File: nonascii.texi

package info (click to toggle)
elisp-manual-ja 20-2.5-jp-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 3,996 kB
  • ctags: 239
  • sloc: lisp: 2,837; perl: 182; makefile: 45; sh: 16
file content (1878 lines) | stat: -rw-r--r-- 91,647 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
@c Copyright (C) 1998 Free Software Foundation, Inc. 
@c See the file elisp.texi for copying conditions.
@setfilename ../info/characters
@node Non-ASCII Characters, Searching and Matching, Text, Top
@c @chapter Non-ASCII Characters
@chapter $BHs(BASCII$BJ8;z(B
@c @cindex multibyte characters
@c @cindex non-ASCII characters
@cindex $B%^%k%A%P%$%HJ8;z(B
@cindex $BHs(BASCII$BJ8;z(B

@c   This chapter covers the special issues relating to non-@sc{ASCII}
@c characters and how they are stored in strings and buffers.
$BK\>O$G$O!"Hs(B@sc{ASCII}$B$K4XO"$9$kFCJL$J$3$H$,$i$H(B
$B$=$l$i$,J8;zNs$d%P%C%U%!$K$I$N$h$&$KJ]B8$5$l$k$+$K$D$$$F=R$Y$^$9!#(B

@menu
* Text Representations::
* Converting Representations::
* Selecting a Representation::
* Character Codes::
* Character Sets::
* Chars and Bytes::
* Splitting Characters::
* Scanning Charsets::
* Translation of Characters::
* Coding Systems::
* Input Methods::
@end menu

@node Text Representations
@c @section Text Representations
@section $B%F%-%9%HI=8=(B
@c @cindex text representations
@cindex $B%F%-%9%HI=8=(B

@c   Emacs has two @dfn{text representations}---two ways to represent text
@c in a string or buffer.  These are called @dfn{unibyte} and
@c @dfn{multibyte}.  Each string, and each buffer, uses one of these two
@c representations.  For most purposes, you can ignore the issue of
@c representations, because Emacs converts text between them as
@c appropriate.  Occasionally in Lisp programming you will need to pay
@c attention to the difference.
Emacs$B$K$O(B2$B$D$N(B@dfn{$B%F%-%9%HI=8=(B}$B!"$D$^$j!"(B
$BJ8;zNs$d%P%C%U%!$G%F%-%9%H$rI=$9J}K!$,(B2$B$D$"$j$^$9!#(B
$B$3$l$i$O!"(B@dfn{$B%f%K%P%$%H(B}$B!J(Bunibyte$B!K$H(B
@dfn{$B%^%k%A%P%$%H(B}$B!J(Bmultibyte$B!K$H8F$P$l$^$9!#(B
$B3FJ8;zNs$d3F%P%C%U%!$G$O!"$3$l$i$N(B2$B$D$NI=8=$N0lJ}$r;H$$$^$9!#(B
$B$[$H$s$I$NL\E*$K$O!"(BEmacs$B$,$3$l$i$N$"$$$@$GE,@Z$KJQ49$9$k$N$G!"(B
$BFI<T$O$3$l$i$NI=8=$K4X$7$F$OL5;k$G$-$^$9!#(B
Lisp$B%W%m%0%i%`$G$O!"$3$l$i$N0c$$$KCm0U$9$kI,MW$,$7$P$7$P$"$j$^$9!#(B

@c @cindex unibyte text
@cindex $B%f%K%P%$%H%F%-%9%H(B
@c   In unibyte representation, each character occupies one byte and
@c therefore the possible character codes range from 0 to 255.  Codes 0
@c through 127 are @sc{ASCII} characters; the codes from 128 through 255
@c are used for one non-@sc{ASCII} character set (you can choose which
@c character set by setting the variable @code{nonascii-insert-offset}).
$B%f%K%P%$%HI=8=$G$O!"3FJ8;z$O(B1$B%P%$%H$r@j$a!"(B
$B$=$N$?$a!"2DG=$JJ8;z%3!<%I$NHO0O$O(B0$B$+$i(B255$B$G$9!#(B
$B%3!<%I(B0$B$+$i(B127$B$O(B@sc{ASCII}$BJ8;z$G$9!#(B
$B%3!<%I(B128$B$+$i(B255$B$OHs(B@sc{ASCII}$BJ8;z=89g$N(B1$B$D(B
$B!JJQ?t(B@code{nonascii-insert-offset}$B$K@_Dj$7$FJ8;z=89g$rA*$Y$k!K(B
$B$K;H$o$l$^$9!#(B

@c @cindex leading code
@c @cindex multibyte text
@c @cindex trailing codes
@cindex $B%j!<%G%#%s%0%3!<%I(B
@cindex $B%^%k%A%P%$%H%F%-%9%H(B
@cindex $B%H%l%$%j%s%0%3!<%I(B
@c   In multibyte representation, a character may occupy more than one
@c byte, and as a result, the full range of Emacs character codes can be
@c stored.  The first byte of a multibyte character is always in the range
@c 128 through 159 (octal 0200 through 0237).  These values are called
@c @dfn{leading codes}.  The second and subsequent bytes of a multibyte
@c character are always in the range 160 through 255 (octal 0240 through
@c 0377); these values are @dfn{trailing codes}.
$B%^%k%A%P%$%HI=8=$G$O!"(B1$BJ8;z$O(B1$B%P%$%H0J>e$r@j$a!"(B
$B$=$N$?$a!"(BEmacs$B$NJ8;z%3!<%I$NHO0OA4BN$r3JG<$G$-$k$N$G$9!#(B
$B%^%k%A%P%$%HJ8;z$N:G=i$N%P%$%H$O$D$M$K(B128$B$+$i(B159$B!J(B8$B?J?t$G(B0200$B$+$i(B0237$B!K$N(B
$BHO0O$K$"$j$^$9!#(B
$B$3$l$i$NCM$r(B@dfn{$B%j!<%G%#%s%0%3!<%I(B}$B!J(Bleading code$B!K$H8F$S$^$9!#(B
$B%^%k%A%P%$%HJ8;z$N(B2$B%P%$%H0J9_$O$D$M$K(B160$B$+$i(B255$B!J(B8$B?J?t$G(B0240$B$+$i(B0377$B!K$N(B
$BHO0O$K$"$j$^$9!#(B
$B$3$l$i$NCM$r(B@dfn{$B%H%l%$%j%s%0%3!<%I(B}$B!J(Btrailing code$B!K$H8F$S$^$9!#(B

@c   In a buffer, the buffer-local value of the variable
@c @code{enable-multibyte-characters} specifies the representation used.
@c The representation for a string is determined based on the string
@c contents when the string is constructed.
$B%P%C%U%!$G$O!"JQ?t(B@code{enable-multibyte-characters}$B$N(B
$B%P%C%U%!%m!<%+%k$JCM$,;HMQ$9$kI=8=$r;XDj$7$^$9!#(B
$BJ8;zNs$NI=8=$O!"J8;zNs$r:n@.$9$k$H$-$NJ8;zNs$NFbMF$K4p$E$$$F7hDj$5$l$^$9!#(B

@defvar enable-multibyte-characters
@tindex enable-multibyte-characters
@c This variable specifies the current buffer's text representation.
@c If it is non-@code{nil}, the buffer contains multibyte text; otherwise,
@c it contains unibyte text.
$B$3$NJQ?t$O!"%P%C%U%!$N%F%-%9%HI=8=$r;XDj$9$k!#(B
$B$3$l$,(B@code{nil}$B0J30$G$"$k$H!"%P%C%U%!$O%^%k%A%P%$%H%F%-%9%H$rJ];}$9$k!#(B
$B$5$b$J$1$l$P%f%K%P%$%H%F%-%9%H$rJ];}$9$k!#(B

@c You cannot set this variable directly; instead, use the function
@c @code{set-buffer-multibyte} to change a buffer's representation.
$B$3$NJQ?t$KD>@\@_Dj$9$k$3$H$O$G$-$J$$!#(B
$B$=$N$+$o$j$K!"%P%C%U%!$NI=8=$rJQ99$9$k$K$O!"(B
$B4X?t(B@code{set-buffer-multibyte}$B$r;H$&!#(B
@end defvar

@defvar default-enable-multibyte-characters
@tindex default-enable-multibyte-characters
@c This variable's value is entirely equivalent to @code{(default-value
@c 'enable-multibyte-characters)}, and setting this variable changes that
@c default value.  Setting the local binding of
@c @code{enable-multibyte-characters} in a specific buffer is not allowed,
@c but changing the default value is supported, and it is a reasonable
@c thing to do, because it has no effect on existing buffers.
$B$3$NJQ?t$NCM$O!"(B
@code{(default-value 'enable-multibyte-characters)}$B$K40A4$KEy2A$G$"$j!"(B
$B$3$NJQ?t$K@_Dj$9$k$H%G%U%)%k%HCM$rJQ99$9$k!#(B
$B%P%C%U%!$N(B@code{enable-multibyte-characters}$B$N%m!<%+%k$JB+G{$K@_Dj$9$k$3$H$O(B
$B5v$5$l$F$$$J$$$,!"%G%U%)%k%HCM$rJQ99$9$k$3$H$O2DG=$G$"$j!"(B
$B$=$&$7$F$b4{B8$N%P%C%U%!$K$O1F6A$7$J$$$N$GM}$K$+$J$C$F$$$k!#(B

@c The @samp{--unibyte} command line option does its job by setting the
@c default value to @code{nil} early in startup.
$B%3%^%s%I9T%*%W%7%g%s(B@samp{--unibyte}$B$O!"(B
$B5/F0;~$NAa$$CJ3,$G%G%U%)%k%HCM$K(B@code{nil}$B$r@_Dj$9$k$3$H$GLrL\$r2L$?$9!#(B
@end defvar

@defun multibyte-string-p string
@tindex multibyte-string-p
@c Return @code{t} if @var{string} contains multibyte characters.
$BJ8;zNs(B@var{string}$B$K%^%k%A%P%$%HJ8;z$,4^$^$l$k$H(B@code{t}$B$rJV$9!#(B
@end defun

@node Converting Representations
@c @section Converting Text Representations
@section $B%F%-%9%HI=8=$NJQ49(B

@c   Emacs can convert unibyte text to multibyte; it can also convert
@c multibyte text to unibyte, though this conversion loses information.  In
@c general these conversions happen when inserting text into a buffer, or
@c when putting text from several strings together in one string.  You can
@c also explicitly convert a string's contents to either representation.
Emacs$B$O%f%K%P%$%H%F%-%9%H$r%^%k%A%P%$%H$KJQ49$G$-$^$9!#(B
$B%^%k%A%P%$%H%F%-%9%H$r%f%K%P%$%H$K$bJQ49$G$-$^$9$,!"(B
$B$3$NJQ49$G$O>pJs$,7gMn$7$^$9!#(B
$B%P%C%U%!$K%F%-%9%H$rA^F~$9$k$H$-!"$"$k$$$O!"(B
$BJ#?t$NJ8;zNs$+$i(B1$B$D$NJ8;zNs$K%F%-%9%H$r<}$a$k$H$-$K!"(B
$B0lHL$K$3$l$i$NJQ49$,9T$o$l$^$9!#(B
$BJ8;zNs$NFbMF$r$I$A$i$+$NI=8=$KL@<(E*$K$bJQ49$G$-$^$9!#(B

@c   Emacs chooses the representation for a string based on the text that
@c it is constructed from.  The general rule is to convert unibyte text to
@c multibyte text when combining it with other multibyte text, because the
@c multibyte representation is more general and can hold whatever
@c characters the unibyte text has.
Emacs$B$O!"J8;zNs$r:n@.$9$k$H$-$K$O$=$NFbMF$K4p$E$$$F(B
$BJ8;zNs$NI=8=$rA*$S$^$9!#(B
$B0lHLB'$O!"%f%K%P%$%H%F%-%9%H$rB>$N%^%k%A%P%$%H%F%-%9%H$KAH$_F~$l$k$H$-$K$O(B
$B%f%K%P%$%H%F%-%9%H$r%^%k%A%P%$%H%F%-%9%H$KJQ49$7$^$9!#(B
$B%^%k%A%P%$%HI=8=$N$[$&$,HFMQ$G$"$j!"(B
$B%f%K%P%$%H%F%-%9%H$N$I$s$JJ8;z$G$bJ];}$G$-$k$+$i$G$9!#(B

@c   When inserting text into a buffer, Emacs converts the text to the
@c buffer's representation, as specified by
@c @code{enable-multibyte-characters} in that buffer.  In particular, when
@c you insert multibyte text into a unibyte buffer, Emacs converts the text
@c to unibyte, even though this conversion cannot in general preserve all
@c the characters that might be in the multibyte text.  The other natural
@c alternative, to convert the buffer contents to multibyte, is not
@c acceptable because the buffer's representation is a choice made by the
@c user that cannot be overridden automatically.
$B%P%C%U%!$K%F%-%9%H$rA^F~$9$k$H$-$K$O!"(BEmacs$B$O!"(B
$BEv3:%P%C%U%!$N(B@code{enable-multibyte-characters}$B$N;XDj$K=>$C$?(B
$B%P%C%U%!$NI=8=$K%F%-%9%H$rJQ49$7$^$9!#(B
$BFC$K!"%f%K%P%$%H%P%C%U%!$K%^%k%A%P%$%H%F%-%9%H$rA^F~$9$k$H$-$K$O!"(B
$B%^%k%A%P%$%H%F%-%9%HFb$N$9$Y$F$NJ8;z$r0lHL$K$OJ]B8$G$-$J$/$F$b!"(B
Emacs$B$O%F%-%9%H$r%f%K%P%$%H$KJQ49$7$^$9!#(B
$B<+A3$JBeBX0F$O%P%C%U%!FbMF$r%^%k%A%P%$%H$KJQ49$9$k$3$H$G$9$,!"(B
$B$3$l$O<u$1F~$l$i$l$^$;$s!#(B
$B%P%C%U%!$NI=8=$O%f!<%6!<$,A*Br$7$?$b$N$G$"$j<+F0E*$K$OL5;k$G$-$J$$$+$i$G$9!#(B

@c   Converting unibyte text to multibyte text leaves @sc{ASCII} characters
@c unchanged, and likewise 128 through 159.  It converts the non-@sc{ASCII}
@c codes 160 through 255 by adding the value @code{nonascii-insert-offset}
@c to each character code.  By setting this variable, you specify which
@c character set the unibyte characters correspond to (@pxref{Character
@c Sets}).  For example, if @code{nonascii-insert-offset} is 2048, which is
@c @code{(- (make-char 'latin-iso8859-1) 128)}, then the unibyte
@c non-@sc{ASCII} characters correspond to Latin 1.  If it is 2688, which
@c is @code{(- (make-char 'greek-iso8859-7) 128)}, then they correspond to
@c Greek letters.
$B%f%K%P%$%H%F%-%9%H$r%^%k%A%P%$%H%F%-%9%H$KJQ49$7$F$b(B
@sc{ASCII}$BJ8;z$OL5JQ99$G$"$j!"(B128$B$+$i(B159$B$bF1MM$G$9!#(B
160$B$+$i(B255$B$NHs(B@sc{ASCII}$B$K$D$$$F$O!"(B
$B3FJ8;z$K(B@code{nonascii-insert-offset}$B$NCM$r2C;;$9$k$3$H$GJQ49$7$^$9!#(B
$B$3$NJQ?t$K@_Dj$9$k$H!"%f%K%P%$%HJ8;z$,$I$NJ8;z=89g$KBP1~$9$k$+$r;XDj$G$-$^$9(B
$B!J(B@pxref{Character Sets}$B!K!#(B
$B$?$H$($P!"(B@code{nonascii-insert-offset}$B$,(B
@code{(- (make-char 'latin-iso8859-1) 128)}$B$N(B2048$B$G$"$k$H!"(B
$BHs(B@sc{ASCII}$B$N%f%K%P%$%H$O(BLatin 1$B$KBP1~$7$^$9!#(B
@code{(- (make-char 'greek-iso8859-7) 128)}$B$N(B2688$B$G$"$k$H!"(B
$B%.%j%7%cJ8;z$KBP1~$7$^$9!#(B

