQ (Variable[1].Type, NoKey),
     message (ERROR, "index applied to non array", 0, COORDREF));

     Expression.ReqType = intType;
   END;
</PRE>
<A NAME="IDX55"></A>
<P>
<H2><A NAME="SEC5" HREF="type_toc.html#SEC5">Pointer Types</A></H2>
<P>
In this section we introduce pointer types to the language
of our running example. A type denoted <CODE>t !</CODE> shall
be the type of objects that point to objects of type <CODE>t</CODE>.
Types <CODE>t !</CODE> and <CODE>s !</CODE> shall be equivalent if <CODE>s</CODE>
and <CODE>t</CODE> are equivalent, due to type definitions that simply
rename a type. (This rule is similar to that of C, but different
from that of Pascal where any ocurrence of a pointer type denoter
introduces a new type.)
<P>
The concrete grammar of our running example is extended by the
productions:
<PRE>
   TypeDenoter:    PointerType.
   PointerType:    TypeDenoter '!'.
   Variable:       Variable '!'.
   Variable:       Variable '&#38;'.
</PRE>
Two new <CODE>Variable</CODE> notations are introduced:
<CODE>v !</CODE> denotes the object which the value of the pointer variable
<CODE>v</CODE> points to. <CODE>v &#38;</CODE> yields the address of the variable
<CODE>v</CODE>, it has the type pointer to <CODE>t</CODE> if <CODE>v</CODE> is a variable
of type <CODE>t</CODE>.
<P>
Due to our equivalence rules all variables in the following example
have the equivalent types:
<PRE>
   type int ! IntPtr;
   type IntPtr IP;
   var  IntPtr i, IP j, int ! k;
   ...
   i! = j!;
</PRE>
<P>
The property <CODE>PointsTo</CODE> is introduced to describe pointer types:
<PRE>
  PointsTo: DefTableKey [KReset];
</PRE>
(The operation <CODE>KReset</CODE> is described below.)
<P>
The following computation introduces the notation of
pointer types using the module role <CODE>TypeDenotation</CODE>.
The computation establishes the postcondition as required for
<CODE>TypeDenotation</CODE>s:
<A NAME="IDX56"></A>
<P>
<PRE>
   SYMBOL PointerType INHERITS TypeDenotation END;

   RULE: PointerType ::= TypeDenoter '!' COMPUTE
     PointerType.GotType =
       ResetPointsTo (PointerType.Type, TypeDenoter.Type);
   END;

   RULE: TypeDenoter ::= PointerType COMPUTE
      TypeDenoter.Type = PointerType.Type;
   END;
</PRE>
<P>
If we do not take further means any two occurrences of a pointer
type notation would denote different types.
The equivalence rule described above has to be implemented in functions
which compare types. Caution has to be taken to avoid non-termination
of such functions if applied to recursively defined types.
More details can be found in <CODE>$/Type/Examples/Type.fw</CODE>.
<P>
For the contents operation applied to a <CODE>Variable</CODE> we access
the <CODE>PointsTo</CODE> relation that holds if the <CODE>Variable</CODE> really
has a pointer type:
<PRE>
   RULE: Variable ::= Variable '!' COMPUTE
     Variable[1].Type =
       TransDefer (GetPointsTo (Variable[2].Type, NoKey));

