THE ELK CODE MANUAL
VERSION 10.8.1

K

J. K. DEWHURST, S. SHARMA
L. NORDSTROM, F. CriccHIO, O. GRANAS
E. K. U. Gross

Contents

(I__Introduction|

2

Acknowledgments|

B Unitsl

[4

Compiling and running Elk]|

4.1 Compiling the code|.
411 Parallelismin BIKl 0 o
k.2 Memory requirements| L L
[4.2.1 Stackspace|
4.3 Linking with the Libxc tunctional library]
4.4 Running thecode|.o
[4.4.1 Speciesfiles|
4.4.2 Examples|

Input blocks|

......................................
[p-.o autolimengy|

.4 autoswidthl e e e

12

12

13

13
13
13
14
15
15
15
15
17

....................................... 23
....................................... 23
[p.93 epsstress|. L 24
B34 emaxelnesl. o 24
B35 emaxrfl. o o 24
H.36 fracinrl 24
...................................... 24
8 pe| . . e e 25
.09 fxclrcl. e e e e 25
.40 fxctype] 25
B.AT gmaxrf]. 25
.42 gmaxvr]. e 25
BEZZRADSEl o o 25
44 ghal e 26
BA5S Dmaxvrl. o o e e 26
BAGBXDSEl . - - o o o o e 26
....................................... 26
...................................... 26
B.49 intrabandl. 26
...................................... 26
EETESTIIST . . . o o o e e e e e e 27
...................................... 27
...................................... 27
BT Imaxdos] - - - - - v v o e e e e e 27
BD5 Tmaxil . - - o o o o e e 27
....................................... 27
....................................... 27
...................................... 28
0.09 lorbordcl L 28
BB0 TTAASTD] - - - - o o o o e e e e e e 28
o.61 maxitoep| 28
BEB2maxscll. o o 28
03 mbwgrf]. e e 28
BEBAmixsavel o 28
...................................... 29
....................................... 29
BO6T moleculel 29
D.O68 momfixl. 29
.09 momfixml 29
B70 mommtfix]l 29
BT mommtfixml. 29
BET2mrmEavl. - - . o o oo 30
B3 mstarl o 30
ETAmustarl. o 30
BEZ5mchsel 30
§ DI e e e e e e e e 30
BT7mefvitl. . . . o o oo e 30

....................................... 31
sU ng] PSS 31
.81 nosourcel e e e 31
BERZmotes]o 31
8 pmael e e e e e 31
34 Dl - - o e 32
..................................... 32
....................................... 32
BRTOUZITE . - - o o o o e e 32
[p-88 nxoapwlo|l 32
...................................... 32
...................................... 33
91 p o | 33

92 p o | 33

Jo P o | 33
[0.94 primcell|l 33
....................................... 33
....................................... 34
....................................... 34
H.O8 ramp| 34
.99 readadul e 34
BI00reducebfl 35
EI0Treduceh] o o ot 35
EIMreducel] v oo e 35
H.103reduceq] L 35
. T0drgkmax]. 35
BI0SzmEalll. - - . o o oo e e 35
BI06rmtdeltal L 36
BIOTZmEscEl. o o o 36
...................................... 36
...................................... 36
EIT0scalel o o 36
B.IlIscalel/2/3] 36
BEII2scissor] o o o 36
...................................... 36
BEIldsocscTl. o o 37
p-11ospincore| L. 37
...................................... 37
. IT7spinpol] e 37
p.118spinsprl] L 37
....................................... 37
5. 120ssdph| 37
....................................... 38
BEIZZSWidthl. o o oo e e e 38
BEI23tasksl o 39
g Oatp| - . - - . . . e e e e e e e e e e e e e e e e 41
BI25taullatyl 42

Qoep| . . . - . .o e 42
....................................... 42
PRl . e 42

. 129tforcel. L L 42
. 1o0tefvatl. . . . oo 42
BEI3Ttefvrl o 43
BI32tm3Taxl. 43
...................................... 43
BEI3TErdbIcr] o 43
BI35trdveln 43
BIB0TSEAIAR] - - - - - o v o e e e 43
BISTEshiTT. 44
....................................... 44
....................................... 44
....................................... 44
EI4TvkTem 44
BEIZ2VKIOFT]. o o 44
BTATVAIE] - -« o o o e e e 44
BIIDUMAKEN . - - - o e o e e e 45
BIABWPIOT] . - - o v o o e e e e 45
BEId6usfad e 45
BIATICETDE . - -« « o o oo e e e 45
[6 Contributing to Elk| 46
..................................... A7
[7 Routine/Function Prologues] 48
[7.1 afindtstep (Source File: afindtstep.fo0)[. 48
[7.2 allatoms (Source File: allatoms.f90)]. 48
7.3 atom (Source File: atom.f90)[. oo 49
[7.4 atpstep (Source File: atpstep.f90)|. 50
7.5 axangrot (Source File: axangrot.f90)| 0. 50
[7.6 _axangsu2 (Source File: axangsu2.f90)]. 51
[7.7 _bandstr (Source File: bandstr.f90)] 51
[7.8 bdipole (Source File: bdipole.f90)]. 52
[7.9 bfieldfsm (Source File: bfieldfsm.f90) 52
7.10 brzint (Source File: brzint.f90)] o L 53
[7.11 cAmnconj (Source File: cfmtconj.f90) 53
7.12 charge (Source File: charge.f90)[. L. 54
[7.13 checkmt (Source File: checkmt.fO0)] 55
7.14 clebgor (Source File: clebgor.f90)[. oo 55
[7.15 dielectric (Source File: dielectric.f90)] 56
7.16 dmatsu2 (Source File: dmatsu2.f90)[. 56
7.17 dmatulm (Source File: dmatulm.f90)[. 57
[7.18 dmtotm3 (Source File: dmtotm3.f90)] 57
[7.19 dos (Source File: dos.fO0)] 58
[7.20 efieldmt (Source File: efieldmt.f90)] 59
7.21 elfplot (Source File: elfplot.f90) L. 59

[7.22 eliashberg (Source File: eliashberg.f90)[. 60
E.23 energy (Source File: energy.f90)|. 60
[7.24 engyfdu (Source File: engyfdu.fo0) 62
7.25 erf (Source File: erff90) 62
[7.26 eulerrot (Source File: eulerrot.f90)] 63
7.27 eveqn (Source File: eveqn.f90)[.o oo 63
[7.28 eveqnfv (Source File: eveqnfv.f90)] 64
7.29 eveqnfvr (Source File: eveqnfvr.f90)|o 64
[7.30 factr (Source File: factr.f90)] 65
7.31 fderiv (Source File: fderiv.f90)|.o 65
[7.32_findband (Source File: findband.f90)] 66
[7.33_findlambda (Source File: findlambda.fo0)] 67
E.34 findngkmax (Source File: findngkmax.f90)] 67
[7.35 findprimcell (Source File: findprimecell.f90). 68
7.36 findswidth (Source File: findswidth.f90)[. 68
[7.37 findsymecrys (Source File: findsymerys.f90)]. 69
7.38 findsym (Source File: findsym.f90)] 69
[7.39 findsymlat (Source File: findsymlat.f90)] 70
7.40 force (Source File: force.f90)|. 71
[7.41 forcek (Source File: forcek.f90)] 72
7.42 fsmooth (Source File: fsmooth.f90)| 73
[7.43 fyukawa0 (Source File: fyukawa0.f90)]. 73
[7.44 fyukawa (Source File: fyukawa.fO0) 74
[7.45 gaunt (Source File: gaunt.fO0)]. 74
[7.46 gauntyry (Source File: gauntyry.f90)] 75
7.47 ged (Source File: ged.f90) oo 75
[7.48 genafieldt (Source File: genafieldt.fO0)] 75
7.49 genapwir (Source File: genapwfr.f90)] 76
[7.50 gencfun (Source File: gencfun.f0)] 77
7.51 gencore (Source File: gencore.f90)|. 7
[7.52 genfdu (Source File: genfdu.fo0) 78
7.53 genfdufr (Source File: genfdufrf90)[. 78
E.54 genffacgp (Source File: genﬁaegp.@l 79
E.55 gengclq (Source File: gengelq.f90)]., 79
[7.56 gengkvec (Source File: gengkvec.f90)] 80
[7.57 gengvec (Source File: gengvecf90) 81
7.58 genidxlo (Source File: genidxlo.f90). L. 81
[7.59 genjlgprmt (Source File: genjleprmt.f90) 82
7.60 genkmat (Source File: genkmat.f90)] 82
[7.61 genlmirep (Source File: genlmirep.fo0)] 83
7.62 genlofr (Source File: genlofr.f90)] 83
[7.63 genpmatk (Source File: genpmatk.f90) 84
7.64 genppts (Source File: genppts.f90)| o o000 85
E.65 genrlmv (Source File: genrlmv.f90)| 86
|7.66 genrmesh (Source File: genrmesh.f90)] 86
|Z.6_7gensdmat (Source File: gensdmat.@ﬂ 87
[7.68 gensfacgp (Source File: gensfacgp.fo0) 87
7.69 genshtmat (Source File: genshtmat.f90)| 88

[7.70 genspchi0 (Source File: genspchi0.f90)[. 88

menvclmﬂ (Source File: genvcll221.f9§§| 89
[7.72 genvcl1223 (Source File: genvel1223.90) 90
7.73 genveedu (Source File: genveedu.f90)o 90
[7.74 genvmatmt (Source File: genvmatmt.f90)] 91
7.75 genvsig (Source File: genvsig.f90)| 92
[7.76 genwfsv (Source File: genwfsv.f90)] 92
7.77 genylmg (Source File: genylmg.f90)[. 93
[7.78 genylmv (Source File: genylmv.f90). 93
7.79 getevecfv (Source File: getevecfv.f90)[.o 94
[7.80 getvcl1221 (Source File: getvell221.090)] 95
[7.81 getvcll223 (Source File: getvell223.090) 95
E.82 ggair_1 (Source File: ggair 1.f90)] 96
[7.83 ggair 2a (Source File: ggair 2a.f90)] 96
7.84 ggair 2b (Source File: ggair 2b.f90)[. 96
[7.85 ggair sp_1 (Source File: ggair sp 1.F90)] 97
7.86 ggair_sp_2a (Source File: ggair sp_2a.f90)]. 97
[7.87 ggair sp_2b (Source File: ggair sp 2b.f90) 98
7.88 ggamt_1 (Source File: ggamt_1.f90) 98
[7.89 ggamt_2a (Source File: ggamt 2a.f90)]. 98
7.90 ggamt 2b (Source File: ggamt 2b.f90)[. o000 99
[7.91 ggamt_sp_1 (Source File: ggamt_sp_1.190)] 99
E.92 ggamt_sp_2a (Source File: ggamt,sp,Qa.@ 100
[7.93 ggamt_sp_2b (Source File: ggamt_sp2b.f0)] 100
[7.94 gndstate (Source File: gndstate.f90)] 101
7.95 grad2rfmt (Source File: grad2rfmt.f90)| 101
[7.96 gradrfmt (Source File: gradrfmt.f90)] 102
7.97 gradzfmt (Source File: gradzfmt.f90)| 103
[7.98 gridsize (Source File: gridsize.f90) 104
7.99 gwtails (Source File: gwtails.f90)] 0L 105
[7.100hermite (Source File: hermite.fo0) 105
7.101hmlaa (Source File: hmlaa.f90)| 106
[7.102hmlistl (Source File: hmlistl.f90)] 106
[7.103hmlrad (Source File: hmlrad.f90)] 107
[7.104i3minv (Source File: i3minv.f90)] 108
[7.105i3mtv (Source File: i3mtv.f90)]., 108
7.106init0 (Source File: init0.f90)[. 108
[7.107init1 (Source File: mit1.f90)] 109
7.108k_tfvwl (Source File: k tfvwl.f90)] 110
[7.109k tfvw (Source File: k tfvw.f90)]. 110
7.110k_tfvw_sp (Source File: k_ tfvw_sp.f90)[. 111
7.1lllinengﬂ§0urce File: linengy.f90)] 111
7.112lopzfim (Source File: lopzflm.f90)| 112
[7.113massnucl (Source File: massnucl.f90)] 112
[7.114match (Source File: match.fO0) 113
[7.115mixadapt (Source File: mixadapt.f90)] 114
[7.116randomu (Source File: modrandom.fo0)| 115
7.117xcifc (Source File: modxcifc.f90)| o Lo 115

[7.118getxcdata (Source File: modxcifc.f90)] 117

E.llQmoment (Source File: moment.fO0)| 118
[7.120mossbauer (Source File: mossbauerf90) 118
7.121mtdmin (Source File: mtdmin.f90)| oL 119
[7.122nfftifc (Source File: nfftifc.fO0) 119
7.123nonlinopt (Source File: nonlinopt.f90)] 120
[7.124numlist (Source File: numlist.f90)]. 120
7.1250ccupy (Source File: occupy.f90)| 121
[7.1260lpistl (Source File: olpistl.f90)] 121
7.127olprad (Source File: olprad.f90)]o 122
[7.128pade (Source File: pade.fO0)|. 122
[7.129plot1d (Source File: plot1d.f90)] 123
[7.130plot2d (Source File: plot2d.f90)] 123
[7.131plot3d (Source File: plot3d.fo0) 124
7.132plotptld (Source File: plotpt1d.f90) 124
[7.133polar (Source File: polarf90) 125
7.134polynm (Source File: polynm.f90)|. 125
[7.135potcoul (Source File: potcoul.f90). 126
7.136potdmag (Source File: potdmag.f90)| 126
[7.137potks (Source File: potks.f90) 127
7.138potnucl (Source File: potnucl.f90)]. 128
E.139potplot (Source File: potplot.f90)| 128
[7.140potxc (Source File: potxc.f90)]. 129
[7.141r3cross (Source File: r3cross.f90)|, 129
[7.142r3frac (Source File: r3frac.f90)] 130
7.143r3mdet (Source File: r3mdet.f90)o o oo 130
[7.144r3minv (Source File: r3minv.f90)] 130
7.145r3mm (Source File: r3mm.f90)|o 131
[7.146r3mmt (Source File: r3mmt.f90)] 131
7.147r3mtm (Source File: r3mtm.f90)] 132
[7.148r3mtv (Source File: r3mtv.f90)], 132
7.149r3mv (Source File: r3mv.f90)|o oo 132
[7.150radnucl (Source File: radnucl.fO0)|. 133
[7.151rdirac (Source File: rdirac.f90) 133
E.152rdiracint (Source File: rdiracint.f90)| L. 134
[7.153rdmdedc (Source File: rdmdedc.f90)] 135
7.154rdmdedn (Source File: rdmdedn.f90)l oL 135
[7.155rdmdexcdc (Source File: rdmdexcdc.f90)] 136
7.156rdmdexcdn (Source File: rdmdexcdn.f90)] L. 136
[7.157rdmdkdc (Source File: rdmdkdc.fO0) 137
7.158rdmdtsdn (Source File: rdmdtsdn.f90)l L 137
[7.159rdmenergy (Source File: rdmenergy.fo0)] 138
7.160rdmengyxc (Source File: rdmengyxc.f90)[. 138
E.lGlrdmentropy (Source File: rdmentropy.fo0)| 139
[7.162rdmeval (Source File: rdmeval.fO0)] 139
[7.163rdmft (Source File: rdmft.f00)]. 139
[7.164rdmminc (Source File: rdmminc.f90)] 140
7.165rdmminn (Source File: rdmminn.f90)[.o 140

[7.166rdmvaryc (Source File: rdmvaryc.f90)] 141

Wrdmvaryn (Source File: rdmvaryn.f90)] 141
[7.168rdmwritededn (Source File: rdmwritededn.f90) 142
7.169rdmwriteengy (Source File: rdmwriteengy.f90)[. 142
[7.170readefm (Source File: readefm.fO0) 143
7.171readinput (Source File: readinput.f90)] 143
[7.172readstate (Source File: readstate.f90)]. 144
7.173reciplat (Source File: reciplat.f90)|.o L 144
[7.174xfinp (Source File: rfinp.f90). 145
7.175rfinterp (Source File: rfinterp.f90)[. 145
@rﬁrctof (Source File: rfirctof.f90) oL 146
[7.177rfmtctof (Source File: rfmtctof.f90)] 146
[7.178rfmtinp (Source File: rfmtinp.f90)]. 147
[7.179rfmtIm (Source File: rfmtlm.f90) 147
7.180rhocore (Source File: rhocoref90). 148
[7.181rhoinit (Source File: thoinit.f90) 148
7.182rhomagk (Source File: thomagk.f90)] 149
[7.183rhomagsh (Source File: rhomagsh.fO0) 150
7.184rhonorm (Source File: thonorm.f90)[. 150
[7.185rhoplot (Source File: thoplot.fO0) 151
7.186rotaxang (Source File: rotaxang.f90)| 151
Wroteulerzgource File: roteuler.f90)] 152
[7.188rotrflm (Source File: rotrfmt.f90)] 152
E.189rlmrot (Source File: rotrfmt.f90)] 153
[7.190rotzflm (Source File: rotzAm.f90) 154
7.191rschrodint (Source File: rschrodint.f90)|. 154
[7.192rtozflmn (Source File: rtozfmt.f90)], 155
7.193rvicross (Source File: rvfcross.f90)| L 156
[7.194sbesseldm (Source File: sbesseldm.f90)] 157
7.195sbessel (Source File: sbessel.f90)| L 157
[7.196sbesseli (Source File: sbesselif90)]. 158
7.197sdelta (Source File: sdelta.f90)] 159
[7.198getsdata (Source File: sdelta.f90)] 159
[7.199sdelta_fd (Source File: sdeltafd.fO0)] 160
[7.200sdelta_mp (Source File: sdeltamp.f90)] 160
[7.201sdelta_sq (Source File: sdelta_sq.fO0)] 161
7.202sfacmag (Source File: sfacmag.f90)] 161
[7.203sfacrho (Source File: sfacrho.f90)] 162
7.204shankeli (Source File: shankeli.f90)[. 162
[7.205s0rt (Source File: sort.f90)]. 163
7.206sortidx (Source File: sortidx.f90)lo 163
[7.207sphcover (Source File: sphcover.f90) 164
7.208sphcrd (Source File: spherd.f90)] 164
E.2095pline (Source File: splinef90)]. 165
[7.210stheta (Source File: stheta.fo0)] 165
[7.211stheta_fd (Source File: sthetafd.f90)] 166
[7.212stheta_mp (Source File: sthetamp.f90)]. 166
7.213stheta_sq (Source File: stheta_sq.f90)| 167