@c   Converting multibyte text to unibyte is simpler: it performs
@c logical-and of each character code with 255.  If
@c @code{nonascii-insert-offset} has a reasonable value, corresponding to
@c the beginning of some character set, this conversion is the inverse of
@c the other: converting unibyte text to multibyte and back to unibyte
@c reproduces the original unibyte text.
$B%^%k%A%P%$%H%F%-%9%H$r%f%K%P%$%H$KJQ49$9$k$N$O4JC1$G!"(B
$B3FJ8;z%3!<%I$H(B255$B$NO@M}@Q$r$H$j$^$9!#(B
@code{nonascii-insert-offset}$B$K(B
$BJ8;z=89g$N;O$^$j$KBP1~$9$k9gM}E*$JCM$,@_Dj$5$l$F$$$l$P!"(B
$B$3$NJQ49$O5UJQ49$K$J$j$^$9!#(B
$B$D$^$j!"%f%K%P%$%H%F%-%9%H$r%^%k%A%P%$%H$KJQ49$7!"(B
$B$=$l$r%f%K%P%$%H$KLa$9$H$b$H$N%f%K%P%$%H%F%-%9%H$K$J$j$^$9!#(B

@defvar nonascii-insert-offset
@tindex nonascii-insert-offset
@c This variable specifies the amount to add to a non-@sc{ASCII} character
@c when converting unibyte text to multibyte.  It also applies when
@c @code{self-insert-command} inserts a character in the unibyte
@c non-@sc{ASCII} range, 128 through 255.  However, the function
@c @code{insert-char} does not perform this conversion.
$B$3$NJQ?t$O!"%f%K%P%$%H%F%-%9%H$r%^%k%A%P%$%H$KJQ49$9$k$H$-$K(B
$BHs(B@sc{ASCII}$BJ8;z$K2C;;$9$kCM$r;XDj$9$k!#(B
$B$3$l$O!"(B128$B$+$i(B255$B$N%f%K%P%$%H$NHs(B@sc{ASCII}$B$NHO0O$NJ8;z$rA^F~$9$k(B
@code{self-insert-command}$B$K$bE,MQ$5$l$k!#(B
$B$7$+$7!"4X?t(B@code{insert-char}$B$O$3$NJQ49$r9T$o$J$$!#(B

@c The right value to use to select character set @var{cs} is @code{(-
@c (make-char @var{cs}) 128)}.  If the value of
@c @code{nonascii-insert-offset} is zero, then conversion actually uses the
@c value for the Latin 1 character set, rather than zero.
$BJ8;z=89g(B@var{cs}$B$rA*Br$9$k@5$7$$CM$O!"(B
@code{(- (make-char @var{cs}) 128)}$B$G$"$k!#(B
@code{nonascii-insert-offset}$B$NCM$,(B0$B$G$"$k$H!"(B
$B<B:]$NJQ49$K$O(B0$B$G$O$J$/(BLatin 1$BJ8;z=89g$KBP$9$kCM$r;H$&!#(B
@end defvar

@defvar nonascii-translation-table
@tindex nonascii-translation-table
@c This variable provides a more general alternative to
@c @code{nonascii-insert-offset}.  You can use it to specify independently
@c how to translate each code in the range of 128 through 255 into a
@c multibyte character.  The value should be a vector, or @code{nil}.
@c If this is non-@code{nil}, it overrides @code{nonascii-insert-offset}.
$B$3$NJQ?t$O!"(B@code{nonascii-insert-offset}$B$N$h$j0lHLE*$JBeBX$rDs6!$9$k!#(B
128$B$+$i(B255$B$NHO0O$N3F%3!<%I$r%^%k%A%P%$%HJ8;z$KJQ49$9$kJ}K!$r(B
$BFHN)$7$F;XDj$9$k$?$a$K;H$($k!#(B
$B$=$NCM$O%Y%/%H%k$+(B@code{nil}$B$G$"$k$3$H!#(B
$B$3$l$,(B@code{nil}$B0J30$G$"$k$H!"(B@code{nonascii-insert-offset}$B$KM%@h$9$k!#(B
@end defvar

@defun string-make-unibyte string
@tindex string-make-unibyte
@c This function converts the text of @var{string} to unibyte
@c representation, if it isn't already, and returns the result.  If
@c @var{string} is a unibyte string, it is returned unchanged.
$B$3$N4X?t$O!"(B@var{string}$B$N%F%-%9%H$,$9$G$K%f%K%P%$%H$G$J$1$l$P(B
$B%f%K%P%$%HI=8=$KJQ49$7$F$+$i7k2L$rJV$9!#(B
@var{string}$B$,%f%K%P%$%H$G$"$l$PL5JQ99$GJV$9!#(B
@end defun

@defun string-make-multibyte string
@tindex string-make-multibyte
@c This function converts the text of @var{string} to multibyte
@c representation, if it isn't already, and returns the result.  If
@c @var{string} is a multibyte string, it is returned unchanged.
$B$3$N4X?t$O!"(B@var{string}$B$N%F%-%9%H$,$9$G$K%^%k%A%P%$%H$G$J$1$l$P(B
$B%^%k%A%P%$%HI=8=$KJQ49$7$F$+$i7k2L$rJV$9!#(B
@var{string}$B$,%^%k%A%P%$%H$G$"$l$PL5JQ99$GJV$9!#(B
@end defun

@node Selecting a Representation
@c @section Selecting a Representation
@section $BI=8=$NA*Br(B

@c   Sometimes it is useful to examine an existing buffer or string as
@c multibyte when it was unibyte, or vice versa.
$B4{B8$N%P%C%U%!$dJ8;zNs$,%f%K%P%$%H$G$"$k$H$-$K(B
$B%^%k%A%P%$%H$H$7$FD4$Y$?$j!"$=$N5U$N$h$&$KD4$Y$k$N$,(B
$BM-MQ$J$3$H$b$"$j$^$9(B

@defun set-buffer-multibyte multibyte
@tindex set-buffer-multibyte
@c Set the representation type of the current buffer.  If @var{multibyte}
@c is non-@code{nil}, the buffer becomes multibyte.  If @var{multibyte}
@c is @code{nil}, the buffer becomes unibyte.
$B%+%l%s%H%P%C%U%!$NI=8=J}K!$r@_Dj$9$k!#(B
@var{multibyte}$B$,(B@code{nil}$B0J30$G$"$k$H!"%P%C%U%!$O%^%k%A%P%$%H$K$J$k!#(B
@var{multibyte}$B$,(B@code{nil}$B$G$"$k$H!"%P%C%U%!$O%f%K%P%$%H$K$J$k!#(B

@c This function leaves the buffer contents unchanged when viewed as a
@c sequence of bytes.  As a consequence, it can change the contents viewed
@c as characters; a sequence of two bytes which is treated as one character
@c in multibyte representation will count as two characters in unibyte
@c representation.
$B$3$N4X?t$O!"%P%$%HNs$H$7$F$_$?%P%C%U%!FbMF$rJQ99$7$J$$!#(B
$B$=$N7k2L!"J8;z$H$7$F8+$?$H$-$NFbMF$rJQ99$G$-$k!#(B
$B%^%k%A%P%$%HI=8=$G$O(B1$BJ8;z$H$_$J$5$l$k(B2$B%P%$%H$NNs$O!"(B
$B%f%K%P%$%HI=8=$G$O(B2$BJ8;z$K$J$k!#(B

@c This function sets @code{enable-multibyte-characters} to record which
@c representation is in use.  It also adjusts various data in the buffer
@c (including overlays, text properties and markers) so that they cover the
@c same text as they did before.
$B$3$N4X?t$O!"(B@code{enable-multibyte-characters}$B$K(B
$B$I$A$i$NI=8=$r;HMQ$7$F$$$k$+$r5-O?$9$k!#(B
$B$5$i$K!J%*!<%P%l%$!"%F%-%9%HB0@-!"%^!<%+$J$I$N!K%P%C%U%!Fb$N$5$^$6$^$J(B
$B%G!<%?$rD4@0$7$F!"$=$l0JA0$HF1MM$KF1$8%F%-%9%H$K5Z$V$h$&$K$9$k!#(B
@end defun

@defun string-as-unibyte string
@tindex string-as-unibyte
@c This function returns a string with the same bytes as @var{string} but
@c treating each byte as a character.  This means that the value may have
@c more characters than @var{string} has.
$B$3$N4X?t$O!"3F%P%$%H$r(B1$BJ8;z$H$_$J$7$F(B
@var{string}$B$HF1$8%P%$%H$NJ8;zNs$rJV$9!#(B
$B$D$^$j!"CM$K$O(B@var{string}$B$h$jB?$/$NJ8;z$,4^$^$l$k$3$H$,$"$k!#(B

@c If @var{string} is unibyte already, then the value is @var{string}
@c itself.
@var{string}$B$,$9$G$K%f%K%P%$%H$G$"$k$H!"(B
$BCM$O(B@var{string}$B$=$N$b$N$G$"$k!#(B
@end defun

@defun string-as-multibyte string
@tindex string-as-multibyte
@c This function returns a string with the same bytes as @var{string} but
@c treating each multibyte sequence as one character.  This means that the
@c value may have fewer characters than @var{string} has.
$B$3$N4X?t$O!"%^%k%A%P%$%H$N3FNs$r(B1$BJ8;z$H$_$J$7$F(B
@var{string}$B$HF1$8%P%$%H$NJ8;zNs$rJV$9!#(B
$B$D$^$j!"CM$K$O(B@var{string}$B$h$j>/$J$$J8;z$,4^$^$l$k$3$H$,$"$k!#(B

@c If @var{string} is multibyte already, then the value is @var{string}
@c itself.
@var{string}$B$,$9$G$K%^%k%A%P%$%H$G$"$k$H!"(B
$BCM$O(B@var{string}$B$=$N$b$N$G$"$k!#(B
@end defun

@node Character Codes
@c @section Character Codes
@section $BJ8;z%3!<%I(B
@c @cindex character codes
@cindex $BJ8;z%3!<%I(B

@c   The unibyte and multibyte text representations use different character
@c codes.  The valid character codes for unibyte representation range from
@c 0 to 255---the values that can fit in one byte.  The valid character
@c codes for multibyte representation range from 0 to 524287, but not all
@c values in that range are valid.  In particular, the values 128 through
@c 255 are not legitimate in multibyte text (though they can occur in ``raw
@c bytes''; @pxref{Explicit Encoding}).  Only the @sc{ASCII} codes 0
@c through 127 are fully legitimate in both representations.
$B%f%K%P%$%H$H%^%k%A%P%$%H$N%F%-%9%HI=8=$G$O!"(B
$B0[$J$kJ8;z%3!<%I$r;H$C$F$$$^$9!#(B
$B%f%K%P%$%HI=8=$K$*$$$F@5$7$$J8;z%3!<%I$O(B0$B$+$i(B255$B$NHO0O$G$"$j!"(B
$B$3$l$i$NCM$O(B1$B%P%$%H$K<}$^$j$^$9!#(B
$B%^%k%A%P%$%HI=8=$K$*$$$F@5$7$$J8;z%3!<%I$O(B0$B$+$i(B524287$B$NHO0O$G$9$,!"(B
$B$3$NHO0O$N$9$Y$F$NCM$,@5$7$$$H$O8B$j$^$;$s!#(B
$BFC$K!"CM(B128$B$+$i(B255$B$O(B
$B!J!X@8$N%P%$%H!Y$K$O$"$j$&$k!#(B@pxref{Explicit Encoding}$B!K!"(B
$B%^%k%A%P%$%H%F%-%9%H$G$O@5$7$/$"$j$^$;$s!#(B
0$B$+$i(B127$B$N(B@sc{ASCII}$B%3!<%I$N$_$,!"$I$A$i$NI=8=$G$b40A4$K@5$7$$$N$G$9!#(B

@defun char-valid-p charcode
@c This returns @code{t} if @var{charcode} is valid for either one of the two
@c text representations.
$B$3$N4X?t$O!"(B@var{charcode}$B$,(B2$B$D$N%F%-%9%HI=8=$N$I$A$i$+0lJ}$G(B
$B@5$7$1$l$P(B@code{t}$B$rJV$9!#(B

@example
(char-valid-p 65)
     @result{} t
(char-valid-p 256)
     @result{} nil
(char-valid-p 2248)
     @result{} t
@end example
@end defun

@node Character Sets
@c @section Character Sets
@section $BJ8;z=89g(B
@c @cindex character sets
@cindex $BJ8;z=89g(B

@c   Emacs classifies characters into various @dfn{character sets}, each of
@c which has a name which is a symbol.  Each character belongs to one and
@c only one character set.
Emacs$B$OJ8;z$r$5$^$6$^$J(B@dfn{$BJ8;z=89g(B}$B!J(Bcharacter set$B!K$KJ,N`$7$^$9!#(B
$BJ8;z=89g$K$O%7%s%\%k$G$"$kL>A0$,$"$j$^$9!#(B
$B3FJ8;z$O$?$C$?(B1$B$D$NJ8;z=89g$KB0$7$^$9!#(B

@c   In general, there is one character set for each distinct script.  For
@c example, @code{latin-iso8859-1} is one character set,
@c @code{greek-iso8859-7} is another, and @code{ascii} is another.  An
@c Emacs character set can hold at most 9025 characters; therefore, in some
@c cases, characters that would logically be grouped together are split
@c into several character sets.  For example, one set of Chinese
@c characters, generally known as Big 5, is divided into two Emacs
@c character sets, @code{chinese-big5-1} and @code{chinese-big5-2}.
$B0lHL$K!"0[$J$kJ8;zBN7O$4$H$K(B1$B$D$NJ8;z=89g$,$"$j$^$9!#(B
$B$?$H$($P!"(B@code{latin-iso8859-1}$B$O(B1$B$D$NJ8;z=89g$G$"$j!"(B
@code{greek-iso8859-7}$B$OJL$NJ8;z=89g$G$"$j!"(B
@code{ascii}$B$bJL$NJ8;z=89g$G$9!#(B
Emacs$B$N(B1$B$D$NJ8;z=89g$K$O:GBg(B9025$B8D$NJ8;z$rJ];}$G$-$^$9!#(B
$B$7$?$,$C$F!"O@M}E*$K$O(B1$B$D$NJ8;z=89g$K$^$H$a$i$l$kJ8;z72$r!"(B
$BJ#?t$NJ8;z=89g$KJ,3d$9$k>l9g$b$"$j$^$9!#(B
$B$?$H$($P!"(BBig 5$B$H$7$F0lHL$K$OCN$i$l$F$$$kCf9qJ8;z$N(B1$B$D$N=89g$O!"(B
Emacs$B$N(B2$B$D$NJ8;z=89g!"(B@code{chinese-big5-1}$B$H(B@code{chinese-big5-2}$B$K(B
$BJ,3d$5$l$^$9!#(B

@defun charsetp object
@tindex charsetp
@c Return @code{t} if @var{object} is a character set name symbol,
@c @code{nil} otherwise.
@var{object}$B$,J8;z=89g$NL>A0$N%7%s%\%k$G$"$l$P(B@code{t}$B$rJV$9!#(B
$B$5$b$J$1$l$P(B@code{nil}$B$rJV$9!#(B
@end defun

@defun charset-list
@tindex charset-list
@c This function returns a list of all defined character set names.
$B$3$N4X?t$O!"Dj5A$5$l$F$$$k$9$Y$F$NJ8;z=89g$NL>A0$N%j%9%H$rJV$9!#(B
@end defun

@defun char-charset character
@tindex char-charset
@c This function returns the name of the character
@c set that @var{character} belongs to.
$B$3$N4X?t$OJ8;z(B@var{character}$B$,B0$9$kJ8;z=89g$NL>A0$rJV$9!#(B
@end defun

@node Chars and Bytes
@c @section Characters and Bytes
@section $BJ8;z$H%P%$%H(B
@c @cindex bytes and characters
@cindex $B%P%$%H$HJ8;z(B

@c @cindex introduction sequence
@c @cindex dimension (of character set)
@cindex $BF3F~Ns(B
@cindex $B<!85!JJ8;z=89g!K(B
@c   In multibyte representation, each character occupies one or more
@c bytes.  Each character set has an @dfn{introduction sequence}, which is
@c normally one or two bytes long.  (Exception: the @sc{ASCII} character
@c set has a zero-length introduction sequence.)  The introduction sequence
@c is the beginning of the byte sequence for any character in the character
@c set.  The rest of the character's bytes distinguish it from the other
@c characters in the same character set.  Depending on the character set,
@c there are either one or two distinguishing bytes; the number of such
@c bytes is called the @dfn{dimension} of the character set.
$B%^%k%A%P%$%HI=8=$G$O!"3FJ8;z$O(B1$B%P%$%H$+$=$l0J>e$N%P%$%H$r@j$a$^$9!#(B
$B3FJ8;z=89g$K$O!"DL>o$O(B1$B%P%$%HD9$+(B2$B%P%$%HD9$N(B
@dfn{$BF3F~Ns(B}$B!J(Bintroduction sequence$B!K$,$"$j$^$9(B
$B!JNc30!'(B@sc{ASCII}$B$NF3F~Ns$O(B0$B%P%$%HD9$G$"$k!K!#(B
$BF3F~Ns$O!"J8;z=89g$NG$0U$NJ8;z$N%P%$%HNs$N;O$^$j$G$9!#(B
$BJ8;z$N%P%$%HNs$N;D$j$NItJ,$O!"F1$8J8;z=89gFb$GB>$NJ8;z$H$=$NJ8;z$r6hJL$7$^$9!#(B
$BJ8;z=89g$K0MB8$7$F!"6hJL$9$k$?$a$N%P%$%H$O(B1$B%P%$%H$+(B2$B%P%$%H$G$9!#(B
$B$=$N$h$&$J%P%$%H?t$rJ8;z=89g$N(B@dfn{$B<!85(B}$B!J(Bdimension$B!K$H8F$S$^$9!#(B