     IF (EQ (Variable[1].Type, NoKey),
     message (ERROR, "is not a pointer variable", 0, COORDREF));
   END;
</PRE>
The call of <CODE>TransDefer</CODE> ensures that <CODE>Type</CODE>
attributes in expression contexts are type keys rather than
deferred keys. A convention that is introduced by the
module roles, and carried on here.
<P>
The address operator implicitly creates a pointer type
that <CODE>PointsTo</CODE> the type of the variable.
Both properties <CODE>PointsTo</CODE> and <CODE>IsType</CODE> are set
for that new type key.
<PRE>
   RULE: Variable ::= Variable '&#38;' COMPUTE
     Variable[1].Type =
        KResetPointsTo
          (KResetIsType (NewKey (), 1),
           Variable[2].Type);
   END;
</PRE>
<A NAME="IDX57"></A>
<A NAME="IDX58"></A>
<P>
The <CODE>KReset</CODE> operations set the property and return the
first argument. That mechanism is obtained from the module
See  <A HREF="prop_10.html#SEC10">Some Useful PDL Specifications of Association of properties to definitions</A>, which is automatically instantiated when
using the basic type module.
<A NAME="IDX59"></A>
<A NAME="IDX60"></A>
<A NAME="IDX61"></A>
<A NAME="IDX62"></A>
<P>
<H2><A NAME="SEC6" HREF="type_toc.html#SEC6">Function Types</A></H2>
<P>
Function types are an example for types that have properties which
are lists of types, the types of the parameters.
They are also used here to demonstrate an application of the 
<CODE>LidoList</CODE> module (see  <A HREF="adt_1.html#SEC1">Lists in LIDO Specifications of Abstract data types to be used in specifications</A>).
<P>
The type of a function is described by its result type and
the list of the types of the parameters. Type analysis of a function
call has to check the parameter types of the called function
against the corresponding argument types, and has to yield the
result type as the type of the call.
<P>
We extend the concrete grammar of our running example by productions
for function declarations and calls:
<PRE>
   Declaration:    FunctionDecl.
   FunctionDecl:   'fun' DefIdent Function ';'.
   Function:       FunctionHead Block.
   FunctionHead:   '(' Parameters ')' TypeDenoter.
   Parameters:     [Parameter // ','].
   Parameter:      TypeDenoter Ident.
   Expression:     Expression '(' Arguments ')'.
   Arguments:      [Argument // ','].
   Argument:       Expression.
</PRE>
<A NAME="IDX63"></A>
<P>
In the context of a function declaration
the list of parameter types is composed and associated as a
property of the function type. In the context of a function
call that property is accessed, the list is decomposed, and
its elements - the formal parameter types - are compared with
the types of the arguments.
<P>
In order to describe lists of parameter types we instantiate
the <CODE>LidoList</CODE> module for the element type <CODE>DefTableKey</CODE>
as described in (See  <A HREF="adt_1.html#SEC1">Lists in LIDO Specifications of Abstract data types to be used in specifications</A>,):
<PRE>
   $/Adt/LidoList.gnrc+instance=DefTableKey+referto=deftbl:inst
</PRE>
<P>
A function type is described by two properties, the result type and 
and the list of parameter types as introduced by the following
PDL specifications:
<PRE>
   ParamTypes:     DefTableKeyList; "DefTableKeyList.h"
   ResultType:     DefTableKey;
</PRE>
where the <CODE>DefTableKeyList</CODE> type and the file defining it
is obtained from the module instance.
<A NAME="IDX64"></A>
<A NAME="IDX65"></A>
<A NAME="IDX66"></A>
<P>
Several module roles are to be combined in the contexts of
function declarations:
The <CODE>Function</CODE> is a <CODE>RangeScope</CODE> where the parameters are
bound.
The <CODE>FunctionDecl</CODE> is a <CODE>TypedDefinition</CODE>
for the function identifier.
The <CODE>FunctionHead</CODE> is a <CODE>TypeDenotation</CODE> describing
the signature of the function.
The <CODE>Parameter</CODE> is a <CODE>TypedDefinition</CODE>.
<PRE>
  SYMBOL Function INHERITS RangeScope END;

  SYMBOL FunctionDecl INHERITS TypedDefinition END;
  RULE: FunctionDecl ::= 'fun' DefIdent Function ';' COMPUTE
    FunctionDecl.Type = Function.Type;
  END;

  SYMBOL FunctionHead INHERITS TypeDenotation END;
  RULE: FunctionHead ::= '(' Parameters ')' TypeDenoter COMPUTE
    FunctionHead.GotType =
      ORDER
        (ResetResultType (FunctionHead.Type, TypeDenoter.Type),
         ResetParamTypes (FunctionHead.Type,
                          Parameters.DefTableKeyList));
  END;
  SYMBOL Parameter INHERITS TypedDefinition END;
</PRE>
Language rules that determine when the types of two functions
are equal have to be implemented in the functions for
type comparison. An example can be found in
<CODE>$/Type/Examples/Type.fw</CODE>.
<P>
The parameter type list is composed using the list construction
roles of the <CODE>LidoList</CODE> module:
<PRE>
   SYMBOL Parameters INHERITS DefTableKeyListRoot END;
   SYMBOL Parameter  INHERITS DefTableKeyListElem END;
   RULE: Parameter ::= TypeDenoter DefIdent COMPUTE
     Parameter.DefTableKeyElem = TypeDenoter.Type;
   END;
</PRE>
<A NAME="IDX67"></A>
<A NAME="IDX68"></A>
<P>
In the context of a call the type of the <CODE>Expression</CODE> is expected to
be a function type. The parameter type list is decomposed using
the list decomposition roles of the <CODE>LidoList</CODE> module, 
and checked for missing arguments:
<PRE>
   SYMBOL Arguments INHERITS DefTableKeyDeListRoot END;
   RULE:  Expression ::= Expression '(' Arguments ')' COMPUTE
     Arguments.DefTableKeyList =
        GetParamTypes (Expression[2].Type, NULLDefTableKeyList);

     Expression[1].Type = 
        TransDefer (GetResultType (Expression[2].Type, NoKey));

     IF (EQ (Expression[1].Type, NoKey),
     message (ERROR, "call applied to non function", 0, COORDREF));

     Expression[2].ReqType = Expression[2].Type;

     IF (NE (Arguments.DefTableKeyListTail, NULLDefTableKeyList),
     message (ERROR, "arguments missing", 0, COORDREF));
   END;
</PRE>
The type of each formal parameter is obtained from the decomposed list
and stated to be the required type of the actual argument:
<PRE>
   SYMBOL Argument INHERITS DefTableKeyDeListElem END;
   RULE:  Argument ::= Expression COMPUTE
     Expression.ReqType = Argument.DefTableKeyElem;