[7.214sumrule (Source File: sumrule.f90)| 167
[7.215symurf (Source File: symrfif00). 168
[7.216symrfir (Source File: symrfir.f90)] 168
7.217symrvf (Source File: symrvff90) oo oL 169
[7.218symrvfir (Source File: symrvfir.f90)]. 170
7.219symveca (Source File: symveca.f90)[. 171
[7.220timesec (Source File: timesec.f90). 171
7.221tm2todm (Source File: tm2todm.f90). 172
[7.222tm3todm (Source File: tm3todm.f90)]. 172
7.223trzhmm (Source File: trzhmm.f90)] 174
E.224unitary (Source File: unitary.f90)] 174
[7.225vectbz (Source File: vectbz.fO0) 174
[7.226vecplot (Source File: vecplot.f90)] 175
[7.227wfmtfv (Source File: wimtfv.f90) 175
7.228wigner3j (Source File: wigner3j.f90)] 176
[7.229wigner3jf (Source File: wigner3jif.fo0). 177
7.230writeefg (Source File: writeefg.f90)] o000 177
[7.231writeefm (Source File: writeefm.fO0) 178
7.232writeeval (Source File: writeeval.f90)|o oL 178
[7.233writegclq (Source File: writegelq.f90)] 179
7.234writegeom (Source File: writegeom.f90)|o 179
[7.235writeiad (Source File: writeiad.f90)] 180
[7.236writeinfo (Source File: writeinfo.f90)] 180
[7.237writekpts (Source File: writekpts.f90)] 181
[7.238writelinen (Source File: writelinen.f90)] 181
7.239writepmat (Source File: writepmat.f90)| 181
[7.240writestate (Source File: writestatef90) 182
7.241writesym (Source File: writesym.f90)[. 182
[7.242writetddos (Source File: writetddos.f90) 183
7.243writetm3 (Source File: writetm3.f90)[. 183
[7.244writevcl1221 (Source File: writevel1221.690)] 184
7.245writevcl1223 (Source File: writevel1223.90)] L. 184
[7.246xc_am05 (Source File: xc.am05.090)]. 184
mxc,am%,point (Source File: xc.am05.90)] 185
[7.248xc_am05_1dax (Source File: xccam05.f90)]. 186
[7.249xc_am05_ldapwc (Source File: xc.am05.f90)] 186
7.250xc_am05 _labertw (Source File: xc_am05.£90)[. 186
[7.251xc_pbe (Source File: xc pbe.f90)], 187
7.252xc_pwca (Source File: xc_pwca.f90)o 188
[7.253xc_pzca (_Source File: xc,pzca.f9_05| 188
7.254xc_vbh (Source File: xc_vbh.f90)|o o L 189
[7.255%c_xalpha (Source File: xc xalpha.f90)] 190
7.256ylmrot (Source File: ylmrot.f90)], 190
Wylmroty (Source File: ylmroty.fo0) 191
[7.258z2mctm (Source File: z22mctm.fO0)], 191
[7.259z2mmct (Source File: z2mmct.fO0)] 192
[7.260z2mm (Source File: z2mm.f90)] 192
7.261zbsht (Source File: zbsht.f90)[. L L 192

[7.262zfmtinp (Source File: zfmtinp.f90)|

....................... 193
[7.263zIsht (Source File: zfsht.f00)]. 194
[7.264zftrf (Source File: zftrf.f90)] 194
7.265zmdet (Source File: zmdet.f90)| o Lo 195
[7.266zpotclmt (Source File: zpotclmt.f90)] 196
7.267zpotcoul (Source File: zpotcoul f90)|o 196
[7.268ztorflmn (Source File: ztorfmt.f90) 199

11

1 Introduction

Welcome to the Elk Code! Elk is an all-electron full-potential linearised augmented-plane-
wave (FP-LAPW) code for determining the properties of crystalline solids. It was developed
originally at the Karl-Franzens-Universitit Graz as part of the EXCITING EU Research and
Training Network projectﬂ The guiding philosophy during the implementation of the code
was to keep it as simple as possible for both users and developers without compromising on
its capabilities. All the routines are released under either the GNU General Public License
(GPL) or the GNU Lesser General Public License (LGPL) in the hope that they may inspire
other scientists to implement new developments in the field of density functional theory and
beyond.

2 Acknowledgments

Lots of people contributed to the Elk code with ideas, checking and testing, writing code or
documentation and general encouragement. They include Claudia Ambrosch-Draxl, Clas
Persson, Fredrik Bultmark, Christian Brouder, Rickard Armiento, Andrew Chizmeshya,
Per Anderson, Igor Nekrasov, Sushil Auluck, Frank Wagner, Fateh Kalarasse, Jiirgen Spi-
taler, Stefano Pittalis, Nektarios Lathiotakis, Tobias Burnus, Stephan Sagmeister, Chris-
tian Meisenbichler, Sébastien Lebegue, Yigang Zhang, Fritz Kérmann, Alexey Baranov,
Anton Kozhevnikov, Shigeru Suehara, Frank Essenberger, Antonio Sanna, Tyrel McQueen,
Tim Baldsiefen, Marty Blaber, Anton Filanovich, Torbjorn Bjorkman, Martin Stankovski,
Jerzy Goraus, Markus Meinert, Daniel Rohr, Vladimir Nazarov, Kevin Krieger, Pink Floyd,
Arkardy Davydov, Florian Eich, Aldo Romero Castro, Koichi Kitahara, James Glasbren-
ner, Konrad Bussmann, Igor Mazin, Matthieu Verstraete, David Ernsting, Stephen Dugdale,
Peter Elliott, Marcin Dulak, José A. Flores Livas, Stefaan Cottenier, Yasushi Shinohara,
Michael Fechner, Yaroslav Kvashnin, Tristan Miiller, Arsenii Gerasimov, Manh Duc Le,
Jon Lafuente Bartolomé, René Wirnata, Jagdish Kumar, Andrew Shyichuk, Nisha Singh,
Pietro Bonfa, Ronald Cohen, Alyn James, Chung-Yu Wang, Leon Kerber, Yunfan Liang,
Xavier Gonze, Mike Bruckhoff, Eddie Harris-Lee, Andreas Fischer, Wenhan Chen and Jyoti
Krishna. Special mention of David Singh’s very useful book on the LAPW methocﬂ must
also be made. Finally we would like to acknowledge the generous support of Karl-Franzens-
Universitat Graz, the EU Marie-Curie Research Training Networks initiative, the Max Born
Institute and the Max Planck Society.

Kay Dewhurst, Sangeeta Sharma
Lars Nordstrom, Francesco Cricchio, Oscar Granés
Hardy Gross

Halle, Berlin, Uppsala and Jerusalem

'EXCITING code developed under the Research and Training Network EXCITING funded by the EU,
contract No. HPRN-CT-2002-00317

D. J. Singh, Plancwaves, Pseudopotentials and the LAPW Method (Kluwer Academic Publishers, Boston,
1994).

12

3 Units

Unless explicitly stated otherwise, Elk uses atomic units. In this system h = 1, the electron
mass m = 1, the Bohr radius ap = 1 and the electron charge e = 1 (note that the electron
charge is positive, so that the atomic numbers Z are negative). Thus the atomic unit of
length is 0.529177210903(80) A, and the atomic unit of energy is the Hartree which equals
27.211386245988(53) €V. The unit of the external magnetic fields is defined such that one
unit of magnetic field in elk.in equals 1715.255541 Tesla.

4 Compiling and running Elk

4.1 Compiling the code

Unpack the code from the archive file. Edit the file make.inc in the elk directory and adjust
the compiler options for your computer system. Use of machine-optimised BLAS/LAPACK
and FFT libraries will result in significant increase in performance. Following this, run

make

This will hopefully compile the entire code and all the libraries into one executable, elk,
located in the elk/src directory. It will also compile two useful auxiliary programs, namely
spacegroup for producing crystal geometries from spacegroup data and eos for fitting
equations of state to energy-volume data. If you want to compile everything all over again,
then run make clean from the elk directory, followed by make.

4.1.1 Parallelism in Elk

Three forms of parallelism are implemented in Elk, and all can be used in combination with
each other, with efficiency depending on the particular task, crystal structure and computer
system. You may need to contact your system administrator for assistance with running
Elk in parallel.

1. OpenMP works for symmetric multiprocessors, i.e. computers that have many cores
with the same unified memory accessible to each. It is enabled by setting the appro-
priate command-line options (e.g. -qopenmp for the Intel compiler) before compiling,
and also at runtime by the environment variable

export OMP_NUM_THREADS=n

where n is the number of cores available on a particular node. The same can be
accomplished in elk.in with

maxthd
n

In addition, some vendor-supplied BLAS/LAPACK libraries use OpenMP internally.
The maximum number of threads used for LAPACK operations by Intel’s MKL can
be set with

13

maxthdmkl
n

2. The message passing interface (MPI) is particularly suitable for running Elk across
multiple nodes of a cluster, with scaling to hundreds of processors possible. To en-
able MPI, comment out the lines indicated in elk/make.inc. Then run make clean
followed by make. If y is the number of nodes and z is the number of cores per node,
then at runtime envoke

mpirun -np z ./elk

where z = zy is the total number of cores available on the machine. Highest effi-
ciency is obtained by using hybrid parallelism with OpenMP on each node and MPI
across nodes. This can be done by compiling the code using the MPI Fortran com-
piler in combination with the OpenMP command-line option. At runtime set export
OMP_NUM_THREADS=x and start the MPI run with one process per node as follows

mpirun -pernode -np y ./elk

The number of MPI processes is reported in the file INFO.0UT which serves as a check
that MPI is running correctly. Note that version 2 of the MPI libraries is required to
run Elk.

3. Phonon calculations use a simple form of parallelism by just examining the run direc-
tory for dynamical matrix files. These files are of the form

DYN_Q99q9q9-9999-9999-Sss_Aaa_Pp.0UT

and contain a single row of a particular dynamical matrix. Elk simply finds which DYN
files do not exist, chooses one and runs it. This way many independent runs of Elk
can be started in the same directory on a networked file system (NFS), and will run
until all the dynamical matrices files are completed. Should a particular run crash,
then delete the associated empty DYN file and rerun Elk.

4.2 Memory requirements

Elk is a memory-bound code and runs best on processors with large caches and a large
number of memory channels per core. Some tasks in Elk require a considerable amount of
memory which can exceed the physical memory of the computer. In such cases, the number
of threads at the first nesting level can be reduced with (for example)

maxthdil
-4

which restricts the number of threads at the first nesting level to maxthd/4. Deeper nesting
levels, which generally require less memory, will still utilise the full compliment of available
threads.

14

4.2.1 Stack space

The latest versions of Elk use stack space aggressively. This is because accessing variables
is faster on the stack than on the heap. This can, however, result in the code crashing as
threads run out of their stack space. To avoid this, increase the stack size for each OpenMP
thread with (for example)

export OMP_STACKSIZE=512M

before running the code.

4.3 Linking with the Libxc functional library

Libxc is a library of exchange-correlation functionals. Elk can use the complete set of LDA
and GGA functionals available in Libxc as well as some meta-GGAs. In order to enable
this, first download and compile Libxc. This should have produced the files 1ibxc.a and
1libxcf03.a in the Libxc directory src/.libs. Copy these to the elk/src directory and
then uncomment the lines indicated for Libxc in elk/make.inc. Once this is done, run
make clean followed by make. To select a particular functional of Libxc, use the block

xctype
100 nx nc

where nx and nc are, respectively, the numbers of the exchange and correlation functionals
in the Libxc library. See the file elk/src/1ibxcf03.£90 for a list of the functionals and
their associated numbers.

4.4 Running the code

As a rule, all input files for the code are in lower case and end with the extension .in.
All output files are uppercase and have the extension .0UT. For most cases, the user will
only need to modify the file elk.in. In this file input parameters are arranged in blocks.
Each block consists of a block name on one line and the block variables on subsequent lines.
Almost all blocks are optional: the code uses reasonable default values in cases where they
are absent. Blocks can appear in any order, if a block is repeated then the second instance
is used. Comment lines can be included in the input file and begin with the ! character.

4.4.1 Species files

The only other input files are those describing the atomic species which go into the crystal.
These files are found in the species directory and are named with the element symbol and
the extension .in, for example Sb.in. They contain parameters like the atomic charge,
mass, muffin-tin radius, occupied atomic states and the type of linearisation required. Here
as an example is the copper species file Cu. in:

’Cu’ : spsymb

’copper’ : spname
-29.0000 : spzn

115837.2716 : spmass

15

0.371391E-06

-
o

ONNDNF,EFP,ORFL, P~ OO

.1500

.1500
.1500

.1500
.1500

.1500
.1500

.1500
.1500

.1500
.1500
.8652

O O P, OO NOOF,H OOOPOONFOF P WWWWWNNDNE

|
N

P WNNEFE, P NP P

SO~ O

O P P DNDDNDEDNDDNDDN

|

2.0000

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

e B e B B B e I B B |

34.8965

The input parameters are defined as follows:

spsymb

The symbol of the element.

spname

The name of the element.

spzn

: rminsp, rmt, rmaxsp, nrmt
: nstsp
: nsp, lsp, ksp, occsp, spcore

: apword

: apweO, apwdm, apwve
: nlx

: 1x, apword

: apwe0O, apwdm, apwve

: nlorb
: lorbl, lorbord
: lorbeO, lorbdm, lorbve

Nuclear charge: should be negative since the electron charge is taken to be postive in the

code; it can also be fractional for purposes of doping.

spmass

Nuclear mass in atomic units.

rminsp, rmt, rmaxsp, nrmt
Respectively, the minimum radius on logarithmic radial mesh; muffin-tin radius; effective

16

infinity for atomic radial mesh; and number of radial mesh points to muffin-tin radius.

nstsp
Number of atomic states.

nsp, 1sp, ksp, occsp, spcore

Respectively, the principal quantum number of the radial Dirac equation; quantum number
[; quantum number k (I or [4+ 1); occupancy of atomic state (can be fractional); .T. if
state is in the core and therefore treated with the Dirac equation in the spherical part of
the muffin-tin Kohn-Sham potential.

apword
Default APW function order, i.e. the number of radial functions and therefore the order of
the radial derivative matching at the muffin-tin surface.

apweO, apwdm, apwve

Respectively, the default APW linearisation energy; the order of the energy derivative of
the APW radial function 0™u(r)/OE™; and .T. if the linearisation energy is allowed to
vary.

nlx

The number of exceptions to the default APW configuration. These should be listed on sub-
sequent lines for particular angular momenta. In this example, the fixed energy APW with
angular momentum d (1x = 2) is replaced with a LAPW, which has variable linearisation
energy.

nlorb
Number of local-orbitals.

lorbl, lorbord
Respectively, the angular momentum [of the local-orbital; and the order of the radial
derivative which goes to zero at the muffin-tin surface.

lorbeO, lorbdm, lorbve
Respectively, the default local-orbital linearisation energy; the order of the energy derivative
of the local-orbital radial function; and .T. if the linearisation energy is allowed to vary.

4.4.2 Examples

The best way to learn to use Elk is to run the examples included with the package. These
can be found in the examples directory and use many of the code’s capabilities. The
following section which describes all the input parameters will be of invaluable assistance.

5 Input blocks

This section lists all the input blocks available. It is arranged with the name of the block
followed by a table which lists each parameter name, what the parameter does, its type and
default value. A horizontal line in the table indicates a new line in elk.in. Below the table
is a brief overview of the block’s function.

5.1 atoms

17

nspecies number of species integer | 0

spfname (i) species filename for species 4 string | -

natoms (i) number of atoms for species 7 integer | -

atposl(j,i) | atomic position in lattice coordinates for atom j real(3) | -

bfcmt (j,1i) | muffin-tin external magnetic field in Cartesian coordinates | real(3) | -
for atom j

Defines the atomic species as well as their positions in the unit cell and the external magnetic
field applied throughout the muffin-tin. These fields are used to break spin symmetry and
should be considered infinitesimal as they do not contribute directly to the total energy.
Collinear calculations are more efficient if the field is applied in the z-direction. One could,
for example, set up an antiferromagnetic crystal by pointing the field on one atom in the
positive z-direction and in the opposite direction on another atom. If molecule is .true.
then the atomic positions are assumed to be in Cartesian coordinates. See also sppath,
bfieldc and molecule.

5.2 autokpt

autokpt | .true. if the k-point set is to be determined automati- | logical | .false.
cally

See radkpt for details.

5.3 autolinengy

autolinengy | .true. if the fixed linearisation energies are to be | logical | .false.
determined automatically

See dlefe for details.

5.4 autoswidth

autoswidth | .true. if the smearing parameter swidth should be | logical | .false.
determined automatically

Calculates the smearing width from the k-point density, Vz/nk; the valence band width,
W; and an effective mass parameter, m*; according to

V2w <3VBZ)1/3

m*

7= 41 ng

The variable mstar then replaces swidth as the control parameter of the smearing width.
A large value of m* gives a narrower smearing function. Since swidth is adjusted accord-
ing to the fineness of the k-mesh, the smearing parameter can then be eliminated. It is
not recommended that autoswidth be used in conjunction with the Fermi-Dirac smearing
function, since the electronic temperature will then be a function of the k-point mesh. See
T. Bjorkman and O. Granés, Int. J. Quant. Chem. DOI: 10.1002/qua.22476 (2010) for
details. See also stype and swidth.

5.5 avec

18

avec(1) | first lattice vector real(3) | (1.0,0.0,0.0)
avec(2) | second lattice vector real(3) | (0.0,1.0,0.0)
avec(3) | third lattice vector real(3) | (0.0,0.0,1.0)

Lattice vectors of the crystal in atomic units (Bohr).

5.6 avecref

’ avecref (1) ‘ first reference lattice vector, etc. \ real(3) \ (0.0,0.0,0.0) ‘

Reference lattice vectors for calculating the G-vector grid and derived quantities. If any
of these elements are non-zero then the code computes the corresponding reciprocal lattice
vectors and set of G-vectors. These are then transformed to be identical to those calculated
with avec. The purpose of this is to enable accurate energy-volume curves, where the
number of grid points should remain fixed for all volumes.