@defun charset-dimension charset
@tindex charset-dimension
@c This function returns the dimension of @var{charset};
@c at present, the dimension is always 1 or 2.
$B$3$N4X?t$O!"J8;z=89g(B@var{charset}$B$N<!85$rJV$9!#(B
$B8=:_!"<!85$O$D$M$K(B1$B$+(B2$B$G$"$k!#(B
@end defun

@c   This is the simplest way to determine the byte length of a character
@c set's introduction sequence:
$BJ8;z=89g$NF3F~Ns$N%P%$%HD9$rH=Dj$9$k$b$C$H$b4JC1$JJ}K!$O$D$.$N$H$*$j$G$9!#(B

@example
(- (char-bytes (make-char @var{charset}))
   (charset-dimension @var{charset}))
@end example

@node Splitting Characters
@c @section Splitting Characters
@section $BJ8;z$NJ,3d(B

@c   The functions in this section convert between characters and the byte
@c values used to represent them.  For most purposes, there is no need to
@c be concerned with the sequence of bytes used to represent a character,
@c because Emacs translates automatically when necessary.
$BK\@a$N4X?t$O!"J8;z$H$=$l$rI=8=$9$k$?$a$KMQ$$$i$l$k%P%$%HCM$N$"$$$@$N(B
$BJQ49$r9T$$$^$9!#(B
$B$[$H$s$I$NL\E*$K4X$7$F$O!"(BEmacs$B$,I,MW$K1~$8$F<+F0E*$K9T$&$?$a!"(B
$BJ8;z$rI=8=$9$k$?$a$N%P%$%HNs$r07$&I,MW$O$"$j$^$;$s!#(B

@defun char-bytes character
@tindex char-bytes
@c This function returns the number of bytes used to represent the
@c character @var{character}.  This depends only on the character set that
@c @var{character} belongs to; it equals the dimension of that character
@c set (@pxref{Character Sets}), plus the length of its introduction
@c sequence.
$B$3$N4X?t$O!"J8;z(B@var{character}$B$rI=8=$9$k$?$a$KI,MW$J%P%$%H?t$rJV$9!#(B
$B$3$l$O!"J8;z(B@var{character}$B$,B0$9$kJ8;z=89g$@$1$K0MB8$7!"(B
$B$=$NJ8;z=89g!J(B@pxref{Character Sets}$B!K$N<!85$H$=$NF3F~Ns$NOB$KEy$7$$!#(B

@example
(char-bytes 2248)
     @result{} 2
(char-bytes 65)
     @result{} 1
(char-bytes 192)
     @result{} 1
@end example

@c The reason this function can give correct results for both multibyte and
@c unibyte representations is that the non-@sc{ASCII} character codes used
@c in those two representations do not overlap.
$B%^%k%A%P%$%HI=8=$H%f%K%P%$%HI=8=$N$I$A$i$KBP$7$F$b(B
$B$3$N4X?t$G@5$7$$7k2L$rF@$i$l$k$N$O!"(B
2$B$D$NI=8=$GMQ$$$i$l$kHs(B@sc{ASCII}$BJ8;z%3!<%I$K=E$J$j$,$J$$$+$i$G$"$k!#(B
@end defun

@defun split-char character
@tindex split-char
@c Return a list containing the name of the character set of
@c @var{character}, followed by one or two byte values (integers) which
@c identify @var{character} within that character set.  The number of byte
@c values is the character set's dimension.
$BJ8;z(B@var{character}$B$NJ8;z=89g$NL>A0$KB3$1$F!"(B
$B$=$NJ8;z=89g$G(B@var{character}$B$r<1JL$9$k(B1$B%P%$%H$+(B2$B%P%$%H$NCM!J@0?t!K$+$i(B
$B@.$k%j%9%H$rJV$9!#(B
$B%P%$%HCM$N8D?t$O$=$NJ8;z=89g$N<!85$G$"$k!#(B

@example
(split-char 2248)
     @result{} (latin-iso8859-1 72)
(split-char 65)
     @result{} (ascii 65)
@end example

@c Unibyte non-@sc{ASCII} characters are considered as part of
@c the @code{ascii} character set:
$B%f%K%P%$%H$NHs(B@sc{ASCII}$BJ8;z$O!"(B
$BJ8;z=89g(B@code{ascii}$B$N0lIt$H$_$J$9!#(B

@example
(split-char 192)
     @result{} (ascii 192)
@end example
@end defun

@defun make-char charset &rest byte-values
@tindex make-char
@c This function returns the character in character set @var{charset}
@c identified by @var{byte-values}.  This is roughly the inverse of
@c @code{split-char}.  Normally, you should specify either one or two
@c @var{byte-values}, according to the dimension of @var{charset}.  For
@c example,
$B$3$N4X?t$O!"J8;z=89g(B@var{charset}$B$K$*$$$F(B
@var{byte-values}$B$G<1JL$5$l$kJ8;z$rJV$9!#(B
$B$3$l$O!"(B@code{split-char}$B$N$[$\5U4X?t$K$"$?$k!#(B
$BDL>o!"J8;z=89g(B@var{charset}$B$N<!85$K1~$8$F!"(B
1$B$D$+(B2$B$D$N(B@var{byte-values}$B$r;XDj$9$k!#(B
$B$?$H$($P$D$.$N$H$*$j!#(B

@example
(make-char 'latin-iso8859-1 72)
     @result{} 2248
@end example
@end defun

@c @cindex generic characters
@cindex $BHFMQJ8;z(B
@c   If you call @code{make-char} with no @var{byte-values}, the result is
@c a @dfn{generic character} which stands for @var{charset}.  A generic
@c character is an integer, but it is @emph{not} valid for insertion in the
@c buffer as a character.  It can be used in @code{char-table-range} to
@c refer to the whole character set (@pxref{Char-Tables}).
@c @code{char-valid-p} returns @code{nil} for generic characters.
@c For example:
@var{byte-values}$B$r;XDj$;$:$K(B@code{make-char}$B$r8F$S=P$9$H!"(B
$B$=$N7k2L$OJ8;z=89g(B@var{charset}$B$rBeI=$9$k(B
@dfn{$BHFMQJ8;z(B}$B!J(Bgeneric character$B!K$G$"$k!#(B
$BHFMQJ8;z$O@0?t$G$"$k$,!"J8;z$H$7$F%P%C%U%!$KA^F~$9$k$K$O(B
$B@5$7$/(B@emph{$B$J$$(B}$B$b$N$G$"$k!#(B
1$B$D$NJ8;z=89gA4BN$rI=$9$?$a$K(B@code{char-table-range}$B$G;H$($k(B
$B!J(B@pxref{Char-Tables}$B!K!#(B
@code{char-valid-p}$B$OHFMQJ8;z$KBP$7$F$O(B@code{nil}$B$rJV$9!#(B
$B$?$H$($P$D$.$N$H$*$j!#(B

@example
(make-char 'latin-iso8859-1)
     @result{} 2176
(char-valid-p 2176)
     @result{} nil
(split-char 2176)
     @result{} (latin-iso8859-1 0)
@end example

@node Scanning Charsets
@c @section Scanning for Character Sets
@section $BJ8;z=89g$NAv::(B

@c   Sometimes it is useful to find out which character sets appear in a
@c part of a buffer or a string.  One use for this is in determining which
@c coding systems (@pxref{Coding Systems}) are capable of representing all
@c of the text in question.
$B%P%C%U%!$dJ8;zNs$N0lItJ,$K$I$NJ8;z=89g$,8=$l$k$+$r(B
$BD4$Y$i$l$k$HM-MQ$J$3$H$,$"$j$^$9!#(B
$B$=$N(B1$B$D$NMQES$O!"Ev3:%F%-%9%H$9$Y$F$rI=8=$9$kG=NO$,$"$k(B
$B%3!<%G%#%s%0%7%9%F%`!J(B@pxref{Coding Systems}$B!K$rC5$9$3$H$G$9!#(B

@defun find-charset-region beg end &optional translation
@tindex find-charset-region
@c This function returns a list of the character sets that appear in the
@c current buffer between positions @var{beg} and @var{end}.
$B$3$N4X?t$O!"%+%l%s%H%P%C%U%!$N(B@var{beg}$B$H(B@var{end}$B$N$"$$$@$K(B
$B8=$l$kJ8;z=89g$N%j%9%H$rJV$9!#(B

@c The optional argument @var{translation} specifies a translation table to
@c be used in scanning the text (@pxref{Translation of Characters}).  If it
@c is non-@code{nil}, then each character in the region is translated
@c through this table, and the value returned describes the translated
@c characters instead of the characters actually in the buffer.
$B>JN,2DG=$J0z?t(B@var{translation}$B$O!"(B
$B%F%-%9%H$rAv::$9$k$H$-$K;HMQ$9$kJQ49I=$r;XDj$9$k(B
$B!J(B@pxref{Translation of Characters}$B!K!#(B
$B$3$l$,(B@code{nil}$B0J30$G$"$k$H!"NN0hFb$N3FJ8;z$r$3$NI=$r2p$7$FJQ49$7!"(B
$BLa$jCM$O!"%P%C%U%!Fb$N<B:]$NJ8;z$N$+$o$j$KJQ49$7$?J8;z$K4X$9$k>pJs$rM?$($k!#(B
@end defun

@defun find-charset-string string &optional translation
@tindex find-charset-string
@c This function returns a list of the character sets
@c that appear in the string @var{string}.
$B$3$N4X?t$O!"J8;zNs(B@var{string}$B$K8=$l$kJ8;z=89g$N%j%9%H$rJV$9!#(B

@c The optional argument @var{translation} specifies a
@c translation table; see @code{find-charset-region}, above.
$B>JN,2DG=$J0z?t(B@var{translation}$B$OJQ49I=$r;XDj$9$k!#(B
$B>e5-$N(B@code{find-charset-region}$B$r;2>H!#(B
@end defun

@node Translation of Characters
@c @section Translation of Characters
@section $BJ8;z$NJQ49(B
@c @cindex character translation tables
@c @cindex translation tables
@cindex $BJ8;zJQ49I=(B
@cindex $BJQ49I=(B

@c   A @dfn{translation table} specifies a mapping of characters
@c into characters.  These tables are used in encoding and decoding, and
@c for other purposes.  Some coding systems specify their own particular
@c translation tables; there are also default translation tables which
@c apply to all other coding systems.
@dfn{$BJQ49I=(B}$B!J(Btranslation table$B!K$O!"J8;z72$rJ8;z72$XBP1~IU$1$^$9!#(B
$B$3$l$i$NI=$O!"Id9f2=$HI|9f2=!"B>$NL\E*$K;H$o$l$^$9!#(B
$BFH<+$NJQ49I=$r;XDj$9$k%3!<%G%#%s%0%7%9%F%`$b$"$j$^$9!#(B
$BB>$N$9$Y$F$N%3!<%G%#%s%0%7%9%F%`$KE,MQ$5$l$k(B
$B%G%U%)%k%H$NJQ49I=$b$"$j$^$9!#(B

@defun make-translation-table translations
@c This function returns a translation table based on the arguments
@c @var{translations}.  Each argument---each element of
@c @var{translations}---should be a list of the form @code{(@var{from}
@c . @var{to})}; this says to translate the character @var{from} into
@c @var{to}.
$B$3$N4X?t$O!"0z?t(B@var{translations}$B$K4p$E$$$?JQ49I=$rJV$9!#(B
$B0z?t(B@var{translations}$B$N3FMWAG$O!"(B
@code{(@var{from} . @var{to})}$B$N7A$G$"$j!"(B
$BJ8;z(B@var{from}$B$r(B@var{to}$B$XJQ49$9$k$3$H$r0UL#$9$k!#(B

@c You can also map one whole character set into another character set with
@c the same dimension.  To do this, you specify a generic character (which
@c designates a character set) for @var{from} (@pxref{Splitting Characters}).
@c In this case, @var{to} should also be a generic character, for another
@c character set of the same dimension.  Then the translation table
@c translates each character of @var{from}'s character set into the
@c corresponding character of @var{to}'s character set.
1$B$D$NJ8;z=89gA4BN$rF1$8<!85$NJL$NJ8;z=89g$XBP1~IU$1$k$3$H$b2DG=$G$"$k!#(B
$B$=$l$K$O!"(B@var{from}$B$K!JJ8;z=89g$rI=$9!KHFMQJ8;z$r;XDj$9$k(B
$B!J(B@pxref{Splitting Characters}$B!K!#(B
$B$3$N>l9g!"(B@var{to}$B$b!"F1$8<!85$NJL$NJ8;z=89g$NHFMQJ8;z$G$"$k$3$H!#(B
$B$3$&$9$k$H!"$3$NJQ49I=$O!"(B@var{from}$B$NJ8;z=89g$N3FJ8;z$r(B
@var{to}$B$NJ8;z=89g$NBP1~$9$kJ8;z$XJQ49$9$k!#(B
@end defun

@c   In decoding, the translation table's translations are applied to the
@c characters that result from ordinary decoding.  If a coding system has
@c property @code{character-translation-table-for-decode}, that specifies
@c the translation table to use.  Otherwise, if
@c @code{standard-character-translation-table-for-decode} is
@c non-@code{nil}, decoding uses that table.
$BI|9f2=$G$O!"$b$H$NI|9f2=7k2L$NJ8;z$KJQ49I=$K$h$kJQ49$rE,MQ$7$^$9!#(B
$B%3!<%G%#%s%0%7%9%F%`$KB0@-(B@code{character-translation-table-for-decode}$B$,(B
$B$"$l$P!"$3$l$O;HMQ$9$kJQ49I=$r;XDj$7$^$9!#(B
$B$5$b$J$1$l$P!"(B@code{standard-character-translation-table-for-decode}$B$,(B
@code{nil}$B0J30$G$"$l$P!"I|9f2=$G$O$=$NI=$r;H$$$^$9!#(B

@c   In encoding, the translation table's translations are applied to the
@c characters in the buffer, and the result of translation is actually
@c encoded.  If a coding system has property
@c @code{character-translation-table-for-encode}, that specifies the
@c translation table to use.  Otherwise the variable
@c @code{standard-character-translation-table-for-encode} specifies the
@c translation table.
$BId9f2=$G$O!"%P%C%U%!Fb$NJ8;z$KJQ49I=$K$h$kJQ49$rE,MQ$7!"(B
$BJQ497k2L$r<B:]$KId9f2=$7$^$9!#(B
$B%3!<%G%#%s%0%7%9%F%`$KB0@-(B@code{character-translation-table-for-encode}$B$,(B
$B$"$l$P!"$3$l$O;HMQ$9$kJQ49I=$r;XDj$7$^$9!#(B
$B$5$b$J$1$l$P!"JQ?t(B@code{standard-character-translation-table-for-encode}$B$,(B
$B;HMQ$9$kJQ49I=$r;XDj$7$^$9!#(B

@defvar standard-character-translation-table-for-decode
@c This is the default translation table for decoding, for
@c coding systems that don't specify any other translation table.
$B$3$l$O!"JQ49I=$r;XDj$7$J$$%3!<%G%#%s%0%7%9%F%`$KBP$9$k(B
$BI|9f2=;~$N%G%U%)%k%H$NJQ49I=$G$"$k!#(B
@end defvar

@defvar standard-character-translation-table-for-encode
@c This is the default translation table for encoding, for
@c coding systems that don't specify any other translation table.
$B$3$l$O!"JQ49I=$r;XDj$7$J$$%3!<%G%#%s%0%7%9%F%`$KBP$9$k(B
$BId9f2=;~$N%G%U%)%k%H$NJQ49I=$G$"$k!#(B
@end defvar

@node Coding Systems
@c @section Coding Systems
@section $B%3!<%G%#%s%0%7%9%F%`(B