     IF (EQ (Argument.DefTableKeyElem, NoDefTableKey),
     message (ERROR, "too many arguments", 0, COORDREF));
END;
</PRE>
<P>
To obey the naming requirements of the <CODE>LidoList</CODE> module we have to define
the name <CODE>NoDefTableKey</CODE> for missing list elements in a <CODE>.head</CODE>
specification:
<PRE>
   #define NoDefTableKey NoKey
</PRE>
<A NAME="IDX69"></A>
<A NAME="IDX70"></A>
<A NAME="IDX71"></A>
<P>
<H2><A NAME="SEC7" HREF="type_toc.html#SEC7">Types Having Scope Properties</A></H2>
<P>
In this section we demonstrate types that have a property which
is a scope, i.e. a set of object definitions. Examples for
such types are records as in Pascal or C, or classes as
in object-oriented languages.
This task of type analysis is closely related to the name analysis
task: The value of such a property is the scope of a certain range,
e.g. the definitions of record components, 
or the members of a class.
Variables of such a type may be used in component or member selections,
again, a name analysis task.
<P>
In See  <A HREF="name_5.html#SEC11">Scopes Being Properties of Objects of Name analysis according to scope rules</A>, 
it is shown how scopes are used as properties of defined entities.
Here we extend that concept towards typed objects using record
types as an example.
<P>
A notation for record types is introduced into our language:
<PRE>
   type record int a; bool b; end r;
   var r rv, int i;
   rv.a = 1;
   i = rv.a;
</PRE>
Here, a record type <CODE>r</CODE> is defined, a variable <CODE>vr</CODE>
of that type is declared, and component selections are used.
<P>
The concrete grammar is extended by productions for record type
notations and for component selections:
<PRE>
  TypeDenoter:    RecordType.
  RecordType:     'record' ObjDecls 'end'.
  Variable:       Variable '.' SelectIdent.
  SelectIdent:    Ident.
</PRE>
<A NAME="IDX72"></A>
<P>
We use an instance of the See  <A HREF="name_5.html#SEC13">Scope Properties Algol-like of Name analysis according to scope rules</A>, module.
The name analysis role <CODE>RangeScopeProp</CODE> specifies the
record type to be a range. Its scope of component definitions
is associated to the <CODE>ScopeKey</CODE>. The <CODE>ScopeKey</CODE>
is specified to be the type key created by the role
<CODE>TypeDenotation</CODE>. The default for the <CODE>GotType</CODE>
attribute need not be overridden, because the <CODE>AlgScopeProp</CODE> 
module takes care for setting the scope property before using it:
<P>
<PRE>
  SYMBOL RecordType INHERITS TypeDenotation, RangeScopeProp 
  COMPUTE
    SYNT.ScopeKey = SYNT.Type;
  END;

  RULE: TypeDenoter ::= RecordType COMPUTE
    TypeDenoter.Type = RecordType.Type;
  END;
</PRE>
<A NAME="IDX73"></A>
<A NAME="IDX74"></A>
<A NAME="IDX75"></A>
<P>
The selection identifier is bound in a scope that is obtained from
a scope property. Hence, it has the same computational roles as
specified for the <CODE>QualIdent</CODE> of the scope operator <CODE>::</CODE>
in (see  <A HREF="name_5.html#SEC13">Scope Properties Algol-like of Name analysis according to scope rules</A>), i.e. <CODE>IdUseScopeProp</CODE>, 
<CODE>ChkIdUse</CODE>, and <CODE>IdentOcc</CODE>.
For type analysis it has additionally the roles for an applied
identifier occurrence of a typed object.
<P>
<PRE>
   SYMBOL SelectIdent INHERITS
        IdUseScopeProp, ChkIdUse, IdentOcc,
        TypedUseId, ChkTypedUseId
   END;

   RULE:  Variable ::= Variable '.' SelectIdent COMPUTE
     SelectIdent.Scope = GetScope (Variable[2].Type, NoEnv)
        &#60;- INCLUDING RootScope.GotScopeProp;

     Variable[1].Type = SelectIdent.Type;

     IF (EQ (SelectIdent.Scope, NoEnv),
     message (ERROR, "selection applied to non record type",
              0, COORDREF));
   END;
</PRE>
Here the scope property for the selection is obtained from 
the type of the selected
variable. The precondition ensures
that the scope properties have been set.
<A NAME="IDX76"></A>
<A NAME="IDX77"></A>
<A NAME="IDX78"></A>
<A NAME="IDX79"></A>
<P>
<HR size=1 noshade width=600 align=left>
<P>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT=""><A HREF="type_1.html"><IMG SRC="gifs/prev.gif" ALT="Previous Chapter" BORDER="0"></A>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT=""><A HREF="type_3.html"><IMG SRC="gifs/next.gif" ALT="Next Chapter" BORDER="0"></A>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT=""><A HREF="type_toc.html"><IMG SRC="gifs/up.gif" ALT="Table of Contents" BORDER="0"></A>
<IMG SRC="gifs/empty.gif" WIDTH=25 HEIGHT=25 ALT="">
<HR size=1 noshade width=600 align=left>
</TD>
</TR>
</TABLE>

</BODY></HTML>