5.7 Dbetal

’ betal ‘ adaptive mixing parameter ‘ real ‘ 0.05 ‘

This determines how much of the potential from the previous self-consistent loop is mixed
with the potential from the current loop. It should be made smaller if the calculation is
unstable. See betamax and also the routine mixadapt.

5.8 Dbetamax

’ betamax ‘ maximum adaptive mixing parameter ‘ real ‘ 0.5 ‘

Maximum allowed mixing parameter used in routine mixadapt.

5.9 bfdmag

bfdmag | .true. if the external B-field diamagnetic coupling term | logical | .false.
should be included

This causes the diamagnetic coupling term

B2r?

Hdia = 8C2

(1-(B-1)?)
to be included in the first-variational Hamiltonian. Note that because this is a scalar

potential, spin-polarisation does not have to be enabled for this term to have an effect.

5.10 Dbfieldc

bfieldc | global external magnetic field in Cartesian coordi- | real(3) | (0.0,0.0,0.0)
nates

This is a constant magnetic field applied throughout the entire unit cell and enters the

second-variational Hamiltonian as p
e -

o
4c

where g, is the electron g-factor. This field is normally used to break spin symmetry for

spin-polarised calculations and considered to be infinitesimal with no direct contribution to

-B,

19

the total energy. In cases where the magnetic field is finite (for example when computing
magnetic response) the external B-field energy reported in INFO.0OUT should be added to the
total by hand. This field is applied throughout the entire unit cell. To apply magnetic fields
in particular muffin-tins use the bfcmt vectors in the atoms block. Collinear calculations
are more efficient if the field is applied in the z-direction.

5.11 Dbfieldcu

bfieldcu | global external magnetic field in Cartesian coordi- | real(3) | (0.0,0.0,0.0)
nates

As with bfieldc but applied only in the ultracell during an ultra long-range calculation.

5.12 Dbforb

bforb | .true. if the external B-field-orbit coupling term should | logical | .false.
be included

This causes the term corresponding to the coupling between an external magnetic field and
the orbit of an electron (orbital paramagnetism)

- 1
Hg, = —B-L

2c

to be added to the second-variational Hamiltonian. Spin-polarisation is automatically en-
abled.

5.13 broydpm

’ broydpm ‘ Broyden mixing parameters o and wg ‘ real ‘ (0.4,0.15) ‘

See mixtype and mixsdb.

5.14 c_tb09

’ c_tb09 ‘ Tran-Blaha constant ¢ ‘ real ‘ - ‘

Sets the constant ¢ in the Tran-Blaha ’09 functional. Normally this is calculated from the
density, but there may be situations where this needs to be adjusted by hand. See Phys.
Rev. Lett. 102, 226401 (2009).

5.15 chgexs

] chgexs \ excess electronic charge \ real \ 0.0 ‘

This controls the amount of charge in the unit cell beyond that required to maintain neu-
trality. It can be set positive or negative depending on whether electron or hole doping is
required.

5.16 cmagz

] cmagz ‘ true. if z-axis collinear magnetism is to be enforced logical | .false.

20

This variable can be set to .true. in cases where the magnetism is predominantly collinear
in the z-direction, for example a ferromagnet with spin-orbit coupling. This will make the
calculation considerably faster at the slight expense of precision.

5.17 deltaem

deltaem | the size of the k-vector displacement used when calculating nu- | real | 0.025
merical derivatives for the effective mass tensor

See ndspem and vklem.

5.18 deltaph

deltaph | size of the atomic displacement used for calculating dynamical | real | 0.01
matrices

Phonon calculations are performed by constructing a supercell corresponding to a particular
g-vector and making a small periodic displacement of the atoms. The magnitude of this
displacement is given by deltaph. This should not be made too large, as anharmonic terms
could then become significant, neither should it be too small as this can introduce numerical
erTor.

5.19 deltast

deltast | size of the change in lattice vectors used for calculating the | real | 0.005
stress tensor

The stress tensor is computed by changing the lattice vector matrix A by
A — (14 dtex)A,

where 6t is an infinitesimal equal in practice to deltast and ey is the k™ strain tensor.
Numerical finite differences are used to compute the stress tensor as the derivative of the
total energy dEj/dt.

5.20 dft+u
dftu type of DEFT+U calculation integer | 0
inpdftu | type of input for DFT+U calculation integer | 1
is species number integer | -
1 angular momentum value integer | -1
u the desired U value real 0.0
j the desired J value real 0.0

This block contains the parameters required for an DFT+U calculation, with the list of
parameters for each species terminated with a blank line. The type of double counting
required is set with the parameter dftu. Currently implemented are:

0 No DFT+U calculation

1 Fully localised limit (FLL)

2 Around mean field (AFM)

3 An interpolation between FLL and AFM

21

The type of input parameters is set with the parameter inpdftu. The current possibilities
are:

U and J

Slater parameters

Racah parameters

Yukawa screening length

5 U and determination of corresponding Yukawa screening length

See (amongst others) Phys. Rev. B 67, 153106 (2003), Phys. Rev. B 52, R5467 (1995),
Phys. Rev. B 60, 10763 (1999), and Phys. Rev. B 80, 035121 (2009).

W N

5.21 dlefe
dlefe | difference between the fixed linearisation energy and the Fermi | real | —0.1
energy

When autolinengy is .true. then the fixed linearisation energies are set to the Fermi
energy plus dlefe.

5.22 dncgga

’ dncgga ‘ small constant used to stabilise non-collinear GGA ‘ real ‘ 1x1078

This small constant, d, is required in order to remove the infinite gradients obtained when
using ‘Kubler’s trick’ in conjunction with GGA and non-collinear magnetism. It is applied
by calculating the up and down densities as

pl(r) = pl(r) + m(r) pHr) = plr) — i(r),

where m(r) = /m?2(r) +d, and should be taken as the smallest value for which the
exchange-correlation magnetic field By, is smooth.

5.23 dosmsum

’ dosmsum ‘ .true. if the partial DOS is to be summed over m logical | .false.

By default, the partial density of states is resolved over (I, m) quantum numbers. If dosmsum
is set to .true. then the partial DOS is summed over m, and thus depends only on .

5.24 dosssum

’ dosssum ‘ .true. if the partial DOS is to be summed over spin logical | .false.

By default, the partial density of states for spin-polarised systems is spin resolved.

5.25 dtimes

] dtimes ‘ time step used in time evolution run ‘ real ‘ 0.1 ‘

See also tstime.

22

5.26 epsband

] epsband ‘ convergence tolerance for determining band energies ‘ real ‘ 1 x10-12

APW and local-orbital linearisation energies are determined from the band energies. This
is done by first searching upwards in energy until the radial wavefunction at the muffin-
tin radius is zero. This is the energy at the top of the band, denoted F;. A downward
search is now performed from FE; until the slope of the radial wavefunction at the muffin-tin
radius is zero. This energy, FE}, is at the bottom of the band. The band energy is taken
as (Ey + Ey,)/2. If either Ey or Ey, is not found, then the band energy is set to the default
value.

5.27 epschg

epschg | maximum allowed error in the calculated total charge beyond | real | 1 x 1073
which a warning message will be issued

5.28 epsengy

’ epsengy ‘ convergence criterion for the total energy ‘ real ‘ 1x1074

See epspot.

5.29 epsforce

epsforce | convergence tolerance for the forces during a geometry op- | real | 5 x 107>
timisation run

If the mean absolute value of the atomic forces is less than epsforce then the geometry
optimisation run is ended. See also tasks and latvopt.

5.30 epslat

epslat | vectors with lengths less than this are considered zero ‘ real ‘ 107° ‘

Sets the tolerance for determining if a vector or its components are zero. This is to account
for any numerical error in real or reciprocal space vectors.

5.31 epsocc
epsocc | smallest occupancy for which a state will contribute to the | real | 1 x 1078
density
5.32 epspot

epspot | convergence criterion for the Kohn-Sham potential and field ‘ real ‘ 1x107°

If the RMS change in the Kohn-Sham potential and magnetic field is smaller than epspot
and the absolute change in the total energy is less than epsengy, then the self-consistent
loop is considered converged and exited. For geometry optimisation runs this results in
the forces being calculated, the atomic positions updated and the loop restarted. See also
epsengy and maxscl.

23

5.33 epsstress

epsstress | convergence tolerance for the stress tensor during a geom- | real | 2 x 1073
etry optimisation run with lattice vector relaxation

See also epsforce and latvopt.

5.34 emaxelnes

emaxelnes | maximum allowed initial-state eigenvalue for ELNES calcula- | real | —1.2
tions
5.35 emaxrf

emaxrf | energy cut-off used when calculating Kohn-Sham response func- | real | 108
tions

A typical Kohn-Sham response function is of the form

Xs(ra I‘,, (’J)

)

Solrw) _ L5~ ALK R
= 7 ’ .
ovs(r',w) Ny ot J w~+ (5x — gjk/) +1in
where p is the density operator; Ny is the number of k-points; ;1 and f; are the eigenvalues
and occupation numbers, respectively. The variable emaxrf is an energy window which
limits the summation over states in the formula above so that |e;x — €permi| < emaxrf.
Reducing this can result in a faster calculation at the expense of accuracy.

5.36 fracinr

fracinr | fraction of the muffin-tin radius up to which 1maxi is used as the | real | 0.01
angular momentum cut-off

If fracinr is negative then the fraction is determined from f = /(1maxi + 1)2/(1maxo + 1)2
in order to maintain a minimum density of points throughout the muffin-tin. See lmaxi
and lmaxo.

5.37 fsmtype

’ fsmtype ‘ fixed spin moment (FSM) type integer ‘ 0 ‘

The magnetic moment, its direction or magnitude can be fixed both globally as well as in
each muffin-tin individually. The options are as follows:

0 no FSM

1 (-1) total moment (direction)

2 (-2) individual muffin-tin moments (direction)
3 (-3) total and muffin-tin moments (direction)

4 total moment magnitude
5 individual muffin-tin moment magnitudes
6 total and muffin-tin moment magnitudes

See also momfix, momfixm, mommtfix, mommtfixm, taufsm and spinpol.

24

5.38 ftmtype

ftmtype | 1 to enable a fixed tensor moment (FTM) calculation, 0 other- | integer | O
wise

If ftmtype is —1 then the symmetry corresponding to the tensor moment is broken but no
FTM calculation is performed. See also tm3fix.

5.39 fxclrc

fxclrc | parameters for the dynamical long-range contribution | real(2) | (0.0,0.0)
(LRC) to the TDDFT exchange-correlation kernel

These are the parameters a and S for the kernel proposed in Phys. Rev. B 72, 125203
(2005), namely

o+ Bw?
FulG. G aw) = - Gg wico.
5.40 fxctype
’ fxctype \ integer defining the type of exchange-correlation kernel fy. ‘ integer ‘ -1 ‘

The acceptable values are:

—1 fxc defined by xctype

0,1 RPA (fxc =0)

200 Long-range contribution (LRC) kernel, S. Botti et al., Phys. Rev. B 72, 125203
(2005); see fxclrc

210 ‘Bootstrap’ kernel, S. Sharma, J. K. Dewhurst, A. Sanna and E. K. U. Gross, Phys.
Rev. Lett. 107, 186401 (2011)

211 Single iteration bootstrap

5.41 gmaxrf
’ gmaxrf ‘ maximum length of |G| for computing response functions ‘ real ‘ 3.0 ‘
5.42 gmaxvr

gmaxvr | maximum length of |G| for expanding the interstitial density and | real | 12.0
potential

This variable has a lower bound which is enforced by the code as follows:
gmaxvr — max (gmaxvr, 2 X gkmax + epslat)

See rgkmax.

5.43 hdbse

hdbse | .true. if the direct term is to be included in the BSE Hamil- | logical | .true.
tonian

25

5.44 highq

] highq ‘ .true. if a high-quality parameter set should be used ‘ logical ‘ .false. ‘

Setting this to .true. results in some default parameters being changed to ensure good
convergence in most situations. These changes can be overruled by subsequent blocks in
the input file. See also vhighgq.

5.45 hmaxvr

’ hmaxvr ‘ maximum length of H-vectors ‘ real ‘ 6.0 ‘

The H-vectors are used for calculating X-ray and magnetic structure factors. They are also
used in linear response phonon calculations for expanding the density and potential in plane
waves. See also gmaxvr, vhmat, reduceh, wsfac and hkmax.

5.46 hxbse

] hxbse ‘ .true. if the exchange term is to be included in the BSE Hamiltonian | .true.

5.47 Thybrid

hybrid | .true if a hybrid functional is to be used when running a | logical | .false
Hartree-Fock calculation

See also hybridc and xctype.

5.48 hybridc

’ hybridc ‘ hybrid functional mixing coefficient ‘ real ‘ 1.0 ‘

5.49 intraband

intraband | .true. if the intraband (Drude-like) contribution is to | logical | .false.
be added to the dieletric tensor

5.50 isgkmax

isgkmax | species for which the muffin-tin radius will be used for calcu- | integer | —1
lating gkmax

The APW cut-off is determined from gkmax = rgkmax/R. The variable isgkmax determines
which muffin-tin radius is to be used for R. These are the options:

-4 Use the largest radius

-3 Use the smallest radius

-2 Use the fixed value R = 2.0

-1 Use the average of the muffin-tin radii

n > 1 Use the radius of species n

26

5.51 kstlist

] kstlist (i) ‘ ith k-point and state pair ‘ integer(2) ‘ (1,1) ‘

This is a user-defined list of k-point and state index pairs which are those used for plotting
wavefunctions and writing L, S and J expectation values. Only the first pair is used by the
aforementioned tasks. The list should be terminated by a blank line.

5.52 latvopt

latvopt | type of lattice vector optimisation to be performed during struc- | integer | 0
tural relaxation

Optimisation of the lattice vectors will be performed with task = 2,3 when latvopt # 0.
When latvopt = 1 the lattice vector optimisation will be constrained only by symmetry.
Optimisation over all symmetry-preserving strains except isotropic scaling is performed
when latvopt = 2. If latvopt < 0 then the optimisation will be over strain number
|Llatvopt|. The list of symmetric strain tensors can be produced with task = 430. By de-
fault (latvopt = 0) no lattice vector optimisation is performed during structural relaxation.
See also tauOlatv and atpopt.

5.53 1lmaxapw

] lmaxapw ‘ angular momentum cut-off for the APW functions integer ‘ 8 ‘

5.54 1lmaxdos

] lmaxdos ‘ angular momentum cut-off for the partial DOS plot integer ‘ 3 ‘

5.55 1lmaxi

Imaxi | angular momentum cut-off for the muffin-tin density and potential | integer | 2
on the inner part of the muffin-tin

Close to the nucleus, the density and potential is almost spherical and therefore the spherical
harmonic expansion can be truncated a low angular momentum. See also fracinr.

5.56 1lmaxo

’ 1lmaxo ‘ angular momentum cut-off for the muffin-tin density and potential | integer ‘ 6 ‘

5.57 1Imirep

lmirep | .true. if the Y}, basis is to be transformed into the basis of | logical | .true.
irreducible representations of the site symmetries for DOS
plotting

When lmirep is set to .true., the spherical harmonic basis is transformed into one in which
the site symmetries are block diagonal. Band characters determined from the density matrix
expressed in this basis correspond to irreducible representations, and allow the partial DOS
to be resolved into physically relevant contributions, for example e, and ta,.

27

5.58 lorbcnd

lorbend | .true. if conduction state local-orbitals are to be auto- | logical | .false.
matically added to the basis

Adding these higher energy local-orbitals can improve calculations which rely on accurate
unoccupied states, such as the response function. See also lorbordc.

5.59 lorbordc

’ lorbordc ‘ the order of the conduction state local-orbitals integer ‘ 2 ‘

See lorbcnd.

5.60 1lradstp

’ lradstp ‘ radial step length for determining coarse radial mesh integer ‘ 4 ‘

Some muffin-tin functions (such as the density) are calculated on a coarse radial mesh and
then interpolated onto a fine mesh. This is done for the sake of efficiency. 1radstp defines
the step size in going from the fine to the coarse radial mesh. If it is too large, loss of
precision may occur.

5.61 maxitoep

maxitoep | maximum number of iterations when solving the exact ex- | integer | 300
change integral equations

See tauloep.

5.62 maxscl

maxscl | maximum number of self-consistent loops allowed integer ‘ 200 ‘

This determines after how many loops the self-consistent cycle will terminate if the conver-
gence criterion is not met. If maxscl is 1 then the density and potential file, STATE. OUT,
will not be written to disk at the end of the loop. See epspot.

5.63 mbwgrf

’ mbwgrf ‘ matrix bandwidth of response functions in the G-vector basis integer ‘ -1 ‘

Setting this to a positive integer results in response functions and the screened interaction
W(G,G’,q,w) being treated as a banded matrix in G and G’ with bandwidth mbwgrf.
This can be used to speed up GW calculations.

5.64 mixsave

mixsave | .true. if the mixer work array is to be saved during a | logical | .false.
ground-state run

If mixsave is .true., then the mixer work array is saved to MIXWORK.OUT every nwrite
iterations and at the end of the self-consistent loop. This array is subsequently read in at
the beginning of a restarted calculation in order to improve convergence.

28

5.65 mixtype

] mixtype ‘ type of mixing required for the potential integer ‘ 3 ‘

Currently implemented are:

0 Linear mixing
1 Adaptive linear mixing
3 Broyden mixing, J. Phys. A: Math. Gen. 17, L317 (1984)

5.66 mixsdb

] mixsdb ‘ subspace dimension for Broyden mixing integer ‘ 5 ‘

This is the number of mixing vectors which define the subspace in which the Hessian matrix
is calculated. See mixtype and broydpm.

5.67 molecule

] molecule ‘ .true. if the system is an isolated molecule logical | .false.

If molecule is .true., then the atomic positions given in the atoms block are assumed to
be in Cartesian coordinates.

5.68 momfix

| momfix | the desired total moment for a FSM calculation | real(3) | (0.0,0.0,0.0) |

Note that all three components must be specified (even for collinear calculations). Applies
when fsmtype is 1(-1) or 3(-3). See fsmtype, taufsm and spinpol.

5.69 momfixm

’ momf ixm ‘ the desired total moment magnitude for a FSM calculation ‘ real ‘ 0.0 ‘

This applies when fsmtype is 4 or 6.