@c @cindex coding system
@cindex $B%3!<%G%#%s%0%7%9%F%`(B
@c   When Emacs reads or writes a file, and when Emacs sends text to a
@c subprocess or receives text from a subprocess, it normally performs
@c character code conversion and end-of-line conversion as specified
@c by a particular @dfn{coding system}.
Emacs$B$,%U%!%$%k$rFI$_=q$-$7$?$j!"(B
Emacs$B$,%5%V%W%m%;%9$X%F%-%9%H$rAw$C$?$j(B
$B%5%V%W%m%;%9$+$i%F%-%9%H$r<u$1<h$k$H$-$K$O!"(B
@dfn{$B%3!<%G%#%s%0%7%9%F%`(B}$B!J(Bcoding system$B!K$G;XDj$5$l$k(B
$BJ8;z%3!<%IJQ49$H9TKvJQ49$r9T$$$^$9!#(B

@menu
* Coding System Basics::
* Encoding and I/O::
* Lisp and Coding Systems::
* User-Chosen Coding Systems::
* Default Coding Systems::
* Specifying Coding Systems::
* Explicit Encoding::
* Terminal I/O Encoding::
* MS-DOS File Types::
@end menu

@node Coding System Basics
@c @subsection Basic Concepts of Coding Systems
@subsection $B%3!<%G%#%s%0%7%9%F%`$N4pK\35G0(B

@c @cindex character code conversion
@cindex $BJ8;z%3!<%IJQ49(B
@c   @dfn{Character code conversion} involves conversion between the encoding
@c used inside Emacs and some other encoding.  Emacs supports many
@c different encodings, in that it can convert to and from them.  For
@c example, it can convert text to or from encodings such as Latin 1, Latin
@c 2, Latin 3, Latin 4, Latin 5, and several variants of ISO 2022.  In some
@c cases, Emacs supports several alternative encodings for the same
@c characters; for example, there are three coding systems for the Cyrillic
@c (Russian) alphabet: ISO, Alternativnyj, and KOI8.
@dfn{$BJ8;z%3!<%IJQ49(B}$B!J(Bcharacter code conversion$B!K$H$O!"(B
Emacs$B$NFbIt$G;HMQ$9$kId9f$HB>$NId9f$H$N$"$$$@$G$NJQ49$N$3$H$G$9!#(B
Emacs$B$G$O!"Aj8_$KJQ49$G$-$kB?$/$N0[$J$kId9f$r07$($^$9!#(B
$B$?$H$($P!"(BEmacs$B$O!"(BLatin 1$B!"(BLatin 2$B!"(BLatin 3$B!"(BLatin 4$B!"(BLatin 5$B!"(B
ISO 2022$B$N$$$/$D$+$NJQ<o$rAj8_$KJQ49$G$-$^$9!#(B
$BF1$8J8;z=89g$KBP$9$k0[$J$kId9f$r07$&$3$H$b$G$-$^$9!#(B
$B$?$H$($P!"%-%j%k!J%m%7%"8l!KJ8;z$KBP$7$F$O(B
ISO$B!"(BAlternativnyj$B!"(BKOI8$B$N(B3$B$D$N%3!<%G%#%s%0%7%9%F%`$,$"$j$^$9!#(B

@c   Most coding systems specify a particular character code for
@c conversion, but some of them leave this unspecified---to be chosen
@c heuristically based on the data.
$B$[$H$s$I$N%3!<%G%#%s%0%7%9%F%`$G$OJQ49$9$kJ8;z%3!<%I$rFCDj$7$^$9$,!"(B
$B;XDj$;$:$K%G!<%?$K4p$E$$$FH/8+E*<jK!$GA*$V$b$N$b$"$j$^$9!#(B

@c @cindex end of line conversion
@cindex $B9TKvJQ49(B
@c   @dfn{End of line conversion} handles three different conventions used
@c on various systems for representing end of line in files.  The Unix
@c convention is to use the linefeed character (also called newline).  The
@c DOS convention is to use the two character sequence, carriage-return
@c linefeed, at the end of a line.  The Mac convention is to use just
@c carriage-return.
@dfn{$B9TKvJQ49(B}$B!J(Bend of line conversion$B!K$O!"(B
$B%U%!%$%kFb$N9T$N=*$j$rI=$9$5$^$6$^$J%7%9%F%`$G(B
$B;H$o$l$F$$$k(B3$B$D$N0[$J$k47=,$r07$$$^$9!#(B
UNIX$B$N47=,$G$O!"9TAw$jJ8;z!J2~9TJ8;z$H$b8F$V!K$r;H$$$^$9!#(B
DOS$B$N47=,$G$O!"9TKv$K$OI|5"$H9TAw$j$N(B2$BJ8;z$NNs$r;H$$$^$9!#(B
Mac$B$N47=,$G$O!"I|5"$N$_$r;H$$$^$9!#(B

@c @cindex base coding system
@c @cindex variant coding system
@cindex $B4pDl%3!<%G%#%s%0%7%9%F%`(B
@cindex $BJQ<o%3!<%G%#%s%0%7%9%F%`(B
@c   @dfn{Base coding systems} such as @code{latin-1} leave the end-of-line
@c conversion unspecified, to be chosen based on the data.  @dfn{Variant
@c coding systems} such as @code{latin-1-unix}, @code{latin-1-dos} and
@c @code{latin-1-mac} specify the end-of-line conversion explicitly as
@c well.  Most base coding systems have three corresponding variants whose
@c names are formed by adding @samp{-unix}, @samp{-dos} and @samp{-mac}.
@code{latin-1}$B$N$h$&$J(B@dfn{$B4pDl%3!<%G%#%s%0%7%9%F%`(B}$B!J(Bbase coding system$B!K(B
$B$G$O!"9TKvJQ49$r;XDj$;$:$K%G!<%?$K4p$E$$$FA*$S$^$9!#(B
@code{latin-1-unix}$B!"(B@code{latin-1-dos}$B!"(B@code{latin-1-mac}$B$N$h$&$J(B
@dfn{$BJQ<o%3!<%G%#%s%0%7%9%F%`(B}$B!J(Bvariant coding system$B!K$G$O!"(B
$BL@<(E*$K9TKvJQ49$b;XDj$7$^$9!#(B
$B$[$H$s$I$N4pDl%3!<%G%#%s%0%7%9%F%`$K$O!"(B
@samp{-unix}$B!"(B@samp{-dos}$B!"(B@samp{-mac}$B$rIU2C$7$F:n$i$l$kL>A0$N(B
$BBP1~$9$k(B3$B$D$NJQ<o$,$"$j$^$9!#(B

@c   The coding system @code{raw-text} is special in that it prevents
@c character code conversion, and causes the buffer visited with that
@c coding system to be a unibyte buffer.  It does not specify the
@c end-of-line conversion, allowing that to be determined as usual by the
@c data, and has the usual three variants which specify the end-of-line
@c conversion.  @code{no-conversion} is equivalent to @code{raw-text-unix}:
@c it specifies no conversion of either character codes or end-of-line.
$B%3!<%G%#%s%0%7%9%F%`(B@code{raw-text}$B$O(B
$BJ8;z%3!<%IJQ49$r9T$o$J$$FCJL$J$b$N$G!"(B
$B$3$N%3!<%G%#%s%0%7%9%F%`$GK,Ld$7$?%P%C%U%!$O%f%K%P%$%H%P%C%U%!$K$J$j$^$9!#(B
$B9TKvJQ49$b;XDj$7$J$$$N$GFbMF$K4p$E$$$F7hDj$G$-!"(B
$B9TKvJQ49$r;XDj$9$k(B3$B$D$NJQ<o$b$"$j$^$9!#(B
@code{no-conversion}$B$O(B@code{raw-text-unix}$B$KEy2A$G$"$j!"(B
$BJ8;z%3!<%I$b9TKv$bJQ49$7$J$$$3$H$r;XDj$7$^$9!#(B

@c   The coding system @code{emacs-mule} specifies that the data is
@c represented in the internal Emacs encoding.  This is like
@c @code{raw-text} in that no code conversion happens, but different in
@c that the result is multibyte data.
$B%3!<%G%#%s%0%7%9%F%`(B@code{emacs-mule}$B$O!"(B
Emacs$BFbIt$G$NId9f$G%G!<%?$rI=8=$9$k$3$H$r;XDj$7$^$9!#(B
$B$3$l$O!"%3!<%IJQ49$r9T$o$J$$$H$$$&0UL#$G$O(B@code{raw-text}$B$K;w$F$$$^$9$,!"(B
$B7k2L$,%^%k%A%P%$%H%G!<%?$K$J$kE@$,0[$J$j$^$9!#(B

@defun coding-system-get coding-system property
@tindex coding-system-get
@c This function returns the specified property of the coding system
@c @var{coding-system}.  Most coding system properties exist for internal
@c purposes, but one that you might find useful is @code{mime-charset}.
@c That property's value is the name used in MIME for the character coding
@c which this coding system can read and write.  Examples:
$B$3$N4X?t$O!"%3!<%G%#%s%0%7%9%F%`(B@var{coding-system}$B$N;XDj$7$?B0@-$rJV$9!#(B
$B%3!<%G%#%s%0%7%9%F%`$N$[$H$s$I$NB0@-$OFbItL\E*MQ$G$"$k$,!"(B
$BFI<T$,M-MQ$H;W$&$b$N$,(B1$B$D!"(B@code{mime-charset}$B$,$"$k!#(B
$B$3$NB0@-$NCM$O!"Ev3:%3!<%G%#%s%0%7%9%F%`$GFI$_=q$-$9$k(B
$BJ8;z%3!<%I8~$1$N(BMIME$B$K;HMQ$9$kL>A0$G$"$k!#(B

@example
(coding-system-get 'iso-latin-1 'mime-charset)
     @result{} iso-8859-1
(coding-system-get 'iso-2022-cn 'mime-charset)
     @result{} iso-2022-cn
(coding-system-get 'cyrillic-koi8 'mime-charset)
     @result{} koi8-r
@end example

@c The value of the @code{mime-charset} property is also defined
@c as an alias for the coding system.
$BB0@-(B@code{mime-charset}$B$NCM$O!"(B
$B%3!<%G%#%s%0%7%9%F%`$NJLL>$H$7$F$bDj5A$5$l$F$$$k!#(B
@end defun

@node Encoding and I/O
@c @subsection Encoding and I/O
@subsection $BId9f2=$HF~=PNO(B

@c   The principal purpose of coding systems is for use in reading and
@c writing files.  The function @code{insert-file-contents} uses
@c a coding system for decoding the file data, and @code{write-region}
@c uses one to encode the buffer contents.
$B%3!<%G%#%s%0%7%9%F%`$N<gL\E*$O!"%U%!%$%k$NFI$_=q$-$K;H$&$3$H$G$9!#(B
$B4X?t(B@code{insert-file-contents}$B$O%U%!%$%k$N%G!<%?$rI|9f2=$9$k$?$a$K(B
$B%3!<%G%#%s%0%7%9%F%`$r;H$$!"(B
@code{write-region}$B$O%P%C%U%!FbMF$rId9f2=$9$k$?$a$K(B
$B%3!<%G%#%s%0%7%9%F%`$r;H$$$^$9!#(B

@c   You can specify the coding system to use either explicitly
@c (@pxref{Specifying Coding Systems}), or implicitly using the defaulting
@c mechanism (@pxref{Default Coding Systems}).  But these methods may not
@c completely specify what to do.  For example, they may choose a coding
@c system such as @code{undefined} which leaves the character code
@c conversion to be determined from the data.  In these cases, the I/O
@c operation finishes the job of choosing a coding system.  Very often
@c you will want to find out afterwards which coding system was chosen.
$B;HMQ$9$k%3!<%G%#%s%0%7%9%F%`$rL@<($9$k!J(B@pxref{Specifying Coding Systems}$B!K(B
$B$3$H$b$G$-$k$7!"(B
$B%G%U%)%k%H$N5!9=!J(B@pxref{Default Coding Systems}$B!K$r0E$K;H$&$3$H$b$G$-$^$9!#(B
$B$7$+$7!"$3$l$i$NJ}<0$G$O$9$Y$-$3$H$r40A4$K;XDj$7$-$l$J$$$3$H$b$"$j$^$9!#(B
$B$?$H$($P!"(B@code{undefined}$B$N$h$&$J%3!<%G%#%s%0%7%9%F%`$rA*$s$G!"(B
$B%G!<%?$K4p$E$$$FJ8;z%3!<%IJQ49$r9T$&$h$&$K$9$k$+$b$7$l$^$;$s!#(B
$B$=$N$h$&$J>l9g!"%3!<%G%#%s%0%7%9%F%`$NA*Br$O(B
$BF~=PNOA`:n$K$h$C$F40N;$7$^$9!#(B
$B$7$P$7$P!"A*Br$5$l$?%3!<%G%#%s%0%7%9%F%`$r$"$H$GCN$j$?$/$J$j$^$9!#(B

@defvar buffer-file-coding-system
@tindex buffer-file-coding-system
@c This variable records the coding system that was used for visiting the
@c current buffer.  It is used for saving the buffer, and for writing part
@c of the buffer with @code{write-region}.  When those operations ask the
@c user to specify a different coding system,
@c @code{buffer-file-coding-system} is updated to the coding system
@c specified.
$B$3$NJQ?t$O!"%+%l%s%H%P%C%U%!$GK,Ld$9$k$H$-$K;HMQ$7$?(B
$B%3!<%G%#%s%0%7%9%F%`$r5-O?$9$k!#(B
$B$3$l$O!"%P%C%U%!$rJ]B8$7$?$j!"(B
@code{write-region}$B$G%P%C%U%!$N0lIt$r=q$/$H$-$K;H$o$l$k!#(B
$B$3$l$i$NA`:n$K$*$$$F!"%f!<%6!<$KJL$N%3!<%G%#%s%0%7%9%F%`$r;XDj$9$k$h$&$K(B
$BLd$$9g$o$;$?>l9g$K$O!"(B@code{buffer-file-coding-system}$B$O(B
$B;XDj$5$l$?JL$N%3!<%G%#%s%0%7%9%F%`$K99?7$5$l$k!#(B
@end defvar

@defvar save-buffer-coding-system
@tindex save-buffer-coding-system
@c This variable specifies the coding system for saving the buffer---but it
@c is not used for @code{write-region}.  When saving the buffer asks the
@c user to specify a different coding system, and
@c @code{save-buffer-coding-system} was used, then it is updated to the
@c coding system that was specified.
$B$3$NJQ?t$O!"(B@code{write-region}$B$K$O;H$o$J$$$,!"(B
$B%P%C%U%!$rJ]B8$9$k$?$a$K;H$&%3!<%G%#%s%0%7%9%F%`$r;XDj$9$k!#(B
$B%P%C%U%!$rJ]B8$9$k:]$K!"%f!<%6!<$KJL$N%3!<%G%#%s%0%7%9%F%`$r;XDj$9$k$h$&$K(B
$BLd$$9g$o$;!"$+$D!"(B@code{save-buffer-coding-system}$B$rMQ$$$F$$$k>l9g$K$O!"(B
$B$3$l$O;XDj$5$l$?JL$N%3!<%G%#%s%0%7%9%F%`$K99?7$5$l$k!#(B
@end defvar

@defvar last-coding-system-used
@tindex last-coding-system-used
@c I/O operations for files and subprocesses set this variable to the
@c coding system name that was used.  The explicit encoding and decoding
@c functions (@pxref{Explicit Encoding}) set it too.
$B%U%!%$%k$d%5%V%W%m%;%9$KBP$9$kF~=PNOA`:n$G$O!"(B
$B;HMQ$7$?%3!<%G%#%s%0%7%9%F%`L>$r$3$NJQ?t$K@_Dj$9$k!#(B
$BL@<(E*$KId9f2=!?I|9f2=$9$k4X?t!J(B@pxref{Explicit Encoding}$B!K$b(B
$B$3$NJQ?t$K@_Dj$9$k!#(B

@c @strong{Warning:} Since receiving subprocess output sets this variable,
@c it can change whenever Emacs waits; therefore, you should use copy the
@c value shortly after the function call which stores the value you are
@c interested in.
@strong{$B7Y9p!'(B}@code{ }
$B%5%V%W%m%;%9$+$i=PNO$r<u$1<h$k$H$3$NJQ?t$,@_Dj$5$l$k$?$a!"(B
Emacs$B$,BT$D$?$S$KJQ2=$9$k2DG=@-$,$"$k!#(B
$B$7$?$,$C$F!"FI<T$N6=L#$,$"$kCM$rJ]B8$9$k$h$&$J4X?t$r8F$S=P$7$?D>8e$K(B
$B$=$NCM$r%3%T!<$7$F;H$&$3$H!#(B
@end defvar