5.70 mommtfix

is species number integer 0
ia atom number integer 0
mommtfix | desired muffin-tin moment for a FSM calculation real(3) | (0.0,0.0,0.0)

The local muffin-tin moments are specified for a subset of atoms, with the list terminated
with a blank line. Note that all three components must be specified (even for collinear
calculations). Applies when fsmtype is 2(-2) or 3(-3). Note that the moment is not fixed
in a particular muffin-tin when the magnitude of any component of the corresponding
mommtfix is > 1000. See fsmtype, taufsm and spinpol.

5.71 mommtfixm

is species number integer | 0
ia atom number integer | 0
mommtfixm | desired muffin-tin moment magnitude for a FSM calculation real -1

29

This applies when fsmtype is 5 or 6. Note that the moment magnitude is not fixed in a
particular muffin-tin when the corresponding mommtfixm is negative.

5.72 mrmtav

’ mrmtav ‘ order of averaging applied to the muffin-tin radii integer ‘ 0 ‘

Crystal structures with muffin-tin radii which are widely varying in size can cause calcula-
tions to become unstable. Applying a simple averaging procedure to the radii reduces this
variation and can improve stability. The larger mrmtav, the more equal the muffin-tin radii
will become. See the routine rmtavrg.

5.73 mstar

mstar | value of the effective mass parameter used for adaptive determina- | real | 10.0
tion of swidth

See autoswidth.

5.74 mustar

mustar | Coulomb pseudopotential, p*, used in the McMillan-Allen-Dynes | real | 0.15
equation

This is used when calculating the superconducting critical temperature with the formula
Phys. Rev. B 12, 905 (1975)

Wlog —1.04(1 +)\)
Tc = ,
1.2k5 P | X = p#(1+ 0.62))

where wjyg is the logarithmic average frequency and A is the electron-phonon coupling
constant.

5.75 ncbse

’ ncbse \ number of conduction states to be used for BSE calculations integer \ 3 ‘

See also nvbse.

5.76 ndspem

ndspem | the number of k-vector displacements in each direction around | integer | 1
vklem when computing the numerical derivatives for the effective
mass tensor

See deltaem and vklem.

5.77 nefvit

nefvit | number of iterations the iterative eigenvalue solver should perform | integer | 2
per self-consistent loop

See tefvit.

30

5.78 nempty

] nempty ‘ the number of empty states per atom and spin ‘ real ‘ 4.0 ‘

Defines the number of eigenstates beyond that required for charge neutrality. When running
metals it is not known a priori how many states will be below the Fermi energy for each
k-point. Setting nempty greater than zero allows the additional states to act as a buffer
in such cases. Furthermore, magnetic calculations use the first-variational eigenstates as a
basis for setting up the second-variational Hamiltonian, and thus nempty will determine the
size of this basis set. Convergence with respect to this quantity should be checked.

5.79 ngridk

’ ngridk ‘ the k-point mesh sizes ‘ integer(3) ‘ (1,1,1) ‘

The k-vectors are generated using

k:(2'1—1-211’2'2-1-112’2'34-03)7

ny n2 n3

where 7; runs from 0 to n; — 1 and 0 < v; <1 for j = 1,2,3. The vector v is given by the
variable vkloff. See also reducek.

5.80 ngridq

’ ngridq ‘ the phonon ¢-point mesh sizes ‘ integer(3) ‘ (1,1,1) ‘

Same as ngridk, except that this mesh is for the phonon g-points and other tasks. See also
reduceq.

5.81 nosource

nosource | when set to .true., source fields are projected out of | logical | .false.
the exchange-correlation magnetic field

Experimental feature.

5.82 notes

’ notes (i) ‘ the ith line of the notes ‘ string ‘ - ‘

This block allows users to add their own notes to the file INFO.QUT. The block should be
terminated with a blank line, and no line should exceed 80 characters.

5.83 npmae

’ npmae ‘ number or distribution of directions for MAE calculations ‘ integer ‘ -1 ‘

Automatic determination of the magnetic anisotropy energy (MAE) requires that the total
energy is determined for a set of directions of the total magnetic moment. This variable
controls the number or distribution of these directions. The convention is:

31

—4,—-3,—2,—1 Cardinal directions given by the primitive translation vectors niA; +
noAsg + n3As, where 1 < n; < |npmae|

2 Cartesian x and z directions
3 Cartesian x, y and z directions
4,5,... Even distribution of npmae directions
5.84 ntemp
’ ntemp ‘ number of temperature steps \ integer \ 40 ‘

This is the number of temperature steps to be used in the Eliashberg gap and thermody-
namic properties calculations.

5.85 num_wann

’ num_wann ‘ number of Wannier90 wavefunctions ‘ integer ‘ 0 ‘

If num_wann > 0 then this is the number of Wannier wavefunctions to be found by the
Wannier90 package. If num wann < 0 then the number of wavefunctions is given by
num_bands + num_wann.

5.86 nvbse

] nvbse ‘ number of valence states to be used for BSE calculations integer ‘ 2 ‘

See also ncbse.

5.87 nwrite

nwrite | number of self-consistent loops after which STATE.QUT is to be | integer | 0
written

Normally, the density and potentials are written to the file STATE. QUT only after completion
of the self-consistent loop. By setting nwrite to a positive integer the file will instead be
written every nwrite loops.

5.88 nxoapwlo

nxoapwlo | extra order of radial functions to be added to the existing APW | integer | 0
and local-orbital set

Setting this variable will result in the APWs and local-orbitals for all species becoming
higher order with corresponding increase in derivative matching at the muffin-tin surface.
For example, setting nxoapwlo=1 turns all APWs into LAPWs.

5.89 optcomp

optcomp | the components of the first- or second-order optical ten- | integer(3) | (1,1,1)
sor to be calculated

This selects which components of the optical tensor you would like to plot. Only the first
two are used for the first-order tensor. Several components can be listed one after the other
with a blank line terminating the list.

32

5.90 phwrite

nphwrt number of ¢-points for which phonon modes are to | integer 1
be found
vqlwrt (i) | the ith ¢-point in lattice coordinates real(3) | (0.0,0.0,0.0)

This is used in conjunction with task=230. The code will write the phonon frequencies
and eigenvectors to the file PHONON.QUT for all the g-points in the list. The ¢-points can
be anywhere in the Brillouin zone and do not have to lie on the mesh defined by ngridg.
Obviously, all the dynamical matrices have to be computed first using task=200.

5.91 plotld
nvpld number of vertices integer 2
nppld number of plotting points integer 200
vvlpld(i) | lattice coordinates for vertex 7 real(3) | (0.0,0.0,0.0) — (1.0,1.0,1.0)

Defines the path in either real or reciprocal space along which the 1D plot is to be produced.
The user should provide nvpld vertices in lattice coordinates.

5.92 plot2d
vclp2d(0) | zeroth corner (origin) real(3) (0.0,0.0,0.0)
vclp2d (1) | first corner real(3) (1.0,0.0,0.0)
vclp2d(2) | second corner real(3) | (0.0,1.0,0.0)
np2d number of plotting points in both directions integer(2) (40, 40)

Defines the corners of a parallelogram and the grid size used for producing 2D plots.

5.93 plot3d
vclp3d(0) | zeroth corner (origin) real(3) (0.0,0.0,0.0)
vclp3d(1) | first corner real(3) (1.0,0.0,0.0)
vclp3d(2) | second corner real(3) (0.0,1.0,0.0)
vclp3d(3) | third corner real(3) (0.0,0.0,1.0)
np3d number of plotting points each direction integer(3) | (20,20,20)

Defines the corners of a box and the grid size used for producing 3D plots.

5.94 primcell

’ primcell ‘ .true. if the primitive unit cell should be found logical | .false.

Allows the primitive unit cell to be determined automatically from the conventional cell.
This is done by searching for lattice vectors among all those which connect atomic sites,
and using the three shortest which produce a unit cell with non-zero volume.

5.95 pulse

33

n number of pulses integer | -
a0(i) | polarisation vector (including amplitude) real(3) | -
w(i) frequency real -
phi(i) | phase in degrees real -
rc(i) chirp rate real -
t0(1) peak time real -
d(i) full-width at half-maximum real | -

Parameters used to generate a time-dependent vector potential A(t) representing a laser
pulse. The total vector potential is the sum of individual pulses and is given by the formula

n
A(t) = Z Al exp [—(t - t6)2/20i2] sin [wi(t —th) + ¢ + rét2/2])
i=1
where o = d/2v/21n 2. See also ramp.

5.96 qOcut

’ qOcut ‘ Q-vector cut-off for the ultra long-range Coulomb Green’s function ‘ real ‘ 0.0 ‘

The ultra long-range Poisson equation is solved using the Green’s function 47 /|G + Q|2
This is set to zero for all |G + Q| < gqOcut when qOcut is positive. For negative qOcut,
a Yukawa-type screening of the form 47/(|G + Q|? + qOcut?) is employed. Setting this
variable to be small but finite can improve the stability of a self-consistent calculation.

5.97 radkpt

’ radkpt ‘ radius of sphere used to determine k-point density ‘ real ‘ 40.0 ‘

Used for the automatic determination of the k-point mesh. If autokpt is set to .true. then
the mesh sizes will be determined by n; = Ry|B;| + 1, where B, are the primitive reciprocal
lattice vectors.

5.98 ramp
n number of ramps integer | -
a0(i) | polarisation vector (including amplitude) real(3) | -
t0(i) | ramp start time real -
c1(i) | linear coefficient of A(t) real | -
c2(i) | quadratic coefficient real -

Parameters used to generate a time-dependent vector potential A () representing a constant
or linearly increasing electric field E(¢) = —0A(t)/0t. The vector potential is given by

At) =) Aj [er(t —to) + cat — t0)?] O(t — to).
i=1

5.99 readadu

readadu | set to .true. if the interpolation constant for DFT+U | logical | .false.
should be read from file rather than calculated

34

When dftu=3, the DFT+U energy and potential are interpolated between FLL and AFM.
The interpolation constant, «, is normally calculated from the density matrix, but can also
be read in from the file ALPHADU.QUT. This allows the user to fix «, but is also necessary
when calculating forces, since the contribution of the potential of the variation of a with
respect to the density matrix is not computed. See dft+u.

5.100 reducebf

’ reducebf ‘ reduction factor for the external magnetic fields \ real \ 1.0 ‘

After each self-consistent loop, the external magnetic fields are multiplied with reducebf.
This allows for a large external magnetic field at the start of the self-consistent loop to
break spin symmetry, while at the end of the loop the field will be effectively zero, i.e.
infinitesimal. See bfieldc and atoms.

5.101 reduceh

reduceh | set to .true. if the reciprocal H-vectors should be reduced | logical | .true.
by the symmorphic crystal symmetries

See hmaxvr and vmat.

5.102 reducek

’ reducek ‘ type of reduction of the k-point set ‘ integer ‘ 1 ‘

Types of reduction are defined by the symmetry group used:

0 no reduction
1 reduce with full crystal symmetry group (including non-symmorphic symmetries)
2 reduce with symmorphic symmetries only

See also ngridk and vkloff.

5.103 reduceq

’ reduceq ‘ type of reduction of the g-point set integer \ 1 ‘

See reducek and ngridq.

5.104 rgkmax
| rgkmax | Ry x max{|G +k[} | real | 7.0 |

min

This sets the maximum length for the G + k vectors, defined as rgkmax divided by the
average muffin-tin radius. See isgkmax.

5.105 rmtall

] rmtall ‘ muffin-tin radius for all species ‘ real ‘ —-1.0 ‘

If rmtall is positive then all muffin-tin radii are set to this value.

35

5.106 rmtdelta

] rmtdelta ‘ minimum allowed distance between muffin-tin surfaces ‘ real ‘ 0.05 ‘

5.107 rmtscf

’ rmtsct ‘ muffin-tin radius scaling factor ‘ real ‘ 1.0 ‘

All muffin-tin radii read from the species files are scaled by this factor.

5.108 rndavec

] rndavec ‘ lattice vector randomisation amplitude \ real \ 0.0 ‘

Setting this to a number larger than zero causes the code add random jitter to the lattice
vectors proportional to this amplitude. This can be used to break lattice symmetry.

5.109 rotavec

’ axang ‘ axis-angle representation of lattice vector rotation \ real(4) \ (0.0,0.0,0.0,0.0) ‘

This determines the rotation matrix which is applied to the lattice vectors prior to any
calculation. The first three components specify the axis and the last component is the
angle in degrees. The ‘right-hand rule’ convention is followed.

5.110 scale

] scale ‘ lattice vector scaling factor ‘ real ‘ 1.0 ‘

Scaling factor for all three lattice vectors. Applied in conjunction with scalel, scale2 and
scale3.

5.111 scalel/2/3

] scalel/2/3 \ separate scaling factors for each lattice vector ‘ real ‘ 1.0 ‘

5.112 scissor

] scissor ‘ the scissor correction ‘ real ‘ 0.0 ‘

This is the scissor shift applied to states above the Fermi energy Phys. Rev. B 43, 4187
(1991). Affects optics calculations only.

5.113 scrpath

] scrpath ‘ scratch space path ‘ string ‘ null ‘

This is the scratch space path where the eigenvector files EVALFV.0UT and EVALSV.OUT will
be written. If the run directory is accessed via a network then scrpath can be set to a
directory on the local disk, for example /tmp/. Note that the forward slash / at the end of
the path must be included.

36

5.114 socsct

] socscf ‘ scaling factor for the spin-orbit coupling term in the Hamiltonian ‘ real ‘ 1.0 ‘

This can be used to enhance the effect of spin-orbit coupling in order to accurately determine
the magnetic anisotropy energy (MAE).

5.115 spincore

] spincore ‘ set to .true. if the core should be spin-polarised logical | .false.

5.116 spinorb

’ spinorb ‘ set to .true. if a spin-orbit coupling is required logical ‘ .false. ‘

If spinorb is .true., then a oL term is added to the second-variational Hamiltonian. See
spinpol.

5.117 spinpol

] spinpol ‘ set to .true. if a spin-polarised calculation is required logical | .false.

If spinpol is .true., then the spin-polarised Hamiltonian is solved as a second-variational
step using two-component spinors in the Kohn-Sham magnetic field. The first variational
scalar wavefunctions are used as a basis for setting this Hamiltonian.

5.118 spinsprl

’ spinsprl ‘ set to .true. if a spin-spiral calculation is required ‘ logical | .false.

Experimental feature for the calculation of spin-spiral states. See vqlss for details.

5.119 sppath

] sppath ‘ path where the species files can be found ‘ string ‘ null ‘

Note that the forward slash / at the end of the path must be included.

5.120 ssdph

ssdph | set to .true. if a complex de-phasing factor is to be used in | logical | .true.
spin-spiral calculations

If this is .true. then spin-spiral wavefunctions in each muffin-tin at position r, are de-

phased by the matrix
e—iq~ra/2 0
0 eiq-ra/Q .

In simple situations, this has the advantage of producing magnon dynamical matrices which
are already in diagonal form. This option should be used with care, and a full understanding
of the spin-spiral configuration is required. See spinsprl.

37

5.121 stype

] stype ‘ integer defining the type of smearing to be used ‘ integer ‘ 3 ‘

A smooth approximation to the Dirac delta function is needed to compute the occupa-
tion numbers of the Kohn-Sham states. The variable swidth determines the width of the
approximate delta function. Currently implemented are

0 Gaussian

1 Methfessel-Paxton order 1, Phys. Rev. B 40, 3616 (1989)
2 Methfessel-Paxton order 2

3 Fermi-Dirac

See also autoswidth, swidth and tempk.

5.122 swidth

swidth | width of the smooth approximation to the Dirac delta function ‘ real ‘ 0.001 ‘

See stype for details and the variable tempk.

38

5.123 tasks

] task(i) ‘ the ith task integer ‘ -1 ‘

A list of tasks for the code to perform sequentially. The list should be terminated with a
blank line. Each task has an associated integer as follows:

0
1
2

5
10
14

15
16
20
21

22
23

25
31/2/3
41/2/3
51/2/3
61/2/3
65

68
71/2/3
81/2/3
91/2/3
100
101
102
105
110

115
120
121

122
125
130

Ground-state run starting from the atomic densities.

Resumption of ground-state run using density in STATE.QUT.

Geometry optimisation run starting from the atomic densities, with atomic
positions written to GEOMETRY . QUT.

Resumption of geometry optimisation run using density in STATE.OUT but with
positions from elk.in.

Ground-state Hartree-Fock run.

Total, partial and interstitial density of states (DOS).

Plots the smooth Dirac delta and Heaviside step functions used by the code to
calculate occupation numbers.

Output L, S and J total expectation values.

Output L, S and J expectation values for each k-point and state in kstlist.
Band structure plot.

Band structure plot which includes total and angular momentum characters for
every atom.

Band structure plot which includes (I, m) character for every atom.

Band structure plot which includes spin character for every atom.

Compute the effective mass tensor at the k-point given by vklem.

1/2/3D charge density plot.

1/2/3D exchange-correlation and Coulomb potential plots.

1/2/3D electron localisation function (ELF') plot.

1/2/3D wavefunction plot: |¥;(r)|.

Write the core wavefunctions to file for plotting.

Output the status of the RAM disk.

1/2/3D plot of magnetisation vector field, m(r).

1/2/3D plot of exchange-correlation magnetic vector field, Byc(r).

1/2/3D plot of V - Bx(r).

3D Fermi surface plot using the scalar product p(k) = [[,(eix — €r).

3D Fermi surface plot using separate bands (minus the Fermi energy).

3D Fermi surface which can be plotted with XCrysDen.

3D nesting function plot.

Calculation of Mossbauer contact charge densities and magnetic fields at the
nuclear sites.

Calculation of the electric field gradient (EFG) at the nuclear sites.

Output of the momentum matrix elements (V| — V|V).

Linear optical dielectric response tensor calculated within the random phase
approximation (RPA) and in the ¢ — 0 limit, with no microscopic contributions.
Magneto optical Kerr effect (MOKE) angle.

Non-linear optical second harmonic generation.

Output matrix elements of the type (Wixiq|e’ ™| W, k).

39

135

140
141/2/3
150
151/2/3
160

162
170
171/2/3
180

185
186

187
190
195
196
200

202
205

208
209
210
220
230
240/1

245
250

260
270
271
280
285
300
320

330/1

Output all wavefunctions expanded in the plane wave basis up to a cut-off
defined by hkmax.

Energy loss near edge structure (ELNES).

1/2/3D plot of the electric field E(r) = VV(r).

Write out the atomic eigenvalues for each species.

1/2/3D plot of m(r) x By (r).

Calculates the total exchange-correlation spin-torque acting on the system:
T = [d® m(r) x By(r).

2D scanning-tunneling microscopy (STM) image.

Writes the electron momentum density to EMD.QUT.

1/2/3D plot of the electron momentum density.

Generate the RPA inverse dielectric function with local contributions
e (G, G, q,w) and write it to file.

Write the Bethe-Salpeter equation (BSE) Hamiltonian to file.

Diagonalise the BSE Hamiltonian and write the eigenvectors and eigenvalues
to file.

Output the BSE dielectric response function.

Write the atomic geometry to file for plotting with XCrySDen and V_Sim.
Calculation of X-ray density structure factors.

Calculation of magnetic structure factors.

Calculation of phonon dynamical matrices on a g-point set defined by ngridq
using the supercell method.

Phonon dry run: just produce a set of empty DYN files.

Calculation of phonon dynamical matrices using density functional perturba-
tion theory (DFPT).

Calculation of static Born effective charges.

Born effective charge dry run: produce a set of empty BEC files.

Phonon density of states.

Phonon dispersion plot.

Phonon frequencies and eigenvectors for an arbitrary g-point.

Generate the g-dependent phonon linewidths and electron-phonon coupling
constants and write them to file. Task 241 also writes the complete set of
electron-phonon coupling matrix elements to EPHMAT . QUT.

Phonon linewidths plot.

Eliashberg function o?F(w), electron-phonon coupling constant), and the
McMillan-Allen-Dynes critical temperature 7.

Solves the Eliashberg equations to find the superconducting gap.
Electron-phonon Bogoliubov equation ground-state.

Resumption of the Bogoliubov ground-state.

Electron-phonon Bogoliubov density of states.

Electron and phonon anomalous correlation entropy (ACE).

Reduced density matrix functional theory (RDMFT) calculation.
Time-dependent density functional theory (TDDFT) calculation of the dielec-
tric response function including microscopic contributions.

TDDEFT calculation of the spin-polarised response function for arbitrary g-
vectors. Task 331 writes the entire response function ?(G, G, q,w) to file.

40

341/2/3 1/2/3D plot of wxe(r) = dExc[p, 7|/67(r)|, which is calculated for meta-
GGA functionals.

350/1/2 Spin-spiral supercell calculations (spin-orbit coupling can be included). Task
352 is a dry run: produce a set of empty SS files.

371/2/3 1/2/3D plot of the paramagnetic current density j,(r).

380 Piezoelectric tensor.

390 Magnetoelectric tensor.

400 Calculation of tensor moments and corresponding DFT+U Hartree-Fock
energy contributions.

420/1 Molecular dynamics (MD) calculation within the adiabatic approximation.
Task 421 restarts an interrupted MD calculation.

430 Write the strain tensors to STRAIN.OUT.

440 Write the stress tensor components corresponding to the strain tensors to
STRESS . OUT.

450 Generates a laser pulse in the form of a time-dependent vector potential
A(t) and writes it to AFIELDT.QUT.

455 Writes the time-dependent power density and total energy density of A(t).

456 Writes the frequency-dependent electric field E(w) corresponding to A(t).

460/1/2/3 Time evolution run using TDDFT under the influence of A(t). Tasks 462
and 463 include nuclear Ehrenfest dynamics. Tasks 461 and 463 restart
interrupted calculations.

471 1D plot of the static charge density.
478 Calculation of the dynamical Born effective charges.
480/1 Computes the dielectric function from the time-dependent current density

in JTOT_TD.OUT. Task 481 assumes that the vector potential A(t) is a step
function at ¢t = 0, while task 480 makes no such assumptions.

500 Checks the test files generated when test is .true.

550 Writes the files required by Wannier90.

600 Output the GW self-energy matrix elements.

610 Generates the GW spectral function.

620 Generates the GIWW band structure, i.e. the k-dependent spectral function).
630 Writes the GW Fermi energy to GWEFERMI.QUT

640 Determines the GW density matrix in terms of natural orbitals and occu-

pation numbers. The files EVECSV.QUT and OCCSV.QUT are overwritten by
these and can then be used for other calculations.

700/1 Ultra long-range ground-state calculation. Task 701 is for restarting from
the potential in STATE_ULR. OUT.
720/5 Ultra long-range band structure and spectral function. Task 720 is for the

central k-point (i.e. kK =0), while task 725 averages over all k-points.
731/2/3 1/2/3D plot of the ultra long-range density.
741/2/3 1/2/3D plot of the ultra long-range Kohn-Sham potential.
771/2/3 1/2/3D plot of the ultra long-range magnetisation.

5.124 taulatp

’ taulatp ‘ the step size to be used for atomic position optimisation ‘ real ‘ 0.25 ‘

41

The position of atom « is updated on step m of a geometry optimisation run using
T = (Fy + F?fl) ,

where 7, is set to tauOatp for m = 0, and incremented by the same amount if the atom
is moving in the same direction between steps. If the direction changes then 7, is reset to
taulatp.

5.125 tauOlatv

’ taulOlatv ‘ the step size to be used for lattice vector optimisation ‘ real ‘ 0.25 ‘

This parameter is used for lattice vector optimisation in a procedure identical to that for
atomic position optimisation. See tauOatp and latvopt.

5.126 tauOoep

’ tauloep ‘ initial step length for the OEP iterative solver ‘ real ‘ 0.5 ‘

The optimised effective potential is determined using an interative method [Phys. Rev.
Lett. 98, 196405 (2007)]. This variable sets the step length as described in the article. See
maxitoep.

5.127 taufsm

taufsm | the step size to be used when finding the effective magnetic field | real | 0.01
in fixed spin moment calculations

An effective magnetic field, Brgy, is required for fixing the spin moment to a given value,
Mpggym- This is found by adding a vector to the field which is proportional to the difference
between the moment calculated in the ith self-consistent loop and the required moment:

Bl = Bhsy + A (M’ — Mpsy)

where A is proportional to taufsm. See also fsmtype, momfix and spinpol.

5.128 tempk

’ tempk ‘ temperature 1" of the electronic system in kelvin ‘ real ‘ - ‘

Assigning a value to this variable sets stype to 3 (Fermi-Dirac) and the smearing width to
ksT.

5.129 tforce

tforce | set to .true. if the force should be calculated at the end | logical | .false.
of the self-consistent cycle

This variable is automatically set to .true. when performing geometry optimisation.

5.130 tefvit

tefvit | set to .true. if the first-variational eigenvalue equation | logical | .false.
should be solved iteratively

42

5.131 tefvr

tefvr | set to .true. if a real symmetric eigenvalue solver should be | logical | .true.
used for crystals which have inversion symmetry

For crystals with inversion symmetry, the first-variational Hamiltonian and overlap matrices
can be made real by using appropriate transformations. In this case, a real symmetric
(instead of complex Hermitian) eigenvalue solver can be used. This makes the calculation
about three times faster.

5.132 tm3fix

ntmfix number of tensor moments (TM) to be fixed integer | 0
is (i) species number for entry ¢ integer | -
ia(1) atom number integer | -
1(i) l of TM integer | -
(k, p, r, t) (1) | indices for the 3-index TM integer | -
wkpr (t) (1) real TM value real | -

This block sets up the fixed tensor moment (FTM). There should be as many TM entries
as ntmfix. See the routine tm3todm for the tensor moment indexing convention.

5.133 tmwrite

tmwrite | set to .true. if the tensor moments and the correspond- | logical | .false.
ing decomposition of DFT+U energy should be calculated
at every loop of the self-consistent cycle

This variable is useful to check the convergence of the tensor moments in DFT+U calcu-
lations. Alternatively, with task equal to 400, one can calculate the tensor moments and
corresponding DFT+U energy contributions from a given density matrix and set of Slater
parameters at the end of the self-consistent cycle.

5.134 trdbfcr

trdbfcr | set to .true. if the ultra long-range, real-space external | logical | .false.
magnetic field in Cartesian coordinates should be read in
from BFCR.QUT

5.135 trdvclr

trdvclr | set to .true. if the ultra long-range, real-space external | logical | .false.
Coulomb potential should be read in from VCLR.Q0UT

5.136 tsediag

tsediag | set to .true. if the self-energy matrix should be treated | logical | .false.
as diagonal

When this variable is .true., the self-energy used in a GW calculation 3;;(k,w) is taken to
be diagonal in the Kohn-Sham state indices ¢ and j. When tsediag is .false., the entire
matrix is used.

43

5.137 tshift

tshift | set to .true. if the crystal can be shifted so that the atom | logical | .true.
closest to the origin is exactly at the origin

5.138 tstime

’ tstime ‘ total simulation time of time evolution run ‘ real ‘ 1000.0

See also dtimes.

5.139 vhmat
vhmat (1) | matrix row 1 real(3) | (1.0,0.0,0.0)
vhmat (2) | matrix row 2 real(3) | (0.0,1.0,0.0)
vhmat (3) | matrix row 3 real(3) | (0.0,0.0,1.0)

This is the transformation matrix M applied to every vector H in the structure factor
output files SFACRHO.OQUT and SFACMAG.OUT. It is stored in the usual row-column setting
and applied directly as H = MH to every vector but only when writing the output files.
See also hmaxvr and reduceh.

5.140 vhighq

’ vhighqg ‘ .true. if a very high-quality parameter set should be used | logical | .false.

Setting this to .true. results in some default parameters being changed to ensure excellent
convergence in most situations. See also highgq.

5.141 vklem

vklem | the k-point in lattice coordinates at which to compute | real(3) | (0.0,0.0,0.0)
the effective mass tensors

See deltaem and ndspem.

5.142 vkloff

’ vkloff ‘ the k-point offset vector in lattice coordinates ‘ real(3) ‘ (0.0,0.0,0.0) ‘

See ngridk.

5.143 vqglss

vqlss | the g-vector of the spin-spiral state in lattice coordi- | real(3) | (0.0,0.0,0.0)
nates

Spin-spirals arise from spinor states assumed to be of the form

UqT(r)ez‘(k+q/2)-r
\I’E(r) = (Uléi(r)ei(k—qﬂ)-r :

44

These are determined using a second-variational approach, and give rise to a magnetisation
density of the form

m9(r) = (my(r) cos(q - r), my(r)sin(q - r), m,(r)),

where m,, m, and m, are lattice periodic. See also spinsprl.

5.144 wmaxgw

’ wmaxgw ‘ maximum Matsubara frequency for GW calculations ‘ real ‘ -5.0 ‘

This defines the cut-off of the Matsubara frequencies on the imaginary axis for calculating
the GW self-energy and solving the Dyson equation. If this number is negative then the
cut-off is taken to be |wmaxgw| X Ae, where Ae is the difference between the largest and
smallest Kohn-Sham valence eigenvalues.

5.145 wplot
nwplot | number of frequency/energy points in the DOS or op- | integer 500
tics plot
ngrkf fine k-point grid size used for integrating functions in | integer 100
the Brillouin zone
nswplot | level of smoothing applied to DOS/optics output integer 1
wplot frequency/energy window for the DOS or optics plot real(2) | (—0.5,0.5)

DOS and optics plots require integrals of the kind

Q
o) = o /B 15— () k.

These are calculated by first interpolating the functions e(k) and f(k) with the trilinear
method on a much finer mesh whose size is determined by ngrkf. Then the w-dependent
histogram of the integrand is accumulated over the fine mesh. If the output function is
noisy then either ngrkf should be increased or nwplot decreased. Alternatively, the output
function can be artificially smoothed up to a level given by nswplot. This is the number of
successive 3-point averages to be applied to the function g.

5.146 wsfac

wsfac | energy window to be used when calculating density or | real(2) | (—10°,10°)
magnetic structure factors

Only those states with eigenvalues within this window will contribute to the density or
magnetisation. See also hmaxvr and vhmat.

5.147 xctype

xctype | integers defining the type of exchange-correlation func- | integer(3) | (3,0,0)
tional to be used

Normally only the first value is used to define the functional type. The other value may be
used for external libraries. Currently implemented are:

45

—-Nn

30

100

Exact-exchange optimised effective potential (EXX-OEP) method with correlation
energy and potential given by functional number n

No exchange-correlation funtional (Fy. = 0)

LDA, Perdew-Zunger/Ceperley-Alder, Phys. Rev. B 23, 5048 (1981)

LSDA, Perdew-Wang/Ceperley-Alder, Phys. Rev. B 45, 13244 (1992)

LDA, X-alpha approximation, J. C. Slater, Phys. Rev. 81, 385 (1951)

LSDA, von Barth-Hedin, J. Phys. C'5, 1629 (1972)

GGA, Perdew-Burke-Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

GGA, Revised PBE, Zhang-Yang, Phys. Rev. Lett. 80, 890 (1998)

GGA, PBEsol, Phys. Rev. Lett. 100, 136406 (2008)

GGA, Wu-Cohen exchange (WC06) with PBE correlation, Phys. Rev. B 73,
235116 (2006)

GGA, Armiento-Mattsson (AMO05) spin-unpolarised functional, Phys. Rev. B 72,
085108 (2005)

Libxc functionals; the second and third values of xctype define the exchange and
correlation functionals in the Libxc library, respectively

6 Contributing to Elk

Please bear in mind when writing code for the Elk project that it should be an exercise
in physics and not software engineering. All code should therefore be kept as simple and
concise as possible, and above all it should be easy for anyone to locate and follow the
Fortran representation of the original mathematics. We would also appreciate the following
conventions being adhered to:

Strict Fortran 2008 should be used. Features which are marked as obsolescent in
Fortran 2008 should be avoided. These include assigned format specifiers, labeled
do-loops, computed goto statements and statement functions.

Modules should be used in place of common blocks for declaring global variables. Use
the existing modules to declare new global variables.

Any code should be written in lower-case free form style, starting from column one.
Try and keep the length of each line to fewer than 80 characters using the & character
for line continuation.

Every function or subroutine, no matter how small, should be in its own file named
routine.f90, where routine is the function or subroutine name. It is recommended
that the routines are named so as to make their purpose apparent from the name
alone.

Use of implicit none is mandatory. Remember also to define the intent of any
passed arguments.

Local allocatable arrays must be deallocated on exit of the routine to prevent memory
leakage. Use of automatic arrays should be limited to arrays of small size.

Every function or subroutine must be documented with the Protex source code doc-
umentation system. This should include a short IXTEX description of the algorithms
and methods involved. Equations which need to be referenced should be labeled with

46

routine_1, routine_2, etc. The authorship of each new piece of code or modification
should be indicated in the REVISION HISTORY part of the header. See the Protex
documentation for details.

e Ensure as much as possible that a routine will terminate the program when given
improper input instead of continuing with erroneous results. Specifically, functions
should have a well-defined domain for which they return accurate results. Input
outside that domain should result in an error message and termination.

e Report errors prior to termination with a short description, for example:

write(*,x*)

write(*,’ ("Error(readinput): natoms < 1 : ",I0)’) natoms(is)
write(*,’ (" for species ",I0)’) is

write(x,*)

stop

e Wherever possible, real numbers outputted as ASCII data should be formatted with
the G18.10 specifier.

e Avoid redundant or repeated code: check to see if the routine you need already exists,
before writing a new one.

e All reading in of ASCII data should be done in the subroutine readinput. For bi-
nary data, separate routines for reading and writing should be used (for example
writestate and readstate).

e Input filenames should be in lowercase and have the extension .in . All output
filenames should be in uppercase with the extension .0UT .

e All internal units should be atomic. Input and output units should be atomic by
default and clearly stated otherwise. Rydbergs should not be used under any circum-
stances.

6.1 Licensing

Routines which constitute the main part of the code are released under the GNU General
Public License (GPL). Library routines are released under the less restrictive GNU Lesser
General Public License (LGPL). Both licenses are contained in the file COPYING. Any con-
tribution to the code must be licensed at the authors’ discretion under either the GPL or
LGPL. Author(s) of the code retain the copyrights. Copyright and (L)GPL information
must be included at the beginning of every file, and no code will be accepted without this.

47

7 Routine/Function Prologues

7.1 afindtstep (Source File: afindtstep.f90)

INTERFACE:
subroutine afindtstep
USES:

use modmain
use modtddft
use modmpi

DESCRIPTION:

Performs a time step of the macroscopic Maxwell equation and updates the induced vector
potential A(t). In practice, a more general damped Proca equation is solved:

4mc
Kl
where €2 is the unit cell volume, J is the total current across the unit cell, and the parameters
a;, 1 = 0,1,2 are stored in the array afindpm. This generalisation allows for both a mass
and damping term, however the default values of a9 = a; = 0 and as = 1 recover the
physical Maxwell equation.

a0A+a1A+a2A: J,

REVISION HISTORY:

Created January 2020 (P. Elliott)
Added mass and damping terms, December 2022 (JKD)

7.2 allatoms (Source File: allatoms.f90)

INTERFACE:
subroutine allatoms
USES:

use modmain
use modxcifc
use modomp

DESCRIPTION:

Solves the Kohn-Sham-Dirac equations for each atom type in the solid and finds the self-
consistent radial wavefunctions, eigenvalues, charge densities and potentials. The atomic
densities can then be used to initialise the crystal densities, and the atomic self-consistent
potentials can be appended to the muffin-tin potentials to solve for the core states. Note
that, irrespective of the value of xctype, exchange-correlation functional type 3 is used. See
also atoms, rhoinit, gencore and modxcifc.