@c   The variable @code{selection-coding-system} specifies how to encode
@c selections for the window system.  @xref{Window System Selections}.
$BJQ?t(B@code{selection-coding-system}$B$O!"(B
$B%&%#%s%I%&%7%9%F%`$N%;%l%/%7%g%s$rId9f2=$9$kJ}K!$r;XDj$7$^$9!#(B
@xref{Window System Selections}$B!#(B

@node Lisp and Coding Systems
@c @subsection Coding Systems in Lisp
@subsection Lisp$B$K$*$1$k%3!<%G%#%s%0%7%9%F%`(B

@c   Here are Lisp facilities for working with coding systems;
$B%3!<%G%#%s%0%7%9%F%`$r07$&(BLisp$B$N5!G=$K$D$$$F=R$Y$^$9!#(B

@defun coding-system-list &optional base-only
@tindex coding-system-list
@c This function returns a list of all coding system names (symbols).  If
@c @var{base-only} is non-@code{nil}, the value includes only the
@c base coding systems.  Otherwise, it includes variant coding systems as well.
$B$3$N4X?t$O!"$9$Y$F$N%3!<%G%#%s%0%7%9%F%`L>!J%7%s%\%k!K$N%j%9%H$rJV$9!#(B
@var{base-only}$B$,(B@code{nil}$B0J30$G$"$k$H!"(B
$BCM$K$O4pDl%3!<%G%#%s%0%7%9%F%`$N$_$r4^$a$k!#(B
$B$5$b$J$1$l$P!"CM$K$OJQ<o%3!<%G%#%s%0%7%9%F%`$b4^$^$l$k!#(B
@end defun

@defun coding-system-p object
@tindex coding-system-p
@c This function returns @code{t} if @var{object} is a coding system
@c name.
$B$3$N4X?t$O!"(B@var{object}$B$,%3!<%G%#%s%0%7%9%F%`L>$G$"$k$H(B@code{t}$B$rJV$9!#(B
@end defun

@defun check-coding-system coding-system
@tindex check-coding-system
@c This function checks the validity of @var{coding-system}.
@c If that is valid, it returns @var{coding-system}.
@c Otherwise it signals an error with condition @code{coding-system-error}.
$B$3$N4X?t$O!"(B@var{coding-system}$B$N@5Ev@-$rD4$Y$k!#(B
$B@5$7$$$b$N$J$i$P(B@var{coding-system}$B$rJV$9!#(B
$B$5$b$J$1$l$P!">r7o(B@code{coding-system-error}$BIU$-$N%(%i!<$rDLCN$9$k!#(B
@end defun

@defun coding-system-change-eol-conversion coding-system eol-type
@tindex coding-system-change-eol-conversion
@c This function returns a coding system which is like @var{coding-system}
@c except for its eol conversion, which is specified by @code{eol-type}.
@c @var{eol-type} should be @code{unix}, @code{dos}, @code{mac}, or
@c @code{nil}.  If it is @code{nil}, the returned coding system determines
@c the end-of-line conversion from the data.
$B$3$N4X?t$O!"(B@var{coding-system}$B$KN`;w$N%3!<%G%#%s%0%7%9%F%`$rJV$9$,!"(B
@code{eol-type}$B$G;XDj$5$l$?9TKvJQ49$N$b$N$G$"$k!#(B
@var{eol-type}$B$O!"(B@code{unix}$B!"(B@code{dos}$B!"(B@code{mac}$B!"(B@code{nil}$B$N(B
$B$$$:$l$+$G$"$k$3$H!#(B
@code{nil}$B$G$"$k$H!"JV$5$l$?%3!<%G%#%s%0%7%9%F%`$O!"(B
$B%G!<%?$+$i9TKvJQ49$r7hDj$9$k!#(B
@end defun

@defun coding-system-change-text-conversion eol-coding text-coding
@tindex coding-system-change-text-conversion
@c This function returns a coding system which uses the end-of-line
@c conversion of @var{eol-coding}, and the text conversion of
@c @var{text-coding}.  If @var{text-coding} is @code{nil}, it returns
@c @code{undecided}, or one of its variants according to @var{eol-coding}.
$B$3$N4X?t$O!"9TKvJQ49$K(B@var{eol-coding}$B$r;H$$!"(B
$B%F%-%9%H$NJQ49$K(B@var{text-coding}$B$r;H$C$F$$$k%3!<%G%#%s%0%7%9%F%`$rJV$9!#(B
@var{text-coding}$B$,(B@code{nil}$B$G$"$k$H!"(B
@code{undecided}$B$+(B@var{eol-coding}$B$K1~$8$?(B@code{undecided}$B$NJQ<o$N(B1$B$D$rJV$9!#(B
@end defun

@defun find-coding-systems-region from to
@tindex find-coding-systems-region
@c This function returns a list of coding systems that could be used to
@c encode a text between @var{from} and @var{to}.  All coding systems in
@c the list can safely encode any multibyte characters in that portion of
@c the text.
$B$3$N4X?t$O!"(B@var{from}$B$H(B@var{to}$B$N$"$$$@$N%F%-%9%H$NId9f2=$K;HMQ$G$-$k(B
$B%3!<%G%#%s%0%7%9%F%`$N%j%9%H$rJV$9!#(B
$B%j%9%HFb$N$9$Y$F$N%3!<%G%#%s%0%7%9%F%`$O!"Ev3:ItJ,$N%F%-%9%H$N(B
$B$I$s$J%^%k%A%P%$%HJ8;z$b0BA4$KId9f2=$G$-$k!#(B

@c If the text contains no multibyte characters, the function returns the
@c list @code{(undecided)}.
$B%F%-%9%H$K%^%k%A%P%$%HJ8;z$,4^$^$l$J$$>l9g!"(B
$B4X?t$O%j%9%H(B@code{(undecided)}$B$rJV$9!#(B
@end defun

@defun find-coding-systems-string string
@tindex find-coding-systems-string
@c This function returns a list of coding systems that could be used to
@c encode the text of @var{string}.  All coding systems in the list can
@c safely encode any multibyte characters in @var{string}.  If the text
@c contains no multibyte characters, this returns the list
@c @code{(undecided)}.
$B$3$N4X?t$O!"J8;zNs(B@var{string}$B$N%F%-%9%H$NId9f2=$K;HMQ$G$-$k(B
$B%3!<%G%#%s%0%7%9%F%`$N%j%9%H$rJV$9!#(B
$B%j%9%HFb$N$9$Y$F$N%3!<%G%#%s%0%7%9%F%`$O!"(B@var{string}$B$N(B
$B$I$s$J%^%k%A%P%$%HJ8;z$b0BA4$KId9f2=$G$-$k!#(B
$B%F%-%9%H$K%^%k%A%P%$%HJ8;z$,4^$^$l$J$$>l9g!"(B
$B$3$l$O%j%9%H(B@code{(undecided)}$B$rJV$9!#(B
@end defun

@defun find-coding-systems-for-charsets charsets
@tindex find-coding-systems-for-charsets
@c This function returns a list of coding systems that could be used to
@c encode all the character sets in the list @var{charsets}.
$B$3$N4X?t$O!"%j%9%H(B@var{charsets}$BFb$N$9$Y$F$NJ8;z=89g$NId9f2=$K;HMQ$G$-$k(B
$B%3!<%G%#%s%0%7%9%F%`$N%j%9%H$rJV$9!#(B
@end defun

@defun detect-coding-region start end &optional highest
@tindex detect-coding-region
@c This function chooses a plausible coding system for decoding the text
@c from @var{start} to @var{end}.  This text should be ``raw bytes''
@c (@pxref{Explicit Encoding}).
$B$3$N4X?t$O!"(B@var{start}$B$+$i(B@var{end}$B$^$G$N%F%-%9%H$rI|9f2=$9$k(B
$B$b$C$H$b$i$7$$%3!<%G%#%s%0%7%9%F%`$rA*$V!#(B
$B$3$N%F%-%9%H$O!X@8$N%P%$%H!Y!J(B@pxref{Explicit Encoding}$B!K$G$"$k$3$H!#(B

@c Normally this function returns a list of coding systems that could
@c handle decoding the text that was scanned.  They are listed in order of
@c decreasing priority.  But if @var{highest} is non-@code{nil}, then the
@c return value is just one coding system, the one that is highest in
@c priority.
$B$3$N4X?t$O!"DL>o!"Av::$7$?%F%-%9%H$NI|9f2=$r07$($k(B
$B%3!<%G%#%s%0%7%9%F%`$N%j%9%H$rJV$9!#(B
$B$=$l$i$OM%@h=g0L$N9_=g$KJB$V!#(B
$B$7$+$7!"(B@var{highest}$B$,(B@code{nil}$B0J30$G$"$k$H!"(B
$BLa$jCM$O$b$C$H$b=g0L$N9b$$(B1$B$D$N%3!<%G%#%s%0%7%9%F%`$G$"$k!#(B

@c If the region contains only @sc{ASCII} characters, the value
@c is @code{undecided} or @code{(undecided)}.
$BNN0h$K(B@sc{ASCII}$BJ8;z$@$1$,4^$^$l$k>l9g!"(B
$BCM$O(B@code{undecided}$B$+(B@code{(undecided)}$B$G$"$k!#(B
@end defun

@defun detect-coding-string string highest
@tindex detect-coding-string
@c This function is like @code{detect-coding-region} except that it
@c operates on the contents of @var{string} instead of bytes in the buffer.
$B$3$N4X?t$O(B@code{detect-coding-region}$B$HF1MM$G$"$k$,!"(B
$B%P%C%U%!Fb$N%P%$%H$N$+$o$j$KJ8;zNs(B@var{string}$B$NFbMF$K:nMQ$9$k!#(B
@end defun

@c   @xref{Process Information}, for how to examine or set the coding
@c systems used for I/O to a subprocess.
$B%5%V%W%m%;%9$H$NF~=PNO$K;HMQ$5$l$k%3!<%G%#%s%0%7%9%F%`$r(B
$BD4$Y$?$j@_Dj$9$kJ}K!$K$D$$$F$O!"(B@xref{Process Information}$B!#(B

@node User-Chosen Coding Systems
@c @subsection User-Chosen Coding Systems
@subsection $B%f!<%6!<;XDj$N%3!<%G%#%s%0%7%9%F%`(B

@tindex select-safe-coding-system
@defun select-safe-coding-system from to &optional preferred-coding-system
@c This function selects a coding system for encoding the text between
@c @var{from} and @var{to}, asking the user to choose if necessary.
$B$3$N4X?t$O(B@var{from}$B$H(B@var{to}$B$N$"$$$@$N%F%-%9%H$rId9f2=$9$k(B
$B%3!<%G%#%s%0%7%9%F%`$rA*$V$,!"(B
$BI,MW$J$i$P%f!<%6!<$KLd$$9g$o$;$k!#(B

@c The optional argument @var{preferred-coding-system} specifies a coding
@c system to try first.  If that one can handle the text in the specified
@c region, then it is used.  If this argument is omitted, the current
@c buffer's value of @code{buffer-file-coding-system} is tried first.
$B>JN,2DG=$J0z?t(B@var{preferred-coding-system}$B$O!"(B
$B:G=i$K;n$9%3!<%G%#%s%0%7%9%F%`$r;XDj$9$k!#(B
$B$=$l$,;XDjNN0h$N%F%-%9%H$r=hM}$G$-$k$J$i$P!"$=$l$r;H$&!#(B
$B$3$N0z?t$r>JN,$9$k$H!"(B
@code{buffer-file-coding-system}$B$N%+%l%s%H%P%C%U%!$G$NCM$r$^$:;n$9!#(B

@c If the region contains some multibyte characters that the preferred
@c coding system cannot encode, this function asks the user to choose from
@c a list of coding systems which can encode the text, and returns the
@c user's choice.
$BNN0hFb$K(B@var{preferred-coding-system}$B$GId9f2=$G$-$J$$(B
$B%^%k%A%P%$%HJ8;z$,$"$k>l9g!"(B
$B$3$N4X?t$O!"Ev3:%F%-%9%H$rId9f2=2DG=$J%3!<%G%#%s%0%7%9%F%`0lMw$+$i(B
$B%f!<%6!<$KA*Br$7$F$b$i$$!"%f!<%6!<$,A*Br$7$?$b$N$rJV$9!#(B

@c One other kludgy feature: if @var{from} is a string, the string is the
@c target text, and @var{to} is ignored.
$BFC<l5!G=!'(B@code{ }@var{from}$B$,J8;zNs$G$"$k$H!"(B
$BJ8;zNs$rD4$Y$kBP>]$H$7!"(B@var{to}$B$OL5;k$9$k!#(B
@end defun

@c   Here are two functions you can use to let the user specify a coding
@c system, with completion.  @xref{Completion}.
$BJd40$rMQ$$$F%f!<%6!<$K%3!<%G%#%s%0%7%9%F%`$r;XDj$5$;$k$?$a$K;H$($k(B
2$B$D$N4X?t$O$D$.$N$H$*$j$G$9!#(B
@xref{Completion}$B!#(B

@defun read-coding-system prompt &optional default
@tindex read-coding-system
@c This function reads a coding system using the minibuffer, prompting with
@c string @var{prompt}, and returns the coding system name as a symbol.  If
@c the user enters null input, @var{default} specifies which coding system
@c to return.  It should be a symbol or a string.
$B$3$N4X?t$O!"J8;zNs(B@var{prompt}$B$r%W%m%s%W%H$H$7$F(B
$B%_%K%P%C%U%!$r;H$C$F%3!<%G%#%s%0%7%9%F%`$rFI$_<h$j!"(B
$B%3!<%G%#%s%0%7%9%F%`L>$r%7%s%\%k$H$7$FJV$9!#(B
$B%f!<%6!<$NF~NO$,6u$G$"$k$H!"(B
@var{default}$B$OJV$9$Y$-%3!<%G%#%s%0%7%9%F%`$r;XDj$9$k!#(B
$B$=$l$O%7%s%\%k$+J8;zNs$G$"$k$3$H!#(B
@end defun

@defun read-non-nil-coding-system prompt
@tindex read-non-nil-coding-system
@c This function reads a coding system using the minibuffer, prompting with
@c string @var{prompt}, and returns the coding system name as a symbol.  If
@c the user tries to enter null input, it asks the user to try again.
@c @xref{Coding Systems}.
$B$3$N4X?t$O!"J8;zNs(B@var{prompt}$B$r%W%m%s%W%H$H$7$F(B
$B%_%K%P%C%U%!$r;H$C$F%3!<%G%#%s%0%7%9%F%`$rFI$_<h$j!"(B
$B%3!<%G%#%s%0%7%9%F%`L>$r%7%s%\%k$H$7$FJV$9!#(B
$B%f!<%6!<$,6u$rF~NO$7$h$&$H$9$k$H:FEYLd$$9g$o$;$k!#(B
@pxref{Coding Systems}$B!#(B
@end defun

@node Default Coding Systems
@c @subsection Default Coding Systems
@subsection $B%G%U%)%k%H$N%3!<%G%#%s%0%7%9%F%`(B

@c   This section describes variables that specify the default coding
@c system for certain files or when running certain subprograms, and the
@c function that I/O operations use to access them.
$BK\@a$G$O!"FCDj$N%U%!%$%k$dFCDj$N%5%V%W%m%0%i%`$r<B9T$9$k$H$-$N(B
$B%G%U%)%k%H$N%3!<%G%#%s%0%7%9%F%`$r;XDj$9$kJQ?t$H!"(B
$B$=$l$i$r;H$C$?F~=PNOA`:n$r9T$&4X?t$K$D$$$F=R$Y$^$9!#(B

@c   The idea of these variables is that you set them once and for all to the
@c defaults you want, and then do not change them again.  To specify a
@c particular coding system for a particular operation in a Lisp program,
@c don't change these variables; instead, override them using
@c @code{coding-system-for-read} and @code{coding-system-for-write}
@c (@pxref{Specifying Coding Systems}).
$B$3$l$i$NJQ?t$NL\E*$O!"FI<T$,K>$`%G%U%)%k%H$r$$$C$?$s$3$l$i$K@_Dj$7$F$*$1$P!"(B
$B:FEYJQ99$9$kI,MW$,$J$$$h$&$K$9$k$3$H$G$9!#(B
Lisp$B%W%m%0%i%`$NFCDj$NA`:n8~$1$KFCDj$N%3!<%G%#%s%0%7%9%F%`$r;XDj$9$k$K$O!"(B
$B$3$l$i$NJQ?t$rJQ99$7$J$$$G$/$@$5$$!#(B
$B$+$o$j$K!"(B@code{coding-system-for-read}$B$d(B@code{coding-system-for-write}$B$r(B
$B;H$C$F>e=q$-$7$^$9!J(B@pxref{Specifying Coding Systems}$B!K!#(B