REVISION HISTORY:

48

Created September 2002 (JKD)
Modified for GGA, June 2007 (JKD)

7.3 atom (Source File: atom.f90)

INTERFACE:

subroutine atom(sol,ptnucl,zn,nst,n,l,k,occ,xctype,xcgrad,nr,r,eval,rho,vr,rwf)

USES:

use modxcifc

INPUT/OUTPUT PARAMETERS:

sol

ptnucl :

zn
nst
n
1
k
occ

Xctype :
xcgrad :

nr
T
eval
rho
vr
rwf

DESCRIPTION:

speed of light in atomic units (in,real)
.true. if the nucleus is a point particle (in,logical)

: nuclear charge (in,real)

: number of states to solve for (in,integer)

: priciple quantum number of each state (in,integer(mst))

: quantum number 1 of each state (in,integer(nst))

: quantum number k (1 or 1+1) of each state (in,integer(mnst))

occupancy of each state (inout,real(nst))
exchange-correlation type (in,integer(3))
1 for GGA functional, O otherwise (in,integer)

: number of radial mesh points (in,integer)
: radial mesh (in,real(ar))

eigenvalue without rest-mass energy for each state (out,real(nst))
charge density (out,real(nr))
self-constistent potential (out,real(nr))

: major and minor components of radial wavefunctions for each state

(out,real(nr,2,nst))

Solves the Dirac-Kohn-Sham equations for an atom using the exchange-correlation func-
tional xctype and returns the self-consistent radial wavefunctions, eigenvalues, charge den-
sities and potentials. Requires the exchange-correlation interface routine xcifc

REVISION HISTORY:

Created September 2002 (JKD)
Fixed s.c. convergence problem, October 2003 (JKD)
Added support for GGA functionals, June 2006 (JKD)

49

7.4 atpstep (Source File: atpstep.f90)

INTERFACE:
subroutine atpstep
USES:

use modmain
use modmpi

DESCRIPTION:

Makes a geometry optimisation step and updates the current atomic positions according to
the force on each atom. If rj? is the position and F;? is the force acting on it for atom j of
species ¢ and after time step m, then the new position is calculated by

m+1 _ _.m m m m—1
Ty =T T (Fij +F;;) ;

where 77" is a parameter governing the size of the displacement. If F77 - F;?_l > 0 then 77"
is increased, otherwise it is decreased.

REVISION HISTORY:

Created June 2003 (JKD)

7.5 axangrot (Source File: axangrot.f90)

INTERFACE:
pure subroutine axangrot(v,th,rot)
INPUT/OUTPUT PARAMETERS:

v : axis vector (in,real)
th : rotation angle (in,real)
rot : rotation matrix (out,real(3,3))

DESCRIPTION:

Determines the 3 x 3 rotation matrix of a rotation specified by an axis-angle pair following
the ‘right-hand rule’. The axis vector need not be normalised. See rotaxang for details.

REVISION HISTORY:

Created February 2014 (JKD)

50

7.6 axangsu2 (Source File: axangsu2.f90)

INTERFACE:
pure subroutine axangsu2(v,th,su2)
INPUT/OUTPUT PARAMETERS:

v : rotation axis vector (in,real(3))
th : rotation angle (in,real)
su2 : SU(2) representation of rotation (out,complex(2,2))

DESCRIPTION:

Finds the complex SU(2) representation of a rotation defined by an axis vector v and angle
#. The spinor rotation matrix is given explicitly by

RY%(v,0) = Icosg —i(v-0) Sing.

REVISION HISTORY:

Created August 2007 (JKD)

7.7 bandstr (Source File: bandstr.f90)

INTERFACE:
subroutine bandstr
USES:

use modmain
use modomp

DESCRIPTION:

Produces a band structure along the path in reciprocal space which connects the vertices in
the array vvlpld. The band structure is obtained from the second-variational eigenvalues
and is written to the file BAND.OUT with the Fermi energy set to zero. If required, band
structures are plotted to files BAND_Sss_Aaaaa.0UT for atom aaaa of species ss, which
include the band characters for each [component of that atom in columns 4 onwards.
Column 3 contains the sum over [of the characters. Vertex location lines are written to
BANDLINES.QUT.

REVISION HISTORY:

Created June 2003 (JKD)

51

7.8 bdipole (Source File: bdipole.f90)

INTERFACE:
subroutine bdipole
USES:

use modmain

DESCRIPTION:

Calculates the magnetic dipole field arising from the spin and orbital current. The total
current density is

occ

. 1 g
i) =Im Y eh (1) Veu(r) - “Ap(r) + 7V xm(r),
ik
where g, is the electron spin g-factor. The vector potential arising from j(r) is calculated

by
1 3 j(I/)
A(I') __/dT/ /‘7

c r

using the Poisson equation solver zpotcoul. Finally, the magnetic field is determined
from B(r) = V x A(r). This field is included as a Zeeman term in the second-variational
Hamiltonian:
H— H+ I 5. o.
4c

REVISION HISTORY:
Created April 2018 (T. Mueller)

7.9 bfieldfsm (Source File: bfieldfsm.f90)

INTERFACE:
subroutine bfieldfsm
USES:

use modmain

DESCRIPTION:

Updates the effective magnetic field, Brgy, required for fixing the spin moment to a given
value, Mpgy. This is done by adding a vector to the field which is proportional to the
difference between the moment calculated in the ith self-consistent loop and the required
moment:

Bl = Brsw + A (M’ — Mgsy)
where A is a scaling factor.
REVISION HISTORY:
Created March 2005 (JKD)

52

7.10 brzint (Source File: brzint.f90)

INTERFACE:

subroutine brzint(nsm,ngridk,nsk,ivkik,nw,wint,n,ld,e,f,g)
USES:

use modomp

INPUT/OUTPUT PARAMETERS:

nsm : level of smoothing for output function (in,integer)
ngridk : k-point grid size (in,integer(3))
nsk : k-point subdivision grid size (in,integer(3))

ivkik : map from (i1,i2,i3) to k-point index
(in,integer(0:ngridk(1)-1,0:ngridk(2)-1,0:ngridk(3)-1))

nw : number of energy divisions (in,integer)
wint : energy interval (in,real(2))
n : number of functions to integrate (in,integer)
1d : leading dimension (in,integer)
e : array of energies as a function of k-points (in,real(1ld,*))
f : array of weights as a function of k-points (in,real(ld,*))
g : output function (out,real(nw))
DESCRIPTION:

Given energy and weight functions, e and f, on the Brillouin zone and a set of equidistant
energies wj;, this routine computes the integrals

Q
) = o / FR)Be = €10k

where 2 is the unit cell volume. This is done by first interpolating e and f on a finer k-point
grid using the trilinear method. Then for each e(k) on the finer grid the nearest w; is found
and f(k) is accumulated in g(w;). If the output function is noisy then either nsk should be
increased or nw decreased. Alternatively, the output function can be artificially smoothed
up to a level given by nsm. See routine fsmooth.

REVISION HISTORY:

Created October 2003 (JKD)
Improved efficiency, May 2007 (Sebastian Lebegue)
Added parallelism, March 2020 (JKD)

7.11 cflmnconj (Source File: cfmtconj.f90)

INTERFACE:

93

pure subroutine cflmnconj(lmax,n,ld,cflml,cflm?)

INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)
n : number of functions to conjugate (in,integer)
1d : leading dimension (in,integer)

cflml : coefficients of input complex spherical harmonic expansion
(in,complex ((1lmax+1)**2)))

cflm2 : coefficients of output complex spherical harmonic expansion
(out,complex((lmax+1)**2)))

DESCRIPTION:

Returns the complex conjugate of a function expanded in spherical harmonics. In other
words, given the input function coefficients ¢;,,, the routine returns ¢, = (—1)™¢;_ = so

that *
Z C;mYlm (9, gb) = <Z Clelm(g’ d’))

Ilm Ilm

for all (0, ¢).

REVISION HISTORY:

Created April 2004 (JKD)

7.12 charge (Source File: charge.f90)

INTERFACE:
subroutine charge
USES:

use modmain
use modtest

DESCRIPTION:

Computes the muffin-tin, interstitial and total charges by integrating the density.

REVISION HISTORY:

Created April 2003 (JKD)

o4

7.13 checkmt (Source File: checkmt.f90)

INTERFACE:
subroutine checkmt
USES:

use modmain
use modmpi
use modvars

DESCRIPTION:

Checks for muffin-tins which are too close together or intersecting. If any such muffin-tins
are found then the radii of their associated atomic species are adjusted so that the minimum
distance between their surfaces is rmtdelta.

REVISION HISTORY:

Created May 2003 (JKD)
Modified, October 2011 (JKD)

7.14 clebgor (Source File: clebgor.f90)

INTERFACE:
real(8) function clebgor(jil,j2,j3,ml,m2,m3)
INPUT/OUTPUT PARAMETERS:

j1, j2, j3 : angular momentum quantum numbers (in,integer)
ml, m2, m3 : magnetic quantum numbers (in,integer)

DESCRIPTION:

Returns the Clebsch-Gordon coefficients using the Wigner 3j-symbols

Ji o Ja Js
mip Mg —mMs)

C(J1J2J3|m1m2m3) = (—1)J1_J2+m3\/ 2J3+1 (

Suitable for J; < 50. See wigner3j.

REVISION HISTORY:

Created September 2003 (JKD)

95

7.15 dielectric (Source File: dielectric.f90)

INTERFACE:
subroutine dielectric
USES:

use modmain
use modmpi
use modomp
use modtest

DESCRIPTION:

Computes the dielectric tensor, optical conductivity and plasma frequency. The formulae
are taken from Physica Scripta T109, 170 (2004).

REVISION HISTORY:

Created November 2005 (SS and JKD)

Added plasma frequency and intraband contribution (S. Lebegue)
Complete rewrite, 2008 (JKD)

Fixed problem with plasma frequency, 2009 (Marty Blaber and JKD)
Parallelised, 2009 (M. Blaber)

7.16 dmatsu2 (Source File: dmatsu2.f90)

INTERFACE:

subroutine dmatsu2(lmmax,su2,dmat)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

lmmax : number of (1,m) components: (lmax+1)~2 (in,integer)

su2 : SU(2) rotation matrix (in,complex(2,2))

dmat : density matrices for all second-variational states
(inout,complex (lmmax,nspinor,lmmax,nspinor,nstsv))

DESCRIPTION:

Applies a SU(2) rotation matrix U to the spin degrees of freedom of a state-resolved muffin-
tin density matrix. In other words given a density matrix =y, this subroutine performs the
operation

v, m,o,l,m,o") — Z U(o,o1)y(l,m, al,l,m,ag)UT(ag,ol).

01,02

56

Note that the operation is performed only on the (I,m) diagonal part of the matrix. See
the routines bandstr and dos.

REVISION HISTORY:

Created November 2025 (JKD)

7.17 dmatulm (Source File: dmatulm.f90)

INTERFACE:

subroutine dmatulm(ulm,dmat)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ulm : unitary transformation in the (1,m) basis
(in, complex (lmmaxdb,lmmaxdb))

dmat : density matrix in the (1,m) and spin basis for each
second-variational state
(in, complex (1mmaxdb,nspinor,lmmaxdb,nspinor,nstsv))

DESCRIPTION:

Applies a unitary transformation to a density matrix corresponding to a particular angular
momentum /, atom and second-variational state. This is done to transform the density
matrix to irreducible representation form. See also genlmirep.

REVISION HISTORY:

Created October 2025 (JKD)

7.18 dmtotm3 (Source File: dmtotm3.f90)

INTERFACE:
subroutine dmtotm3(1l,k,p,r,1ld,dm,wkpr)
INPUT/OUTPUT PARAMETERS:

1 : angular momentum (in,integer)
k : k-index of tensor moment (in,integer)
p : p-index of tensor moment (in,integer)
r : r-index of tensor moment (in,integer)
ld : leading dimension (in,integer)
dm : density matrix (in,complex(ld,2,1d,2))

wkpr : 3-index spherical tensor moments (out,real(-1d:1d))

o7

DESCRIPTION:

Determines the 3-index spherical tensor moments of a density matrix D with
wfpr = tr (FfprD).

This exploits the orthonormality of the Ffp " matrices. See the routines tm2todm and
tm3todm for more details.

REVISION HISTORY:

Created April 2008 (F. Cricchio and L. Nordstrom)
Modified, January 2014 (JKD)
Changed to real tensor moments, December 2021 (JKD)

7.19 dos (Source File: dos.f90)

INTERFACE:
subroutine dos(fext,tocc,occsvp)
USES:

use modmain
use modomp
use modtest

INPUT/OUTPUT PARAMETERS:

fext : filename extension (in,character(x))

tocc : .true. if just the occupied orbitals should contribute to the DOS
(in,logical)

occsvp : occupation numbers of second-variational orbitals
(in,real (nstsv,nkpt))

DESCRIPTION:

Produces a total and partial density of states (DOS) for plotting. The total DOS is written
to the file TDOS.OUT while the partial DOS is written to the file PDOS_Sss_Aaaaa.0UT for
atom aaaa of species ss. In the case of the partial DOS, each symmetrised (I, m)-projection
is written consecutively and separated by blank lines. If the global variable lmirep is
.true., then the density matrix from which the (l,m)-projections are obtained is first
rotated into a irreducible representation basis, i.e. one that block diagonalises all the site
symmetry matrices in the Y}, basis. Eigenvalues of a quasi-random matrix in the Y}, basis
which has been symmetrised with the site symmetries are written to ELMIREP.QUT. This
allows for identification of the irreducible representations of the site symmetries, for example
eg Or tag4, by the degeneracies of the eigenvalues. In the plot, spin-up is made positive and
spin-down negative. See the routines gendmatk and brzint.

REVISION HISTORY:

58

Created January 2004 (JKD)
Parallelised and included sum over m, November 2009 (F. Cricchio)

7.20 efieldmt (Source File: efieldmt.f90)

INTERFACE:
subroutine efieldmt
USES:

use modmain

DESCRIPTION:

Calculates the average electric field in each muffin-tin from the gradient of the Coulomb
potential:

3
47TR§ MT,
3

= — nd
RS /MTQ Vo(r)nds,

where R, is the radius of muffin-tin a.

E, VVe(r) d®r

REVISION HISTORY:

Created April 2024 (JKD)

7.21 elfplot (Source File: elfplot.f90)

INTERFACE:
subroutine elfplot
USES:

use modmain

DESCRIPTION:

Outputs the electron localisation function (ELF) for 1D, 2D or 3D plotting. The spin-

averaged ELF is given by
1

feup(r) = 77 [D(r)/DO(r)]2’

where

o) = 5 (e - ;)

99

and N
7(r) =) [VI(r)
i=1

is the spin-averaged kinetic energy density from the spinor wavefunctions. The function D°
is the kinetic energy density for the homogeneous electron gas evaluated for n(r):

n(r 5/3
DO(r) = %(67r2)2/3 ((2)> .

The ELF is useful for the topological classification of bonding. See for example T. Burnus,
M. A. L. Marques and E. K. U. Gross [Phys. Rev. A 71, 10501 (2005)].

REVISION HISTORY:

Created September 2003 (JKD)
Fixed bug found by F. Wagner (JKD)

7.22 eliashberg (Source File: eliashberg.f90)

INTERFACE:
subroutine eliashberg
USES:

use modmain
use modphonon
use modomp

DESCRIPTION:

Calculates the superconducting gap within Eliashberg theory. This implementation is
isotropic and assumes a flat density of states. The Eliashberg function o?F is required
as input for this calculation.

REVISION HISTORY:

Created December 2010 (Antonio Sanna)
Modified, June 2011 (JKD)

7.23 energy (Source File: energy.f90)

INTERFACE:
subroutine energy

USES:

60

use modmain
use moddftu
use modtest

DESCRIPTION:

Computes the total energy and its individual contributions. The kinetic energy is given by
Ty=) niei— /P(r) [ve(r) + vxe(r)]dr — /m(r) * (Bxe(r) + Bext(r))dr,
i

where n; are the occupation numbers and ¢; are the eigenvalues of both the core and valence
states; p is the density; m is the magnetisation density; vc is the Coulomb potential; vy,
and By, are the exchange-correlation potential and magnetic field, respectively; and Bext is
the external magnetic field. The Hartree, electron-nuclear and nuclear-nuclear electrostatic
energies are combined into the Coulomb energy:

EC = EH + Een + Enn
1
= §Vc + EMad,

where
Ve :/p(r)vc(r)dr

is the Coulomb potential energy. The Madelung energy is given by

1
Enag = 5 Z ZaRa,

«

where .
: C
Ro = limy (¢500(r) Y0 + 57

for atom «, with ’US;OO being the [= 0 component of the spherical harmonic expansion of vg
in the muffin-tin, and z,, is the nuclear charge. Using the nuclear-nuclear energy determined
at the start of the calculation, the electron-nuclear and Hartree energies can be isolated with

Een =2 (EMad - Enn)

and

Finally, the total energy is
E:T8+EC+EXC7

where Fy. is obtained either by integrating the exchange-correlation energy density, or in
the case of exact exchange, the explicit calculation of the Fock exchange integral. The
energy from the external magnetic fields in the muffin-tins, bfcmt, is always removed from
the total since these fields are non-physical: their field lines do not close. The energy of
the physical external field, bfieldc, is also not included in the total because this field, like
those in the muffin-tins, is used for breaking spin symmetry and taken to be infintesimal.
If this field is intended to be finite, then the associated energy, engybext, should be added
to the total by hand. See potxc, exxengy and related subroutines.

REVISION HISTORY:

61

Created May 2003 (JKD)

7.24 engyfdu (Source File: engyfdu.f90)

INTERFACE:
subroutine engyfdu(idu)
USES:

use modmain
use moddftu
use modmpi

INPUT/OUTPUT PARAMETERS:
idu : DFT+U entry (in,integer)

DESCRIPTION:

Calculates the energies of radial functions to be used to calculate the Slater integrals. By
convention those energies are chosen to be the ones at the center of the band.

REVISION HISTORY:

Created April 2008 (F. Cricchio)

7.25 erf (Source File: erf.f90)

INTERFACE:
elemental real(8) function erf(x)
INPUT/OUTPUT PARAMETERS:

x : real argument (in,real)

DESCRIPTION:

Returns the error function erf(x) using a rational function approximation. This procedure
is numerically stable and accurate to near machine precision.

REVISION HISTORY:

Modified version of a NSWC routine, April 2003 (JKD)

62

7.26 eulerrot (Source File: eulerrot.f90)

INTERFACE:
pure subroutine eulerrot(ang,rot)
INPUT/OUTPUT PARAMETERS:

ang : Euler angles (alpha, beta, gamma) (in,real(3))
rot : rotation matrix (out,real(3,3))

DESCRIPTION:

Given a set of Euler angles, («, 3,), this routine determines the corresponding 3 x 3 rotation
matrix. The so-called ‘y-convention’ is taken for the Euler angles. See the routine roteuler
for details.

REVISION HISTORY:

Created January 2014 (JKD)

7.27 eveqn (Source File: eveqn.f90)

INTERFACE:

subroutine eveqn(ik,evalfv,evecfv,evecsv)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

ik : k-point number (in,integer)

evalfv : first-variational eigenvalues (out,real(nstfv))

evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv))
evecsv : second-variational eigenvectors (out,complex(nstsv,nstsv))

DESCRIPTION:

Solves the first- and second-variational eigenvalue equations. See routines match, eveqnfv,
eveqnss and eveqnsv.

REVISION HISTORY:

Created March 2004 (JKD)

63

7.28 eveqnfv (Source File: eveqnfv.f90)

INTERFACE:
subroutine eveqnfv(nmatp,ngp,igpig,vpc,vgpc,apwalm,evalfv,evecfv)
USES:

use modmain
use modomp

INPUT/OUTPUT PARAMETERS:

nmatp : order of overlap and Hamiltonian matrices (in,integer)
ngp : number of G+p-vectors (in,integer)

igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax))
vpc : p-vector in Cartesian coordinates (in,real(3))

vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax))

apwalm : APW matching coefficients
(in, complex (ngkmax ,apwordmax , lmmaxapw,natmtot))
evalfv : first-variational eigenvalues (out,real(nstfv))
evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv))

DESCRIPTION:

Solves the eigenvalue equation,
(H—-€0)b=0,

for the all the first-variational states of the input p-point.
REVISION HISTORY:

Created March 2004 (JKD)

7.29 eveqnfvr (Source File: eveqnfvr.f90)

INTERFACE:
subroutine eveqnfvr(nmatp,ngp,vpc,h_,o_,evalfv,evecfv)
USES:

use modmain
use modomp
use, intrinsic :: iso_c_binding

INPUT/OUTPUT PARAMETERS:

64

nmatp : order of overlap and Hamiltonian matrices (in,integer)

ngp : number of G+p-vectors (in,integer)
vpc : p-vector in Cartesian coordinates (in,real(3))
h,o : Hamiltonian and overlap matrices in upper triangular form

(in, complex (*))
evalfv : first-variational eigenvalues (out,real(nstfv))
evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv))

DESCRIPTION:

This routine solves the first-variational eigenvalue equation for the special case when in-
version symmetry is present. In this case the Hamiltonian and overlap matrices can be
made real by using appropriate linear combinations of the local-orbitals for atoms related
by inversion symmetry. These are derived from the effect of parity and complex conjugation
on the spherical harmonics: PYj, = (=1)Y},, and (Y,,)* = (=1)"Y_,,.

REVISION HISTORY:

Created May 2011 (JKD)

7.30 factr (Source File: factr.f90)

INTERFACE:
real(8) function factr(n,d)
INPUT/OUTPUT PARAMETERS:

n : numerator (in,integer)
d : denominator (in,integer)

DESCRIPTION:
Returns the ratio n!/d! for n,d > 0. Performs no under- or overflow checking.

REVISION HISTORY:

Created October 2002 (JKD)

7.31 fderiv (Source File: fderiv.f90)

INTERFACE:
subroutine fderiv(m,n,x,f,g)

INPUT/OUTPUT PARAMETERS:

65

: order of derivative (in,integer)

: number of points (in,integer)

: abscissa array (in,real(n))

: function array (in,real(n))

g : (anti-)derivative of f (out,real(n))

DESCRIPTION:

H X B B

Given function f defined on a set of points x; then if m > 0 this routine computes the mth
derivative of f at each point. If m = —1 the anti-derivative of f given by

o) = [f(z) do

is calculated. Both derivatives and integrals are computed by first fitting the function to a
clamped cubic spline.

REVISION HISTORY:
Created May 2002 (JKD)

7.32 findband (Source File: findband.f90)

INTERFACE:
subroutine findband(sol,l,nr,r,vr,eps,demax,e,fnd)

INPUT/OUTPUT PARAMETERS:

sol : speed of light in atomic units (in,real)

1 : angular momentum quantum number (in,integer)

nr : number of radial mesh points (in,integer)

T : radial mesh (in,real(nr))

vr : potential on radial mesh (in,real(ar))

eps : energy search tolerance (in,real)

demax : maximum allowed change from the input energy; enforced only if e < O

(in,real)

e : input energy and returned band energy (inout,real)

fnd : set to .true. if the band energy is found (out,logical)
DESCRIPTION:

Finds the band energies for a given radial potential and angular momentum. This is done
by first searching upwards in energy, starting from the input energy plus the offset energy,
until the radial wavefunction at the muffin-tin radius is zero. This is the energy at the top
of the band, denoted E;. A downward search is now performed from E} until the slope of
the radial wavefunction at the muffin-tin radius is zero. This energy, Ey, is at the bottom
of the band. The band energy is taken as (Ey + F},)/2. If either E; or E}, cannot be found
then the band energy is set to the input value.

REVISION HISTORY:

66

Created September 2004 (JKD)
Added two-pass loop, October 2013 (JKD)

7.33 findlambda (Source File: findlambda.f90)

INTERFACE:

subroutine findlambda(is,l,ufix,lambda0,lambda)
use modmpi

INPUT/OUTPUT PARAMETERS:

is : species type (in,integer)

1 : angular momentum (in,integer)

ufix : fixed U (in,integer)

lambda0 : starting value for screening length (inout,real)

lambda : screening length corresponding to fixed U (out,real)
DESCRIPTION:

Find the screening length corresponding to a fixed value of U by using the half-interval
method in the first few steps and then the more efficient secant method. For U = 0 the
code automatically sets the screening length to lambdamax = 50. This value is enough to
get F%) ~ 1073 corresponding to U ~ 0 (that perfectly mimics a bare DFT calculation).

REVISION HISTORY:

Created July 2009 (Francesco Cricchio)

7.34 findngkmax (Source File: findngkmax.f90)

INTERFACE:
pure subroutine findngkmax(nkpt,vkc,nspnfv,vqcss,ngv,vgc,gkmax,ngkmax)
INPUT/OUTPUT PARAMETERS:

nkpt : number of k-points (in,integer)

vke : k-point vectors in Cartesian coordinates (in,real(3,nkpt))

nspnfv : number of first-variational spin components: 1 normal case, 2 for
spin-spiral case (in,integer)

vqcss @ spin-spiral g-vector, not referenced if nspnfv=1 (in,integer)
ngv : number of G-vectors (in,integer)

vge : G-vectors in Cartesian coordinates (in,real(3,ngv))

gkmax : maximum allowed |G+k| (in,real)

ngkmax : maximum number of G+k-vectors over all k-points (out,integer)

67

DESCRIPTION:

Determines the largest number of G + k-vectors with length less than gkmax over all the
k-points. This variable is used for allocating arrays.

REVISION HISTORY:

Created October 2004 (JKD)
Modified, August 2012 (JKD)
Removed modmain and added arguments, September 2012 (JKD)

7.35 findprimcell (Source File: findprimcell.f90)

INTERFACE:
subroutine findprimcell
USES:

use modmain

DESCRIPTION:

This routine finds the smallest primitive cell which produces the same crystal structure
as the conventional cell. This is done by searching through all the vectors which connect
atomic positions and finding those which leave the crystal structure invariant. Of these, the
three shortest which produce a non-zero unit cell volume are chosen.

REVISION HISTORY:

Created April 2007 (JKD)

7.36 findswidth (Source File: findswidth.f90)

INTERFACE:
subroutine findswidth
USES:

use modmain

DESCRIPTION:

Calculates the smearing width from the k-point density, Vz/nk; the valence band width,
W; and an effective mass parameter, m*; according to

_ VAW (3VBZ>1/3

m* 4 nyg

68

The valence bandwidth is determined by stepping down in energy from the Fermi level until
a gap larger than a given tolerance is found. This method was presented in T. Bjorkman
and O. Granés, Int. J. Quant. Chem. DOI: 10.1002/qua.22476.

REVISION HISTORY:

Created April 2010 (Torbjorn Bjorkman and JKD)

7.37 findsymecrys (Source File: findsymecrys.f90)

INTERFACE:
subroutine findsymcrys
USES:

use modmain
use modmpi
use modtest

DESCRIPTION:

Finds the complete set of symmetries which leave the crystal structure (including the mag-
netic fields) invariant. A crystal symmetry is of the form {ag|ar|t}, where t is a translation
vector, ar is a spatial rotation operation and ag is a global spin rotation. Note that the
order of operations is important and defined to be from right to left, i.e. translation followed
by spatial rotation followed by spin rotation. In the case of spin-orbit coupling ag = ag.
In order to determine the translation vectors, the entire atomic basis is shifted so that the
first atom in the smallest set of atoms of the same species is at the origin. Then all dis-
placement vectors between atoms in this set are checked as possible symmetry translations.
If the global variable tshift is set to .false. then the shift is not performed. See L. M.
Sandratskii and P. G. Guletskii, J. Phys. F: Met. Phys. 16, L43 (1986) and the routine
findsym.

REVISION HISTORY:

Created April 2007 (JKD)

7.38 findsym (Source File: findsym.f90)

INTERFACE:
subroutine findsym(apll,apl2,nsym,lspl,lspn,iea)

USES:

69

use modmain
use moddftu
use modtddft

INPUT/OUTPUT PARAMETERS:

apll : first set of atomic positions in lattice coordinates
(in,real (3,maxatoms,maxspecies))
apl2 : second set of atomic positions in lattice coordinates
(in,real (3,maxatoms,maxspecies))
nsym : number of symmetries (out,integer)
1spl : spatial rotation element in lattice point group for each symmetry

(out,integer(48))

1spn : spin rotation element in lattice point group for each symmetry
(out,integer(48))

iea : equivalent atom index for each symmetry

(out,integer(iea(natmmax,nspecies,48))

DESCRIPTION:

Finds the symmetries which rotate one set of atomic positions into another. Both sets of
positions differ only by a translation vector and have the same muffin-tin magnetic fields
(stored in the global array bfcmt). Any symmetry element consists of a spatial rotation of
the atomic position vectors followed by a global magnetic rotation: {ag|agr}. In the case
of spin-orbit coupling avg = ag. The symmetries are returned as indices of elements in the
Bravais lattice point group. An index to equivalent atoms is stored in the array iea.

REVISION HISTORY:

Created April 2007 (JKD)
Fixed use of proper rotations for spin, February 2008 (L. Nordstrom)

7.39 findsymlat (Source File: findsymlat.f90)

INTERFACE:
subroutine findsymlat
USES:

use modmain
use modtddft

DESCRIPTION:

Finds the point group symmetries which leave the Bravais lattice invariant. Let A be the
matrix consisting of the lattice vectors in columns, then

g=ATA

70

is the metric tensor. Any 3 x 3 matrix S with elements —1, 0 or 1 is a point group symmetry
of the lattice if det(S) is —1 or 1, and

STgS =g.
The first matrix in the set returned is the identity.

REVISION HISTORY:

Created January 2003 (JKD)
Removed arguments and simplified, April 2007 (JKD)

7.40 force (Source File: force.f90)

INTERFACE:
subroutine force
USES:

use modmain
use modtddft
use modtest
use modmpi
use modomp

DESCRIPTION:

Computes the various contributions to the atomic forces. In principle, the force acting on
a nucleus is simply the gradient at that site of the classical electrostatic potential from the
other nuclei and the electronic density. This is a result of the Hellmann-Feynman theorem.
However because the basis set is dependent on the nuclear coordinates and is not complete,
the Hellman-Feynman force is inaccurate and corrections to it are required. The first is the
core correction which arises because the core wavefunctions were determined by neglecting
the non-spherical parts of the Kohn-Sham potential vs. Explicitly this is given by

F?ore - / vs(r)vp?ore(r) dI‘
MT,

for atom a. The second, which is the incomplete basis set (IBS) correction, is due to the
position dependence of the APW functions, and is derived by considering the change in
total energy if the eigenvector coefficients were fixed and the APW functions themselves
were changed. This would result in changes to the first-variational Hamiltonian and overlap
matrices given by

1 ~ ; /
dHG o =1i(G - G) (Hé+k,G'+k —5(G+k) (G' +k)04(G — G')e (G~C)-ra>

006e =iG-G) <OaG+k,G’+k — 0,(G - G/)e*i(G*G')'rJ

71

where both G and G’ run over the APW indices; ©, is the form factor of the smooth
step function for muffin-tin «; and H® and O¢ are the muffin-tin Hamiltonian and overlap
matrices, respectively. The APW-local-orbital part is given by

5H87G’ == Z(G + k)Hg‘r—&-k?G’-{-k
50%}7(;/ = Z(G + k)0%+k,G’+k
where G runs over the APW indices and G’ runs over the local-orbital indices. There is

no contribution from the local-orbital-local-orbital part of the matrices. We can now write
the IBS correction in terms of the basis of first-variational states as
F%k = Z b%(*bJGk/ (6H87G’ — Gj(SOé’G/) s
GG/
where b¥ is the first-variational eigenvector. Finally, the F%k matrix elements can be
multiplied by the second-variational coefficients, and contracted over all indices to obtain
the IBS force:

FIBS—ZwkkaZ e llepak 4 / 0a(1)V [p(x) — p%e(r)] dr,

MTq

where ¥ are the second-variational coefficients, wy are the k-point weights, nyc are the

occupation numbers.

REVISION HISTORY:

Created January 2004 (JKD)
Fixed problem with second-variational forces, May 2008 (JKD)

7.41 forcek (Source File: forcek.f90)

INTERFACE:
subroutine forcek(ik,forceibs)
USES:

use modmain
use modomp

INPUT/OUTPUT PARAMETERS:

ik : reduced k-point number (in,integer)
forceibs : IBS force (inout,real(3,natmtot))
DESCRIPTION:

Computes the k-dependent contribution to the incomplete basis set (IBS) force. See the
calling routine force for a full description.

REVISION HISTORY:

Created June 2006 (JKD)
Updated for spin-spiral case, May 2007 (Francesco Cricchio and JKD)

72

7.42 fsmooth (Source File: fsmooth.f90)

INTERFACE:
pure subroutine fsmooth(m,n,f)

INPUT/OUTPUT PARAMETERS:

m : number of 3-point running averages to perform (in,integer)
n : number of point (in,integer)
f : function array (inout,real(n))

DESCRIPTION:

Removes numerical noise from a function by performing m successive 3-point running av-
erages on the data. The endpoints are kept fixed.

REVISION HISTORY:

Created December 2005 (JKD)

7.43 fyukawaO (Source File: fyukawa0.f90)

INTERFACE:
real(8) function fyukawaO(is,l1,k)
USES:

use modmain
use moddftu

INPUT/OUTPUT PARAMETERS:

is : species type (in,integer)

1 : an angular momentum (in,integer)
k : order of Slater parameter (in,integer)
DESCRIPTION:

Calculates the Slater parameters in the unscreened case. See Phys. Rev. B 52, 1421 (1995)
and Phys. Rev. B 80, 035121 (2009).

REVISION HISTORY:

Created April 2008 (LN)
Modified and tested July 2008 (LN and FC)

73

7.44 fyukawa (Source File: fyukawa.f90)

INTERFACE:
real(8) function fyukawa(is,l,k,lambda)
USES:

use modmain
use moddftu

INPUT/OUTPUT PARAMETERS:

is : species type (in,integer)
1 : an angular momentum (in,integer)
k : order of Slater parameter (in,integer)

lambda : screening length of Yukawa potential (in,real)

DESCRIPTION:

Calculates the Slater parameters using a screened Yukawa potential. See Phys. Rev. B 52,
1421 (1995) and Phys. Rev. B 80, 035121 (2009).

REVISION HISTORY:

Created April 2008 (Lars Nordstrom)
Modified and tested July 2008 (LN and FC)

7.45 gaunt (Source File: gaunt.f90)

INTERFACE:
real(8) function gaunt(11,12,13,m1,m2,m3)
INPUT/OUTPUT PARAMETERS:

11, 12, 13 : angular momentum quantum numbers (in,integer)
ml, m2, m3 : magnetic quantum numbers (in,integer)

DESCRIPTION:

Returns the Gaunt coefficient given by

251+1)(2z2+1)(2z3+1)]§<11 I 13>< Lo b z3>'

I lo l3 _ (_1\mM1 (
<Ym1‘Ym2|Ym3> - (1) A7 0O 0 O —mi Mma M3

Suitable for I; less than 50.

REVISION HISTORY:

Created November 2002 (JKD)

74

7.46 gauntyry (Source File: gauntyry.f90)

INTERFACE:
complex(8) function gauntyry(1l1,12,13,m1,m2,m3)
INPUT/OUTPUT PARAMETERS:

11, 12, 13 : angular momentum quantum numbers (in,integer)
ml, m2, m3 : magnetic quantum numbers (in,integer)

DESCRIPTION:

Returns the complex Gaunt-like coefficient given by (Y, |R2 Y2) where Y, and Ry,
are the complex and real spherical harmonics, respectively. Suitable for I; less than 50. See
routine genrlm.

REVISION HISTORY:

Created November 2002 (JKD)

7.47 gcd (Source File: gcd.f90)

INTERFACE:
integer function gcd(x,y)
INPUT/OUTPUT PARAMETERS:

x : first integer (in,integer)
y : second integer (in,integer)

DESCRIPTION:
Computes the greatest common divisor (GCD) of two integers using Euclid’s algorithm.

REVISION HISTORY:

Created September 2004 (JKD)

7.48 genafieldt (Source File: genafieldt.f90)

INTERFACE:
subroutine genafieldt

USES:

75

use modmain
use modtddft

DESCRIPTION:

Generates a time-dependent vector potential, A(t), representing a laser pulse and stores it
in AFIELDT.OUT. The vector potential is constructed from a sum of sinusoidal waves, each
modulated with a Gaussian envelope function:

e—(t—t0)?/20°
oV 2T

Seven real numbers have to be specified for each pulse, namely the vector amplitude Ay,
peak time tg, full-width at half-maximum d = 2v/21n 20, frequency w and phase ¢.

A(t) = Ay sin(w(t —to) + @).