@defvar file-coding-system-alist
@tindex file-coding-system-alist
@c This variable is an alist that specifies the coding systems to use for
@c reading and writing particular files.  Each element has the form
@c @code{(@var{pattern} . @var{coding})}, where @var{pattern} is a regular
@c expression that matches certain file names.  The element applies to file
@c names that match @var{pattern}.
$B$3$NJQ?t$O!"FCDj$N%U%!%$%k$NFI$_=q$-$K;HMQ$9$k(B
$B%3!<%G%#%s%0%7%9%F%`$r;XDj$9$kO"A[%j%9%H$G$"$k!#(B
$B3FMWAG$O(B@code{(@var{pattern} . @var{coding})}$B$N7A$G$"$j!"(B
@var{pattern}$B$OFCDj$N%U%!%$%kL>$K0lCW$9$k@55,I=8=$G$"$k!#(B
@var{pattern}$B$K0lCW$9$k%U%!%$%kL>$KEv3:MWAG$rE,MQ$9$k!#(B

@c = $B8m?"(B @var{val}$B$O(B@var{coding}
@c The @sc{cdr} of the element, @var{coding}, should be either a coding
@c system, a cons cell containing two coding systems, or a function symbol.
@c If @var{val} is a coding system, that coding system is used for both
@c reading the file and writing it.  If @var{val} is a cons cell containing
@c two coding systems, its @sc{car} specifies the coding system for
@c decoding, and its @sc{cdr} specifies the coding system for encoding.
$BMWAG$N(B@sc{cdr}$B!"(B@var{coding}$B$O%3!<%G%#%s%0%7%9%F%`$G$"$k$+!"(B
2$B$D$N%3!<%G%#%s%0%7%9%F%`$r<}$a$?%3%s%9%;%k$G$"$k$+!"(B
$B4X?t%7%s%\%k$G$"$k$3$H!#(B
@var{coding}$B$,%3!<%G%#%s%0%7%9%F%`$G$"$k$H!"(B
$B%U%!%$%k$NFI$_=q$-$NN>J}$K$=$N%3!<%G%#%s%0%7%9%F%`$r;H$&!#(B
@var{coding}$B$,(B2$B$D$N%3!<%G%#%s%0%7%9%F%`$r<}$a$?%3%s%9%;%k$G$"$k$H!"(B
$B$=$N(B@sc{car}$B$OI|9f2=$K;H$&%3!<%G%#%s%0%7%9%F%`$r;XDj$7!"(B
$B$=$N(B@sc{cdr}$B$OId9f2=$K;H$&%3!<%G%#%s%0%7%9%F%`$r;XDj$9$k!#(B

@c If @var{val} is a function symbol, the function must return a coding
@c system or a cons cell containing two coding systems.  This value is used
@c as described above.
@var{coding}$B$,4X?t%7%s%\%k$G$"$k$H!"(B
$B$=$N4X?t$O!"%3!<%G%#%s%0%7%9%F%`$+!"(B
2$B$D$N%3!<%G%#%s%0%7%9%F%`$r<}$a$?%3%s%9%;%k$rJV$9$3$H!#(B
$B$=$NCM$O>e$K=R$Y$?$h$&$K;H$o$l$k!#(B
@end defvar

@defvar process-coding-system-alist
@tindex process-coding-system-alist
@c This variable is an alist specifying which coding systems to use for a
@c subprocess, depending on which program is running in the subprocess.  It
@c works like @code{file-coding-system-alist}, except that @var{pattern} is
@c matched against the program name used to start the subprocess.  The coding
@c system or systems specified in this alist are used to initialize the
@c coding systems used for I/O to the subprocess, but you can specify
@c other coding systems later using @code{set-process-coding-system}.
$B$3$NJQ?t$O!"%5%V%W%m%;%9$G<B9T$7$F$$$k%W%m%0%i%`$K0MB8$7$F(B
$B%5%V%W%m%;%9$K;H$&%3!<%G%#%s%0%7%9%F%`$r;XDj$9$kO"A[%j%9%H$G$"$k!#(B
@code{file-coding-system-alist}$B$HF1MM$KF/$/$,!"(B
@var{pattern}$B$O%5%V%W%m%;%9$r;O$a$k$?$a$KMQ$$$?%W%m%0%i%`L>$KBP$7$F(B
$B0lCW$r<h$kE@$,0[$J$k!#(B
$B$3$NO"A[%j%9%H$K;XDj$7$?%3!<%G%#%s%0%7%9%F%`$O!"(B
$B%5%V%W%m%;%9$H$NF~=PNO$K;HMQ$9$k%3!<%G%#%s%0%7%9%F%`$N=i4|2=$KMQ$$$l$k$,!"(B
@code{set-process-coding-system}$B$r;H$C$F!"(B
$B$"$H$GJL$N%3!<%G%#%s%0%7%9%F%`$r;XDj$G$-$k!#(B
@end defvar

@c   @strong{Warning:} Coding systems such as @code{undecided} which
@c determine the coding system from the data do not work entirely reliably
@c with asynchronous subprocess output.  This is because Emacs handles
@c asynchronous subprocess output in batches, as it arrives.  If the coding
@c system leaves the character code conversion unspecified, or leaves the
@c end-of-line conversion unspecified, Emacs must try to detect the proper
@c conversion from one batch at a time, and this does not always work.
@strong{$B7Y9p!'(B}@code{ }
$B%G!<%?$+$i%3!<%G%#%s%0%7%9%F%`$r7hDj$9$k(B@code{undecided}$B$N$h$&$J(B
$B%3!<%G%#%s%0%7%9%F%`$O!"HsF14|%5%V%W%m%;%9$N=PNO$KBP$7$F$O(B
$B40A4$K?.Mj@-$N$"$kF0:n$O$G$-$J$$!#(B
$B$3$l$O!"(BEmacs$B$,HsF14|%5%V%W%m%;%9$N=PNO$,(B
$BE~Ce$9$k$?$S$K0l2t$G=hM}$9$k$+$i$G$"$k!#(B
$B%3!<%G%#%s%0%7%9%F%`$,J8;z%3!<%IJQ49$d9TKvJQ49$rL$;XDj$K$7$F$$$k$H!"(B
Emacs$B$O(B1$B$D$N2t$+$i@5$7$$JQ49$r8!=P$7$h$&$H;n$_$k$,!"(B
$B$3$l$,$D$M$KF0:n$9$k$H$O8B$i$J$$!#(B

@c   Therefore, with an asynchronous subprocess, if at all possible, use a
@c coding system which determines both the character code conversion and
@c the end of line conversion---that is, one like @code{latin-1-unix},
@c rather than @code{undecided} or @code{latin-1}.
$B$7$?$,$C$F!"HsF14|%5%V%W%m%;%9$G$O!"2DG=$J8B$j(B
$BJ8;z%3!<%IJQ49$H9TKvJQ49$NN>J}$r;XDj$7$?%3!<%G%#%s%0%7%9%F%`$r;H$$$^$9!#(B
$B$D$^$j!"(B@code{undecided}$B$d(B@code{latin-1}$B$J$I$G$O$J$/!"(B
@code{latin-1-unix}$B$N$h$&$J$b$N$r;H$$$^$9!#(B

@defvar network-coding-system-alist
@tindex network-coding-system-alist
@c This variable is an alist that specifies the coding system to use for
@c network streams.  It works much like @code{file-coding-system-alist},
@c with the difference that the @var{pattern} in an element may be either a
@c port number or a regular expression.  If it is a regular expression, it
@c is matched against the network service name used to open the network
@c stream.
$B$3$NJQ?t$O!"%M%C%H%o!<%/%9%H%j!<%`$K;HMQ$9$k%3!<%G%#%s%0%7%9%F%`$r(B
$B;XDj$9$kO"A[%j%9%H$G$"$k!#(B
@code{file-coding-system-alist}$B$HF1MM$KF/$/$,!"(B
$BMWAGFb$N(B@var{pattern}$B$O%]!<%HHV9f$+@55,I=8=$G$"$kE@$,0[$J$k!#(B
$B$=$l$,@55,I=8=$G$"$k$H!"%M%C%H%o!<%/%9%H%j!<%`$r3+$/$?$a$K(B
$B;HMQ$7$?%M%C%H%o!<%/%5!<%S%9L>$KBP$7$F0lCW$r$H$k!#(B
@end defvar

@defvar default-process-coding-system
@tindex default-process-coding-system
@c This variable specifies the coding systems to use for subprocess (and
@c network stream) input and output, when nothing else specifies what to
@c do.
$B$3$NJQ?t$O!"$J$K$b;XDj$5$l$F$$$J$$%5%V%W%m%;%9!J$d%M%C%H%o!<%/%9%H%j!<%`!K(B
$B$NF~=PNO$K;HMQ$9$k%3!<%G%#%s%0%7%9%F%`$r;XDj$9$k!#(B

@c The value should be a cons cell of the form @code{(@var{input-coding}
@c . @var{output-coding})}.  Here @var{input-coding} applies to input from
@c the subprocess, and @var{output-coding} applies to output to it.
$BCM$O!"(B@code{(@var{input-coding} . @var{output-coding})}$B$N7A$N(B
$B%3%s%9%;%k$G$"$k$3$H!#(B
$B$3$3$G!"(B@var{input-coding}$B$O%5%V%W%m%;%9$+$i$NF~NO$KE,MQ$5$l!"(B
@var{output-coding}$B$O$=$l$X$N=PNO$KE,MQ$5$l$k!#(B
@end defvar

@defun find-operation-coding-system operation &rest arguments
@tindex find-operation-coding-system
@c This function returns the coding system to use (by default) for
@c performing @var{operation} with @var{arguments}.  The value has this
@c form:
$B$3$N4X?t$O!"(B@var{arguments}$B$r;XDj$7$F(B@var{operation}$B$r9T$&$H$-$K(B
$B!J%G%U%)%k%H$G!K;HMQ$5$l$k%3!<%G%#%s%0%7%9%F%`$rJV$9!#(B
$B$=$NCM$O$D$.$N7A$G$"$k!#(B

@example
(@var{decoding-system} @var{encoding-system})
@end example

@c The first element, @var{decoding-system}, is the coding system to use
@c for decoding (in case @var{operation} does decoding), and
@c @var{encoding-system} is the coding system for encoding (in case
@c @var{operation} does encoding).
$BBh(B1$BMWAG(B@var{decoding-system}$B$O(B
$B!J(B@var{operation}$B$,I|9f2=$r9T$&>l9g$K$O!KI|9f2=$KMQ$$$k(B
$B%3!<%G%#%s%0%7%9%F%`$G$"$j!"(B
@var{encoding-system}$B$O(B
$B!J(B@var{operation}$B$,Id9f2=$r9T$&>l9g$K$O!KId9f2=$KMQ$$$k(B
$B%3!<%G%#%s%0%7%9%F%`$G$"$k!#(B

@c The argument @var{operation} should be an Emacs I/O primitive:
@c @code{insert-file-contents}, @code{write-region}, @code{call-process},
@c @code{call-process-region}, @code{start-process}, or
@c @code{open-network-stream}.
$B0z?t(B@var{operation}$B$O!"(BEmacs$B$NF~=PNO4pK\4X?t$N(B
@code{insert-file-contents}$B!"(B@code{write-region}$B!"(B@code{call-process}$B!"(B
@code{call-process-region}$B!"(B@code{start-process}$B!"(B
@code{open-network-stream}$B$N$$$:$l$+$G$"$k$3$H!#(B

@c The remaining arguments should be the same arguments that might be given
@c to that I/O primitive.  Depending on which primitive, one of those
@c arguments is selected as the @dfn{target}.  For example, if
@c @var{operation} does file I/O, whichever argument specifies the file
@c name is the target.  For subprocess primitives, the process name is the
@c target.  For @code{open-network-stream}, the target is the service name
@c or port number.
$B;D$j$N0z?t$O!"$3$l$i$NF~=PNO4pK\4X?t$K;XDj$9$k$G$"$m$&0z?t$HF1$8$G$"$k$3$H!#(B
$B4pK\4X?t$K0MB8$7$F!"0z?t$N(B1$B$D$r(B@dfn{$BBP>](B}$B$H$7$FA*$V!#(B
$B$?$H$($P!"(B@var{operation}$B$,%U%!%$%kF~=PNO$r9T$&>l9g!"(B
$B%U%!%$%kL>$r;XDj$9$k0z?t$,BP>]$G$"$k!#(B
$B%5%V%W%m%;%9$N4pK\4X?t$G$O!"%W%m%;%9L>$,BP>]$G$"$k!#(B
@code{open-network-stream}$B$G$O!"%5!<%S%9L>$d%]!<%HHV9f$,BP>]$G$"$k!#(B

@c This function looks up the target in @code{file-coding-system-alist},
@c @code{process-coding-system-alist}, or
@c @code{network-coding-system-alist}, depending on @var{operation}.
@c @xref{Default Coding Systems}.
$B$3$N4X?t$O!"(B@var{operation}$B$K1~$8$FEv3:BP>]$r(B
@code{file-coding-system-alist}$B$d(B
@code{process-coding-system-alist}$B$d(B
@code{network-coding-system-alist}$B$GC5$9!#(B
@pxref{Default Coding Systems}$B!#(B
@end defun

@node Specifying Coding Systems
@c @subsection Specifying a Coding System for One Operation
@subsection 1$B$D$NA`:n8~$1$K%3!<%G%#%s%0%7%9%F%`$r;XDj$9$k(B

@c   You can specify the coding system for a specific operation by binding
@c the variables @code{coding-system-for-read} and/or
@c @code{coding-system-for-write}.
$BJQ?t(B@code{coding-system-for-read}$B$H!?$d(B@code{coding-system-for-write}$B$r(B
$BB+G{$9$k$3$H$G!"FCDj$N(B1$B$D$NA`:n8~$1$N%3!<%G%#%s%0%7%9%F%`$r;XDj$G$-$^$9!#(B

@defvar coding-system-for-read
@tindex coding-system-for-read
@c If this variable is non-@code{nil}, it specifies the coding system to
@c use for reading a file, or for input from a synchronous subprocess.
$B$3$NJQ?t$,(B@code{nil}$B0J30$G$"$k$H!"(B
$B%U%!%$%k$rFI$`$H$-$dF14|%W%m%;%9$+$i$NF~NO$KMQ$$$k(B
$B%3!<%G%#%s%0%7%9%F%`$r;XDj$9$k!#(B

@c It also applies to any asynchronous subprocess or network stream, but in
@c a different way: the value of @code{coding-system-for-read} when you
@c start the subprocess or open the network stream specifies the input
@c decoding method for that subprocess or network stream.  It remains in
@c use for that subprocess or network stream unless and until overridden.
$B$3$l$OHsF14|%W%m%;%9$d%M%C%H%o!<%/%9%H%j!<%`$K$bE,MQ$5$l$k$,!"(B
$B0[$J$C$?J}K!$GE,MQ$5$l$k!#(B
$B%5%V%W%m%;%9$r3+;O$7$?$j%M%C%H%o!<%/%9%H%j!<%`$r3+$$$?$H$-$N(B
@code{coding-system-for-read}$B$NCM$O!"(B
$B$=$N%5%V%W%m%;%9$d%M%C%H%o!<%/%9%H%j!<%`$NF~NO$NI|9f2=J}K!$r;XDj$9$k!#(B
$BJQ99$5$l$J$$8B$j!"$=$N%5%V%W%m%;%9$d%M%C%H%o!<%/%9%H%j!<%`$K(B
$BBP$7$F;H$o$lB3$1$k!#(B

@c The right way to use this variable is to bind it with @code{let} for a
@c specific I/O operation.  Its global value is normally @code{nil}, and
@c you should not globally set it to any other value.  Here is an example
@c of the right way to use the variable:
$B$3$NJQ?t$N@5$7$$;H$$J}$O!"FCDj$NF~=PNOA`:n$KBP$7$F(B
@code{let}$B$GB+G{$9$k$3$H$G$"$k!#(B
$B$=$N%0%m!<%P%k$JCM$ODL>o$O(B@code{nil}$B$G$"$j!"(B
$B%0%m!<%P%k$K$3$l0J30$NCM$r@_Dj$9$k$Y$-$G$O$J$$!#(B
$B$3$NJQ?t$N@5$7$$;H$$J}$NNc$r$D$.$K<($9!#(B

@example
@c ;; @r{Read the file with no character code conversion.}
@c ;; @r{Assume @sc{crlf} represents end-of-line.}
;; @r{$BJ8;z%3!<%IJQ49$;$:$K%U%!%$%k$+$iFI$`(B}
;; @r{@sc{crlf}$B$,9TKv$rI=$9$H2>Dj$9$k(B}
(let ((coding-system-for-write 'emacs-mule-dos))
  (insert-file-contents filename))
@end example

@c When its value is non-@code{nil}, @code{coding-system-for-read} takes
@c precedence over all other methods of specifying a coding system to use for
@c input, including @code{file-coding-system-alist},
@c @code{process-coding-system-alist} and
@c @code{network-coding-system-alist}.
$B$=$NCM$,(B@code{nil}$B0J30$G$"$k$H!"(B
@code{coding-system-for-read}$B$O!"(B
@code{file-coding-system-alist}$B!"(B
@code{process-coding-system-alist}$B!"(B@code{network-coding-system-alist}$B!"(B
$B$r4^$a$FF~NO$KMQ$$$k%3!<%G%#%s%0%7%9%F%`$N(B
$BB>$N$9$Y$F$N;XDjJ}K!$KM%@h$9$k!#(B
@end defvar

@defvar coding-system-for-write
@tindex coding-system-for-write
@c This works much like @code{coding-system-for-read}, except that it
@c applies to output rather than input.  It affects writing to files,
@c subprocesses, and net connections.
$B$3$l$O(B@code{coding-system-for-read}$B$HF1MM$KF/$/$,!"(B
$BF~NO$G$O$J$/=PNO$KE,MQ$5$l$kE@$,0[$J$k!#(B
$B%U%!%$%k!"%5%V%W%m%;%9!"%M%C%H%o!<%/@\B3$X=q$/$3$H$K1F6A$9$k!#(B

@c When a single operation does both input and output, as do
@c @code{call-process-region} and @code{start-process}, both
@c @code{coding-system-for-read} and @code{coding-system-for-write}
@c affect it.
@code{call-process-region}$B$H(B@code{start-process}$B$N$h$&$K!"(B
1$B$D$NA`:n$GF~NO$H=PNO$r9T$&$H$-$K$O!"(B
@code{coding-system-for-read}$B$H(B@code{coding-system-for-write}$B$N(B
$BN>J}$,1F6A$9$k!#(B
@end defvar

@defvar inhibit-eol-conversion
@tindex inhibit-eol-conversion
@c When this variable is non-@code{nil}, no end-of-line conversion is done,
@c no matter which coding system is specified.  This applies to all the
@c Emacs I/O and subprocess primitives, and to the explicit encoding and
@c decoding functions (@pxref{Explicit Encoding}).
$B$3$NJQ?t$,(B@code{nil}$B0J30$G$"$k$H!"(B
$B%3!<%G%#%s%0%7%9%F%`$G$J$K$,;XDj$5$l$F$$$h$&$H9TKvJQ49$r9T$o$J$$!#(B
$B$3$l$O!"(BEmacs$B$NF~=PNO$H%5%V%W%m%;%9$N$9$Y$F$N4pK\4X?t!"(B
$BL@<(E*$JId9f2=!?I|9f2=4X?t!J(B@pxref{Explicit Encoding}$B!K$KE,MQ$5$l$k!#(B
@end defvar

@node Explicit Encoding
@c @subsection Explicit Encoding and Decoding
@subsection $BL@<(E*$JId9f2=$HI|9f2=(B
@c @cindex encoding text
@c @cindex decoding text
@cindex $B%F%-%9%H$NId9f2=(B
@cindex $B%F%-%9%H$NI|9f2=(B

@c   All the operations that transfer text in and out of Emacs have the
@c ability to use a coding system to encode or decode the text.
@c You can also explicitly encode and decode text using the functions
@c in this section.
Emacs$B$X!?$+$i%F%-%9%H$rE>Aw$9$k$9$Y$F$NA`:n$K$O!"(B
$B%F%-%9%H$rId9f2=$7$?$jI|9f2=$9$k%3!<%G%#%s%0%7%9%F%`$r;H$&G=NO$,$"$j$^$9!#(B
$BK\@a$K=R$Y$k4X?t$rMQ$$$F%F%-%9%H$rL@<(E*$KId9f2=$7$?$jI|9f2=$G$-$^$9!#(B

@c @cindex raw bytes
@cindex $B@8$N%P%$%H(B
@c   The result of encoding, and the input to decoding, are not ordinary
@c text.  They are ``raw bytes''---bytes that represent text in the same
@c way that an external file would.  When a buffer contains raw bytes, it
@c is most natural to mark that buffer as using unibyte representation,
@c using @code{set-buffer-multibyte} (@pxref{Selecting a Representation}),
@c but this is not required.  If the buffer's contents are only temporarily
@c raw, leave the buffer multibyte, which will be correct after you decode
@c them.
$BId9f2=$N7k2L$HI|9f2=$9$kF~NO$O!"DL>o$N(BEmacs$B$N%F%-%9%H$G$O$"$j$^$;$s!#(B
$B$=$l$i$O!X@8$N%P%$%H!Y!"$D$^$j!"30It%U%!%$%k$HF1$8J}K!$G(B
$B%F%-%9%H$rI=8=$9$k%P%$%HNs$G$9!#(B
$B%P%C%U%!$K@8$N%P%$%H$,<}$a$i$l$F$$$k>l9g!"(B
@code{set-buffer-multibyte}$B!J(B@pxref{Selecting a Representation}$B!K$rMQ$$$F(B
$B%P%C%U%!$O%f%K%P%$%HI=8=$G$"$k$H0u$rIU$1$k$N$,$b$C$H$b<+A3$G$9$,!"(B
$B$3$l$OI,?\$G$O$"$j$^$;$s!#(B
$B%P%C%U%!$NFbMF$,C1$K0l;~E*$K@8$N%P%$%H$G$"$k$H$-$K$O!"(B
$B%P%C%U%!$O%^%k%A%P%$%H$N$^$^$K$7$F$*$-$^$9!#(B
$B%P%C%U%!FbMF$rI|9f2=$9$l$P@5$7$/$J$j$^$9!#(B

@c   The usual way to get raw bytes in a buffer, for explicit decoding, is
@c to read them from a file with @code{insert-file-contents-literally}
@c (@pxref{Reading from Files}) or specify a non-@code{nil} @var{rawfile}
@c argument when visiting a file with @code{find-file-noselect}.
$BL@<(E*$KI|9f2=$9$k$?$a$K%P%C%U%!$K@8$N%P%$%H$rF~$l$kIaDL$NJ}K!$O!"(B
@code{insert-file-contents-literally}$B!J(B@pxref{Reading from Files}$B!K$G(B
$B%U%!%$%k$+$iFI$`$+!"(B
@code{find-file-noselect}$B$G%U%!%$%k$rK,Ld$9$k$H$-$K0z?t(B@var{rawfile}$B$K(B
@code{nil}$B0J30$r;XDj$7$^$9!#(B

@c   The usual way to use the raw bytes that result from explicitly
@c encoding text is to copy them to a file or process---for example, to
@c write them with @code{write-region} (@pxref{Writing to Files}), and
@c suppress encoding for that @code{write-region} call by binding
@c @code{coding-system-for-write} to @code{no-conversion}.
$B%F%-%9%H$NL@<(E*$JId9f2=$GF@$?7k2L$G$"$k@8$N%P%$%H$r;H$&IaDL$NJ}K!$O!"(B
$B%U%!%$%k$d%W%m%;%9$X$=$l$i$r%3%T!<$7$^$9!#(B
$B$?$H$($P!"(B@code{write-region}$B!J(B@pxref{Writing to Files}$B!K$G$=$l$i$r=q$/$K$O!"(B
@code{coding-system-for-write}$B$K(B@code{no-conversion}$B$rB+G{$7$F(B
@code{write-region}$B$NId9f2=$rM^@)$7$^$9!#(B

@c   Raw bytes sometimes contain overlong byte-sequences that look like a
@c proper multibyte character plus extra bytes containing trailing codes.
@c For most purposes, Emacs treats such a sequence in a buffer or string as
@c a single character, and if you look at its character code, you get the
@c value that corresponds to the multibyte character sequence---the extra
@c bytes are disregarded.  This behavior is not quite clean, but raw bytes
@c are used only in limited places in Emacs, so as a practical matter
@c problems can be avoided.
$B@8$N%P%$%H$K$O!"@5$7$$%^%k%A%P%$%HJ8;z$K(B
$BM>J,$J%H%l%$%j%s%0%3!<%I$,IU$$$?$h$&$K8+$($kD9$9$.$k%P%$%HNs$,(B
$B4^$^$l$k>l9g$,$"$j$^$9!#(B
$B$[$H$s$I$NL\E*$K$O!"%P%C%U%!$dJ8;zNs$N$=$N$h$&$JNs$r(BEmacs$B$O(B1$BJ8;z$H$7$F07$$!"(B
$B$=$NJ8;z%3!<%I$rD4$Y$k$H%^%k%A%P%$%HJ8;z$NNs$KBP1~$7$?CM$rF@$k$O$:$G$9!#(B
$BM>J,$J%P%$%HNs$OL5;k$5$l$^$9!#(B
$B$3$N$U$k$^$$$OF)L@@-$,$h$/$"$j$^$;$s$,!"(B
$B@8$N%P%$%H$O(BEmacs$B$N8BDj$5$l$?>lLL$G$N$_;H$o$l!"<BMQ>e$NLdBj$O2sHr$G$-$^$9!#(B

@defun encode-coding-region start end coding-system
@tindex encode-coding-region
@c This function encodes the text from @var{start} to @var{end} according
@c to coding system @var{coding-system}.  The encoded text replaces the
@c original text in the buffer.  The result of encoding is ``raw bytes,''
@c but the buffer remains multibyte if it was multibyte before.
$B$3$N4X?t$O!"%3!<%G%#%s%0%7%9%F%`(B@var{coding-system}$B$K=>$C$F(B
@var{start}$B$+$i(B@var{end}$B$N%F%-%9%H$rId9f2=$9$k!#(B
$BId9f2=7k2L$O%P%C%U%!Fb$N$b$H$N%F%-%9%H$rCV$-49$($k!#(B
$BId9f2=7k2L$O!X@8$N%P%$%H!Y$G$"$k$,!"(B
$B%^%k%A%P%$%H$G$"$C$?%P%C%U%!$O%^%k%A%P%$%H$N$^$^$G$"$k!#(B
@end defun

@defun encode-coding-string string coding-system
@tindex encode-coding-string
@c This function encodes the text in @var{string} according to coding
@c system @var{coding-system}.  It returns a new string containing the
@c encoded text.  The result of encoding is a unibyte string of ``raw bytes.''
$B$3$N4X?t$O!"%3!<%G%#%s%0%7%9%F%`(B@var{coding-system}$B$K=>$C$F(B
$BJ8;zNs(B@var{string}$B$N%F%-%9%H$rId9f2=$9$k!#(B
$BId9f2=$7$?%F%-%9%H$r4^$`?7$?$JJ8;zNs$rJV$9!#(B
$BId9f2=7k2L$O!X@8$N%P%$%H!Y$N%f%K%P%$%HJ8;zNs$G$"$k!#(B
@end defun

@defun decode-coding-region start end coding-system
@tindex decode-coding-region
@c This function decodes the text from @var{start} to @var{end} according
@c to coding system @var{coding-system}.  The decoded text replaces the
@c original text in the buffer.  To make explicit decoding useful, the text
@c before decoding ought to be ``raw bytes.''
$B$3$N4X?t$O!"%3!<%G%#%s%0%7%9%F%`(B@var{coding-system}$B$K=>$C$F(B
@var{start}$B$+$i(B@var{end}$B$N%F%-%9%H$rI|9f2=$9$k!#(B
$BI|9f2=7k2L$O%P%C%U%!Fb$N$b$H$N%F%-%9%H$rCV$-49$($k!#(B
$BL@<(E*$JI|9f2=$,M-MQ$G$"$k$?$a$K$O!"(B
$BI|9f2=A0$N%F%-%9%H$O!X@8$N%P%$%H!Y$G$"$k$3$H!#(B
@end defun

@defun decode-coding-string string coding-system
@tindex decode-coding-string
@c This function decodes the text in @var{string} according to coding
@c system @var{coding-system}.  It returns a new string containing the
@c decoded text.  To make explicit decoding useful, the contents of
@c @var{string} ought to be ``raw bytes.''
$B$3$N4X?t$O!"%3!<%G%#%s%0%7%9%F%`(B@var{coding-system}$B$K=>$C$F(B
$BJ8;zNs(B@var{string}$B$N%F%-%9%H$rI|9f2=$9$k!#(B
$BI|9f2=$7$?%F%-%9%H$r4^$`?7$?$JJ8;zNs$rJV$9!#(B
$BL@<(E*$JI|9f2=$,M-MQ$G$"$k$?$a$K$O!"(B
$BI|9f2=A0$N(B@var{string}$B$NFbMF$O!X@8$N%P%$%H!Y$G$"$k$3$H!#(B
@end defun

@node Terminal I/O Encoding
@c @subsection Terminal I/O Encoding
@subsection $BC<KvF~=PNO$NId9f2=(B

@c   Emacs can decode keyboard input using a coding system, and encode
@c terminal output.  This is useful for terminals that transmit or display
@c text using a particular encoding such as Latin-1.  Emacs does not set
@c @code{last-coding-system-used} for encoding or decoding for the
@c terminal.
Emacs$B$O!"%3!<%G%#%s%0%7%9%F%`$rMQ$$$F%-!<%\!<%IF~NO$rI|9f2=$7$?$j!"(B
$BC<Kv=PNO$rId9f2=$G$-$^$9!#(B
Latin-1$B$J$I$NFCDj$NId9f$rMQ$$$F%F%-%9%H$rAw?.$7$?$jI=<($9$k(B
$BC<Kv$KBP$7$F$O!"$3$l$OM-MQ$G$9!#(B
Emacs$B$O!"C<Kv$KBP$9$kId9f2=$dI|9f2=$G$O(B
@code{last-coding-system-used}$B$K@_Dj$7$^$;$s!#(B

@defun keyboard-coding-system
@tindex keyboard-coding-system
@c This function returns the coding system that is in use for decoding
@c keyboard input---or @code{nil} if no coding system is to be used.
$B$3$N4X?t$O!"%-!<%\!<%IF~NO$NI|9f2=$KMQ$$$F$$$k(B
$B%3!<%G%#%s%0%7%9%F%`$rJV$9!#(B
$B%3!<%G%#%s%0%7%9%F%`$r;HMQ$7$F$$$J$1$l$P(B@code{nil}$B$rJV$9!#(B
@end defun

@defun set-keyboard-coding-system coding-system
@tindex set-keyboard-coding-system
@c This function specifies @var{coding-system} as the coding system to
@c use for decoding keyboard input.  If @var{coding-system} is @code{nil},
@c that means do not decode keyboard input.
$B$3$N4X?t$O!"%-!<%\!<%IF~NO$NI|9f2=$K;HMQ$9$k%3!<%G%#%s%0%7%9%F%`$H$7$F(B
@var{coding-system}$B$r;XDj$9$k!#(B
@var{coding-system}$B$,(B@code{nil}$B$G$"$k$H!"(B
$B%-!<%\!<%IF~NO$KI|9f2=$rMQ$$$J$$$3$H$r0UL#$9$k!#(B
@end defun

@defun terminal-coding-system
@tindex terminal-coding-system
@c This function returns the coding system that is in use for encoding
@c terminal output---or @code{nil} for no encoding.
$B$3$N4X?t$O!"C<Kv=PNO$NId9f2=$KMQ$$$F$$$k(B
$B%3!<%G%#%s%0%7%9%F%`$rJV$9!#(B
$B%3!<%G%#%s%0%7%9%F%`$r;HMQ$7$F$$$J$1$l$P(B@code{nil}$B$rJV$9!#(B
@end defun

@defun set-terminal-coding-system coding-system
@tindex set-terminal-coding-system
@c This function specifies @var{coding-system} as the coding system to use
@c for encoding terminal output.  If @var{coding-system} is @code{nil},
@c that means do not encode terminal output.
$B$3$N4X?t$O!"C<Kv=PNO$NId9f2=$K;HMQ$9$k%3!<%G%#%s%0%7%9%F%`$H$7$F(B
@var{coding-system}$B$r;XDj$9$k!#(B
@var{coding-system}$B$,(B@code{nil}$B$G$"$k$H!"(B
$BC<Kv=PNO$KId9f2=$rMQ$$$J$$$3$H$r0UL#$9$k!#(B
@end defun

@node MS-DOS File Types
@c @subsection MS-DOS File Types
@subsection MS-DOS$B$N%U%!%$%k7?(B
@c @cindex DOS file types
@c @cindex MS-DOS file types
@c @cindex Windows file types
@c @cindex file types on MS-DOS and Windows
@c @cindex text files and binary files
@c @cindex binary files and text files
@cindex DOS$B$N%U%!%$%k7?(B
@cindex MS-DOS$B$N%U%!%$%k7?(B
@cindex Windows$B$N%U%!%$%k7?(B
@cindex $B%U%!%$%k7?!"(BMS-DOS$B$H(BWindows
@cindex $B%F%-%9%H%U%!%$%k$H%P%$%J%j%U%!%$%k(B
@cindex $B%P%$%J%j%U%!%$%k$H%F%-%9%H%U%!%$%k(B

@c   Emacs on MS-DOS and on MS-Windows recognizes certain file names as
@c text files or binary files.  By ``binary file'' we mean a file of
@c literal byte values that are not necessary meant to be characters.
@c Emacs does no end-of-line conversion and no character code conversion
@c for a binary file.  Meanwhile, when you create a new file which is
@c marked by its name as a ``text file'', Emacs uses DOS end-of-line
@c conversion.
MS-DOS$B$d(BMS-Windows$B>e$N(BEmacs$B$O!"(B
$BFCDj$N%U%!%$%kL>$r%F%-%9%H%U%!%$%k$d%P%$%J%j%U%!%$%k$H$7$FG'<1$7$^$9!#(B
$B!X%P%$%J%j%U%!%$%k!Y$H$O!"I,$:$7$bJ8;z$r0UL#$7$J$$%P%$%HCM$N%U%!%$%k$G$9!#(B
Emacs$B$O!"%P%$%J%j%U%!%$%k$KBP$7$F$O9TKvJQ49$dJ8;z%3!<%IJQ49$r9T$$$^$;$s!#(B
$B0lJ}!"$=$NL>A0$+$i!X%F%-%9%H%U%!%$%k!Y$H0u$,IU$$$?(B
$B?75,%U%!%$%k$r:n@.$9$k$H!"(BEmacs$B$O(BDOS$B$N9TKvJQ49$r9T$$$^$9!#(B

@defvar buffer-file-type
@c This variable, automatically buffer-local in each buffer, records the
@c file type of the buffer's visited file.  When a buffer does not specify
@c a coding system with @code{buffer-file-coding-system}, this variable is
@c used to determine which coding system to use when writing the contents
@c of the buffer.  It should be @code{nil} for text, @code{t} for binary.
@c If it is @code{t}, the coding system is @code{no-conversion}.
@c Otherwise, @code{undecided-dos} is used.
$B$3$NJQ?t$O!"3F%P%C%U%!$G<+F0E*$K%P%C%U%!%m!<%+%k$K$J$j!"(B
$B%P%C%U%!$GK,Ld$7$?%U%!%$%k$N%U%!%$%k7?$r5-O?$9$k!#(B
$B%P%C%U%!$,(B@code{buffer-file-coding-system}$B$G(B
$B%3!<%G%#%s%0%7%9%F%`$r;XDj$7$J$$>l9g!"(B
$B%P%C%U%!FbMF$r=q$-=P$9$H$-$KMQ$$$k%3!<%G%#%s%0%7%9%F%`$r(B
$B$3$NJQ?t$rMQ$$$F7hDj$9$k!#(B
$B%F%-%9%H$KBP$7$F$O(B@code{nil}$B!"%P%$%J%j$KBP$7$F(B@code{t}$B$G$"$k$3$H!#(B
$B$3$l$,(B@code{t}$B$G$"$k$H!"%3!<%G%#%s%0%7%9%F%`$O(B@code{no-conversion}$B$G$"$k!#(B
$B$5$b$J$1$l$P!"(B@code{undecided-dos}$B$rMQ$$$k!#(B

@c Normally this variable is set by visiting a file; it is set to
@c @code{nil} if the file was visited without any actual conversion.
$BDL>o!"$3$NJQ?t$O%U%!%$%k$rK,Ld$9$k$H@_Dj$5$l$k!#(B
$B$$$+$J$kJQ49$b9T$o$:$K%U%!%$%k$rK,Ld$9$k$H(B@code{nil}$B$K@_Dj$5$l$k!#(B
@end defvar

@defopt file-name-buffer-file-type-alist
@c This variable holds an alist for recognizing text and binary files.
@c Each element has the form (@var{regexp} . @var{type}), where
@c @var{regexp} is matched against the file name, and @var{type} may be
@c @code{nil} for text, @code{t} for binary, or a function to call to
@c compute which.  If it is a function, then it is called with a single
@c argument (the file name) and should return @code{t} or @code{nil}.
$B$3$NJQ?t$O!"%F%-%9%H!?%P%$%J%j%U%!%$%k$rG'<1$9$k$?$a$NO"A[%j%9%H$rJ];}$9$k!#(B
$B3FMWAG$O(B(@var{regexp} . @var{type})$B$N7A$G$"$k!#(B
$B$3$3$G!"(B@var{regexp}$B$O%U%!%$%kL>$KBP$7$F0lCW$r$H$j!"(B
@var{type}$B$O!"%F%-%9%H%U%!%$%k$G$O(B@code{nil}$B!"(B
$B%P%$%J%j%U%!%$%k$G$O(B@code{t}$B!"$"$k$$$O!"(B
$B$I$A$i$G$"$k$+$r7W;;$9$k$?$a$K8F$S=P$94X?t$G$"$k!#(B
$B$=$l$,4X?t$G$"$k$H!"(B1$B$D$N0z?t!J%U%!%$%kL>!K$G8F$P$l!"(B
@code{t}$B$+(B@code{nil}$B$rJV$9$3$H!#(B

@c Emacs when running on MS-DOS or MS-Windows checks this alist to decide
@c which coding system to use when reading a file.  For a text file,
@c @code{undecided-dos} is used.  For a binary file, @code{no-conversion}
@c is used.
MS-DOS$B$d(BMS-Windows$B$GF0:n$7$F$$$k(BEmacs$B$O!"(B
$B$3$NO"A[%j%9%H$rD4$Y$F!"%U%!%$%k$rFI$`:]$K;HMQ$9$k(B
$B%3!<%G%#%s%0%7%9%F%`$r7hDj$9$k!#(B
$B%F%-%9%H%U%!%$%k$G$O(B@code{undecided-dos}$B$,;H$o$l$k!#(B
$B%P%$%J%j%U%!%$%k$G$O(B@code{no-conversion}$B$,;H$o$l$k!#(B

@c If no element in this alist matches a given file name, then
@c @code{default-buffer-file-type} says how to treat the file.
$B;XDj$7$?%U%!%$%k$,$3$NO"A[%j%9%H$NMWAG$K0lCW$7$J$$$H!"(B
@code{default-buffer-file-type}$B$,%U%!%$%k$N07$$J}$r;XDj$9$k!#(B
@end defopt

@defopt default-buffer-file-type
@c This variable says how to handle files for which
@c @code{file-name-buffer-file-type-alist} says nothing about the type.
$B$3$NJQ?t$O!"(B@code{file-name-buffer-file-type-alist}$B$,;XDj$7$J$$7?$N(B
$B%U%!%$%k$N07$$J}$r;XDj$9$k!#(B

@c If this variable is non-@code{nil}, then these files are treated as
@c binary: the coding system @code{no-conversion} is used.  Otherwise,
@c nothing special is done for them---the coding system is deduced solely
@c from the file contents, in the usual Emacs fashion.
$B$3$NJQ?t$,(B@code{nil}$B0J30$G$"$k$H!"$=$N$h$&$J%U%!%$%k$O%P%$%J%j$H$7$F07$o$l!"(B
$B%3!<%G%#%s%0%7%9%F%`(B@code{no-conversion}$B$rMQ$$$k!#(B
$B$5$b$J$1$l$P$=$l$i$KBP$7$FFCJL$J$3$H$r9T$o$:$K!"(B
Emacs$B$NDL>o$N$H$*$j$K%U%!%$%kFbMF$+$i%3!<%G%#%s%0%7%9%F%`$r7hDj$9$k!#(B
@end defopt

@node Input Methods
@c @section Input Methods
@section $BF~NOJ}<0(B
@c @cindex input methods
@cindex $BF~NOJ}<0(B

@c   @dfn{Input methods} provide convenient ways of entering non-@sc{ASCII}
@c characters from the keyboard.  Unlike coding systems, which translate
@c non-@sc{ASCII} characters to and from encodings meant to be read by
@c programs, input methods provide human-friendly commands.  (@xref{Input
@c Methods,,, emacs, The GNU Emacs Manual}, for information on how users
@c use input methods to enter text.)  How to define input methods is not
@c yet documented in this manual, but here we describe how to use them.
@dfn{$BF~NOJ}<0(B}$B!J(Binput method$B!K$O!"(B
$B%-!<%\!<%I$+$iHs(B@sc{ASCII}$BJ8;z$rF~NO$9$k4JJX$JJ}K!$rDs6!$7$^$9!#(B
$B%W%m%0%i%`$,FI$_<h$k$?$a$NHs(B@sc{ASCII}$BJ8;z$NId9fJQ49$r9T$&(B
$B%3!<%G%#%s%0%7%9%F%`$H0[$J$j!"(B
$BF~NOJ}<0$O?M4V8~$1$N%3%^%s%I$rDs6!$7$^$9!#(B
$B!J%F%-%9%H$rF~NO$9$k$?$a$NF~NOJ}<0$N;H$$J}$K$D$$$F$O!"(B
@pxref{Input Methods,, $BF~NOJ}<0(B, emacs, GNU Emacs $B%^%K%e%"%k(B}$B!#!K(B
$BF~NOJ}<0$NDj5AJ}K!$K$D$$$F$OK\=q$G$O$^$@L@J82=$7$F$"$j$^$;$s$,!"(B
$B$3$3$G$O$=$l$i$N;H$$J}$K$D$$$F=R$Y$^$9!#(B

@c   Each input method has a name, which is currently a string;
@c in the future, symbols may also be usable as input method names.
$B3FF~NOJ}<0$K$OL>A0$,$"$j$^$9!#(B
$B$=$l$O8=:_$N$H$3$mJ8;zNs$G$9$,!"(B
$B>-Mh$OF~NOJ}<0L>$H$7$F%7%s%\%k$b;H$($k$h$&$K$J$j$^$9!#(B

@tindex current-input-method
@defvar current-input-method
@c This variable holds the name of the input method now active in the
@c current buffer.  (It automatically becomes local in each buffer when set
@c in any fashion.)  It is @code{nil} if no input method is active in the
@c buffer now.
$B$3$NJQ?t$O!"%+%l%s%H%P%C%U%!$G8=:_3h@-$JF~NOJ}<0$NL>A0$rJ];}$9$k!#(B
$B!J$3$NJQ?t$K@_Dj$9$k$H<+F0E*$K%P%C%U%!%m!<%+%k$K$J$k!#!K(B
@code{nil}$B$G$"$k$H!"%P%C%U%!$G$OF~NOJ}<0$,3h@-$G$O$J$$!#(B
@end defvar

@tindex default-input-method
@defvar default-input-method
@c This variable holds the default input method for commands that choose an
@c input method.  Unlike @code{current-input-method}, this variable is
@c normally global.
$B$3$NJQ?t$O!"F~NOJ}<0$rA*$V%3%^%s%I8~$1$N%G%U%)%k%H$NF~NOJ}<0$rJ];}$9$k!#(B
@code{current-input-method}$B$H0[$J$j!"$3$NJQ?t$ODL>o$O%0%m!<%P%k$G$"$k!#(B
@end defvar

@tindex set-input-method
@defun set-input-method input-method
@c This function activates input method @var{input-method} for the current
@c buffer.  It also sets @code{default-input-method} to @var{input-method}.
@c If @var{input-method} is @code{nil}, this function deactivates any input
@c method for the current buffer.
$B$3$N4X?t$O!"%+%l%s%H%P%C%U%!$K$*$$$F(B
$BF~NOJ}<0(B@var{input-method}$B$r3h@-$K$9$k!#(B
@code{default-input-method}$B$K$b(B@var{input-method}$B$r@_Dj$9$k!#(B
@var{input-method}$B$,(B@code{nil}$B$G$"$k$H!"(B
$B$3$N4X?t$O%+%l%s%H%P%C%U%!$NF~NOJ}<0$rIT3h@-$K$9$k!#(B
@end defun

@tindex read-input-method-name
@defun read-input-method-name prompt &optional default inhibit-null
@c This function reads an input method name with the minibuffer, prompting
@c with @var{prompt}.  If @var{default} is non-@code{nil}, that is returned
@c by default, if the user enters empty input.  However, if
@c @var{inhibit-null} is non-@code{nil}, empty input signals an error.
$B$3$N4X?t$O!"%W%m%s%W%H(B@var{prompt}$B$rMQ$$$F%_%K%P%C%U%!$GF~NOJ}<0L>$rFI$`!#(B
@var{default}$B$,(B@code{nil}$B0J30$G$"$k$H!"(B
$B%f!<%6!<$,6u$NF~NO$r$9$k$H%G%U%)%k%H$G$3$l$rJV$9!#(B
$B$7$+$7!"(B@var{inhibit-null}$B$,(B@code{nil}$B0J30$G$"$k$H!"(B
$B6u$NF~NO$O%(%i!<$rDLCN$9$k!#(B

@c The returned value is a string.
$BLa$jCM$OJ8;zNs$G$"$k!#(B
@end defun

@tindex input-method-alist
@defvar input-method-alist
@c This variable defines all the supported input methods.
@c Each element defines one input method, and should have the form:
$B$3$NJQ?t$O!";HMQ2DG=$J$9$Y$F$NF~NOJ}<0$rDj5A$9$k!#(B
$B3FMWAG$O(B1$B$D$NF~NOJ}<0$rDj5A$7!"$D$.$N7A$G$"$k$3$H!#(B

@example
(@var{input-method} @var{language-env} @var{activate-func}
 @var{title} @var{description} @var{args}...)
@end example

@c Here @var{input-method} is the input method name, a string;
@c @var{language-env} is another string, the name of the language
@c environment this input method is recommended for.  (That serves only for
@c documentation purposes.)
$B$3$3$G!"(B@var{input-method}$B$OF~NOJ}<0L>$G$"$jJ8;zNs$G$"$k!#(B
@var{language-env}$B$bJL$NJ8;zNs$G$"$jEv3:F~NOJ}<0$r(B
$B?d>)$9$k8@8l4D6-$NL>A0$G$"$k!#(B
$B!J$3$l$O@bL@J8L\E*$N$?$a$@$1$G$"$k!#!K(B

@c @var{title} is a string to display in the mode line while this method is
@c active.  @var{description} is a string describing this method and what
@c it is good for.
@var{title}$B$O!"$3$NF~NOJ}<0$,3h@-$G$"$k>l9g$K(B
$B%b!<%I9T$KI=<($5$l$kJ8;zNs$G$"$k!#(B
@var{description}$B$O$3$NF~NOJ}<0$H2?8~$-$G$"$k$+$r(B
$B@bL@$9$kJ8;zNs$G$"$k!#(B

@c @var{activate-func} is a function to call to activate this method.  The
@c @var{args}, if any, are passed as arguments to @var{activate-func}.  All
@c told, the arguments to @var{activate-func} are @var{input-method} and
@c the @var{args}.
@var{activate-func}$B$O!"$3$NF~NOJ}<0$r3h@-$K$9$k$?$a$K8F$S=P$94X?t$G$"$k!#(B
@var{args}$B$,$"$l$P(B@var{activate-func}$B$X$N0z?t$H$7$FEO$5$l$k!#(B
$B$D$^$j!"(B@var{activate-func}$B$N0z?t$O(B@var{input-method}$B$H(B@var{args}$B$G$"$k!#(B
@end defvar

@c   The fundamental interface to input methods is through the
@c variable @code{input-method-function}.  @xref{Reading One Event}.
$BF~NOJ}<0$KBP$9$k4pK\E*$J%$%s%?!<%U%'%$%9$O(B
$BJQ?t(B@code{input-method-function}$B$r2p$7$F9T$$$^$9!#(B
@xref{Reading One Event}$B!#(B