REVISION HISTORY:

Created May 2012 (K. Krieger)

Modified, January 2014 (S. Sharma)

Modified, February 2014 (JKD)

Added spin-dependent A-fields, January 2023 (E. Harris-Lee)

7.49 genapwfr (Source File: genapwfr.f90)

INTERFACE:
subroutine genapwfr
USES:

use modmain
use modomp

DESCRIPTION:

Generates the APW radial functions. This is done by integrating the scalar relativistic
Schrodinger equation (or its energy deriatives) at the current linearisation energies using
the spherical part of the Kohn-Sham potential. The number of radial functions at each
[-value is given by the variable apword (at the muffin-tin boundary, the APW functions
have continuous derivatives up to order apword — 1). Within each [, these functions are
orthonormalised with the Gram-Schmidt method. The radial Hamiltonian is applied to the
orthonormalised functions and the results are stored in the global array apwfr.

REVISION HISTORY:

Created March 2003 (JKD)
Copied to equivalent atoms, February 2010 (A. Kozhevnikov and JKD)

76

7.50 gencfun (Source File: gencfun.f90)

INTERFACE:
subroutine gencfun
USES:

use modmain

DESCRIPTION:

Generates the smooth characteristic function. This is the function which is 0 within the
muffin-tins and 1 in the intersitial region and is constructed from radial step function form
factors with G < Gpax- The form factors are given by

4T R3

_ 30 G=0

0i(G) = { TgE i) 0 < G < Grax
0 G > Gax

where R; is the muffin-tin radius of the ith species and €2 is the unit cell volume. Therefore
the characteristic function in G-space is

O(G) =da0— Y exp(—iG - 155)0,(G),
L]
where r;; is the position of the jth atom of the ith species.

REVISION HISTORY:

Created January 2003 (JKD)

7.51 gencore (Source File: gencore.f90)

INTERFACE:
subroutine gencore
USES:

use modmain
use modomp

DESCRIPTION:

Computes the core radial wavefunctions, eigenvalues and densities. The radial Dirac equa-
tion is solved in the spherical part of the Kohn-Sham potential to which the atomic poten-
tial has been appended for » > Ryr. In the case of spin-polarised calculations, and when
spincore is set to .true., the Dirac equation is solved in the spin-up and -down potentials

77

created from the Kohn-Sham scalar potential and magnetic field magnitude, with the occu-
pancy divided equally between up and down. The up and down densities determined in this
way are added to both the scalar density and the magnetisation in the routine rhocore.
Note that this procedure is a simple, but inexact, approach to solving the radial Dirac
equation in a magnetic field.

REVISION HISTORY:

Created April 2003 (JKD)
Added polarised cores, November 2009 (JKD)
Fixed race condition, February 2025 (JKD)

7.52 genfdu (Source File: genfdu.f90)

INTERFACE:
subroutine genfdu(idu,u,j,f)
USES:

use moddftu
use modmpi

INPUT/OUTPUT PARAMETERS:

idu : DFT+U entry (in,integer)

u : parameter U (inout,real)

j : parameter J (inout,real)

f : Slater parameters (inout,real)
DESCRIPTION:

Calculate the Slater parameters for DE'T+U calculation with different approaches, see Phys.
Rev. B 80, 035121 (2009). The relations among Slater and Racah parameters are from
E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, The University Press,
Cambridge (1935).

REVISION HISTORY:

Created July 2008 (Francesco Cricchio)

7.53 genfdufr (Source File: genfdufr.f90)

INTERFACE:
subroutine genfdufr(idu)

USES:

78

use modmain
use moddftu

INPUT/OUTPUT PARAMETERS:
idu : DFT+U entry (in,integer)

DESCRIPTION:

Generates the radial functions used to calculate the Slater integrals through a Yukawa
potential.

REVISION HISTORY:

Created April 2008 from genapwfr (Francesco Cricchio)

7.54 genffacgp (Source File: genffacgp.f90)

INTERFACE:
pure subroutine genffacgp(ngp,gpc,ld,ffacgp)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer)
gpc : length of G+p-vectors (in,real(ngp))
14 : leading dimension (in,integer)

ffacgp : form factors (out,real(ld,nspecies))

DESCRIPTION:

Generates the form factors used to determine the smooth characteristic function. See
gencfun for details.

REVISION HISTORY:

Created January 2003 (JKD)

7.55 gengclqg (Source File: gengclq.f90)

INTERFACE:
subroutine gengclq

USES:

79

use modmain
use modtest

DESCRIPTION:

The Fock matrix elements

Ol (r) - Wy (0) W], (2) - W (1)

P tk Ik’ J 3., 33,/
Vzgk—Z/ T — 1/ d’rd°r
lk’
contain a divergent term in the sum over k’ which behaves as 1/¢%, where q = k — k’ is in
the first Brillouin zone. The resulting convergence with respect to the number of discrete
g-points, Ng, is very slow. This routine computes the regularised Coulomb Green’s function

gla;) = 4% ; qlgdgq, (1)
where the integral is over the small parallelepiped with volume V' = Qgy/N, and centered
on the discrete point q;. This dramatically increases the rate of convergence of methods
which involve a summation over the 1/¢? part of the Coulomb interaction. The above
integral is evaluated numerically on increasingly finer grids and then extrapolated to the
continuum.

REVISION HISTORY:

Created August 2004 (JKD,SS)
Changed from genwiq2, July 2017 (JKD)

7.56 gengkvec (Source File: gengkvec.f90)

INTERFACE:

pure subroutine gengkvec(ngv,ivg,vgc,vkl,vkc,gkmax,ngkmax,ngk,igkig,vgkl,vgkc, &
gke)

INPUT/OUTPUT PARAMETERS:

ngv : number of G-vectors (in,integer)

ivg : G-vector integer coordinates (in,integer(3,ngv))

vgc : G-vectors in Cartesian coordinates (in,real(3,ngv))

vkl : k-point vector in lattice coordinates (in,real(3))

vke : k-point vector in Cartesian coordinates (in,real(3))
gkmax : G+k-vector cut-off (in,real)

ngkmax : maximum number of G+k-vectors (in,integer)

ngk : number of G+k-vectors returned (out,integer)

igkig : index from G+k-vectors to G-vectors (out,integer (ngkmax))
vgkl : Gt+k-vectors in lattice coordinates (out,real(3,ngkmax))
vgkc : Gtk-vectors in Cartesian coordinates (out,real(3,ngkmax))
gkc : length of G+k-vectors (out,real(ngkmax))

80

DESCRIPTION:

Generates a set of G + k-vectors for the input k-point with length less than gkmax.

REVISION HISTORY:

Created April 2003 (JKD)
Removed spherical coordinate generation, May 2010 (JKD)
Removed modmain and added arguments, September 2012 (JKD)

7.57 gengvec (Source File: gengvec.f90)

INTERFACE:
subroutine gengvec
USES:

use modmain

DESCRIPTION:

Generates a set of G-vectors used for the Fourier transform of the charge density and
potential and sorts them according to length. Integers corresponding to the vectors in
lattice coordinates are stored, as well as the map from these integer coordinates to the
G-vector index. A map from the G-vector set to the standard FFT array structure is also
generated. Finally, the number of G-vectors with magnitude less than gmaxvr is determined.

REVISION HISTORY:
Created October 2002 (JKD)

7.58 genidxlo (Source File: genidxlo.f90)

INTERFACE:
subroutine genidxlo
USES:

use modmain

DESCRIPTION:

Generates an index array which maps the local-orbitals in each atom to their locations in
the overlap or Hamiltonian matrices. Also finds the total number of local-orbitals.

REVISION HISTORY:
Created June 2003 (JKD)

81

7.59 genjlgprmt (Source File: genjlgprmt.f90)

INTERFACE:
subroutine genjlgprmt(lmax,ngp,gpc,ld,jlgprmt)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

Imax : angular momentum cut-off (in,integer)
ngp : number of G+p-vectors (in,integer)

gpc : length of G+p-vectors (in,real(ngkmax))
1d : leading dimension (in,integer)

jlgprmt : spherical Bessel functions (out,real(0:1lmax,ld,nspecies))

DESCRIPTION:

Calculates and stores the spherical Bessel functions j;(|G + p|Ryt) for all input G + p
vectors and the muffin-tin radii Ry of every atomic species.

REVISION HISTORY:
Created April 2002 (JKD)

7.60 genkmat (Source File: genkmat.f90)

INTERFACE:
subroutine genkmat (tfv,tvclcr)
USES:

use modmain
use modmpi
use modomp

INPUT/OUTPUT PARAMETERS:

tfv : .true. if the matrix elements are to be expressed in the
first-variational basis; second-variational otherwise (in,logical)

tvclvr : .true. if the non-local Coulomb potential from the core states is
to be included in the kinetic matrix elements (in,logical)

DESCRIPTION:

Computes the kinetic matrix elements in the first- or second-variational basis and stores
them in the file KMAT.OUT. See routine putkmat.

REVISION HISTORY:
Created January 2007 (JKD)

82

7.61 genlmirep (Source File: genlmirep.f90)

INTERFACE:

subroutine genlmirep(elm,ulm)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

elm : eigenvalues of the symmetrised pseudorandom matrix H
(out,real (Immaxdb,natmtot))

ulm : unitary matrix which will transform a density matrix from the (1,m)
basis to the irreducible basis (in,complex(lmmaxdb,lmmaxdb,natmtot))

DESCRIPTION:

First generates a symmetric, pseudorandom matrix H which is then symmetrised by apply-
ing all the group symmetries {S{*} at atomic site « as

H=> SyHS.

This matrix is then diagonalised. By Schur’s second lemma the eigenvalues have degenera-
cies of the same dimension as an irreducible representation (IR) of the symmetry group,
and can be used to identify the IR. These eigenvalues are returned in the matrix elm. The
conjugate transpose of the eigenvector array forms a unitary matrix U which can be applied
directly to a density matrix 7 in the Y, basis as UyUT. This will transform ~ into into the
IR basis. The matrix U is returned in the array ulm. See the routines bandstr and dos.

REVISION HISTORY:

Created August 2002 (JKD)

7.62 genlofr (Source File: genlofr.f90)

INTERFACE:
subroutine genlofr
USES:

use modmain
use modomp

DESCRIPTION:

Generates the local-orbital radial functions. This is done by integrating the scalar relativistic
Schrodinger equation (or its energy deriatives) at the current linearisation energies using the

83

spherical part of the Kohn-Sham potential. For each local-orbital, a linear combination of
lorbord radial functions is constructed such that its radial derivatives up to order lorbord—
1 are zero at the muffin-tin radius. This function is normalised and the radial Hamiltonian
applied to it. The results are stored in the global array lofr.

REVISION HISTORY:

Created March 2003 (JKD)
Copied to equivalent atoms, February 2010 (A. Kozhevnikov and JKD)

7.63 genpmatk (Source File: genpmatk.f90)

INTERFACE:
subroutine genpmatk(ngp,igpig,vgpc,wfmt,wfgp,pmat)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer(unspnfv))
igpig : index from G+p-vectors to G-vectors (in,integer (ngkmax,nspnfv))
vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax,nspnfv))
wimt : muffin-tin wavefunction in spherical harmonics

(in, complex (npcmtmax,natmtot,nspinor,nstsv))
wfgp : interstitial wavefunction in plane wave basis

(in, complex (ngkmax ,nspinor,nstsv))
pmat : momentum matrix elements (out,complex(nstsv,nstsv,3))

DESCRIPTION:

Calculates the momentum matrix elements
1
P = /d3r Ui (r) (—Z’V + 12 [% VVS(I‘)]> Uk (r),

where V; is the Kohn-Sham effective potential. The second term in the brackets is only
calculated if spin-orbit coupling is enabled. See Rathgen and Katsnelson, Physica Scripta
T109, 170 (2004).

REVISION HISTORY:

Created November 2003 (Sharma)

Fixed bug found by Juergen Spitaler, September 2006 (JKD)
Added spin-orbit correction, July 2010 (JKD)

Fixed bug found by Koichi Kitahara, January 2014 (JKD)

84

7.64 genppts (Source File: genppts.f90)

INTERFACE:

subroutine genppts(tfbz,nsym,sym,ngridp,npptnr,epslat,bvec,boxl,nppt,ipvip, &
ipvipnr,ivp,vpl,vpc,wppt,wpptnr)

INPUT/OUTPUT PARAMETERS:

tfbz : .true. if vpl and vpc should be mapped to the first Brillouin zone
(in,logical)

nsym : number of point group symmetries used for reduction, set to 1 for
no reduction (in,integer)

sym : symmetry matrices in lattice coordinates (in,integer(3,3,%*))

ngridp : p-point grid sizes (in,integer(3))
npptnr : number of non-reduced p-points: ngridp(1)*ngridp(2)*ngridp(3)
(in,integer)

epslat : tolerance for determining identical vectors (in,real)

bvec : reciprocal lattice vectors (in,real(3,3))

box1l : corners of box containing p-points in lattice coordinates, the
zeroth vector is the origin (in,real(3,0:3))

nppt : total number of p-points (out,integer)

ipvip : map from (i1,i2,i3) to reduced p-point index

(out,integer(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1))
ipvipnr : map from (i1,i2,i3) to non-reduced p-point index
(out,integer(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1))

ivp : integer coordinates of the p-points
(out,integer(3,ngridp(1)*ngridp(2)*ngridp(3)))
vpl : lattice coordinates of each p-point
(out,real (3,ngridp(1)*ngridp(2)*ngridp(3)))
vpc : Cartesian coordinates of each p-point
(out,real(3,ngridp(1)*ngridp(2)*ngridp(3)))
wppt : weights of each reduced p-point
(out,real (ngridp(1)*ngridp(2)*ngridp(3)))
wpptnr : weight of each non-reduced p-point (out,real)
DESCRIPTION:

This routine is used for generating k-point or ¢-point sets. Since these are stored in global
arrays, the points passed to this and other routines are referred to as p-points. In lattice
coordinates, the p vectors are given by

il/nl
p=(B2-B; B3;-B; B;—-B; i2/ma | + By
i3/n3

where 7; runs from 0 to n; — 1, and the B vectors define the corners of a box with By as
the origin. If tfbz is .true. then each vpl vector is mapped to the first Brillouin zone
If tfbz is .false. and then the coordinates of each vpl are mapped to the [0, 1) interval.

85

The p-point weights are stored in wppt and the array ipvip contains the map from the
integer coordinates to the reduced index.

REVISION HISTORY:

Created August 2002 (JKD)

Updated April 2007 (JKD)

Added mapping to the first Brillouin zone, September 2008 (JKD)
Made independent of modmain, February 2010 (JKD)

7.65 genrlmv (Source File: genrlmv.f90)

INTERFACE:
subroutine genrlmv(lmax,v,rlm)
INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)

v : input vector (in,real(3))
rlm : array of real spherical harmonics (out,real((Ilmax+1)*%*2))
DESCRIPTION:

Generates a sequence of real spherical harmonics evaluated at angles (0, ¢) for 0 < I < ljax.
The values are returned in a packed array rlm indexed with j = (Il + 1) + m + 1. Real
spherical harmonics are defined by

V2Re{Yim(0,6)} m >0
Rim(0,¢) = < V2Im{Y},n(0,6)} m <0
Re{Yin(6,90)} m=20

where Y}, are the complex spherical harmonics. These functions are orthonormal and
complete and may be used for expanding real-valued functions on the sphere. This routine
is numerically stable and accurate to near machine precision for [< 50. See routine genylmv.

REVISION HISTORY:

Created March 2004 (JKD)

7.66 genrmesh (Source File: genrmesh.f90)

INTERFACE:
subroutine genrmesh

USES:

86

use modmain
use modvars

DESCRIPTION:

Generates the coarse and fine radial meshes for each atomic species in the crystal. Also
determines which points are in the inner part of the muffin-tin using the value of fracinr.

REVISION HISTORY:

Created September 2002 (JKD)

7.67 gensdmat (Source File: gensdmat.f90)

INTERFACE:

pure subroutine gensdmat(evecsv,sdmat)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv))
sdmat : spin density matrices (out,complex(nspinor,nspinor,nstsv))

DESCRIPTION:

Computes the spin density matrices for a set of second-variational states.

REVISION HISTORY:

Created September 2008 (JKD)

7.68 gensfacgp (Source File: gensfacgp.f90)

INTERFACE:
pure subroutine gensfacgp(ngp,vgpc,ld,sfacgp)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer)
vgpc : G+p-vectors in Cartesian coordinates (in,real(3,*))
14 : leading dimension (in,integer)

sfacgp : structure factors of G+p-vectors (out,complex(ld,natmtot))

87

DESCRIPTION:

Generates the atomic structure factors for a set of G + p-vectors:
Sa(G +p) = exp(i(G + p) - Ta),

where r,, is the position of atom a.

REVISION HISTORY:

Created January 2003 (JKD)

7.69 genshtmat (Source File: genshtmat.f90)

INTERFACE:
subroutine genshtmat
USES:

use modmain

DESCRIPTION:

Generates the forward and backward spherical harmonic transformation (SHT) matrices
using the spherical covering set produced by the routine sphcover. These matrices are
used to transform a function between its (I, m)-expansion coefficients and its values at the
(0, ¢) points on the sphere. Both real and complex SHT matrices are calculated and stored
in global arrays.

REVISION HISTORY:

Created April 2003 (JKD)

7.70 genspchiO (Source File: genspchi0.f90)

INTERFACE:
subroutine genspchiO(ik,lock,vqpl, jlgqr,ylmgq,sfacgq,chiO)
USES:

use modmain
use modomp

INPUT/OUTPUT PARAMETERS:

88

ik : k-point from non-reduced set (in,integer)

lock : OpenMP locks for frequency index of chiO (in,integer(nwrf))

vgpl : input g-point in lattice coordinates (in,real(3))

jlggr : spherical Bessel functions evaluated on the coarse radial mesh for
all species and G+q-vectors (in,real(njcmax,nspecies,ngrf))

ylmgq : spherical harmonics of the G+q-vectors (in,complex(lmmaxo,ngrf))

sfacgq : structure factors of G+g-vectors (in,complex(ngrf,natmtot))

chiO : spin-dependent Kohn-Sham response function in G-space

(out,complex(ngrf,4,ngrf,4,nwrf))
DESCRIPTION:

Computes the spin-dependent Kohn-Sham response function:

Opap(r,w)
/

Xap,o/ g/ I, T, W

Barp() 5Ua/ﬁ/()

Z U — f) R30I GK oy () Ke)
o w+ (e — &) Fin

where a and 8 are spin-coordinates, Ny is the number of k-points, f;x are the occupation

numbers, v is the Kohn-Sham potential and p is the spin-density operator. With transla-
tional symmetry in mind, we adopt the following convention for its Fourier transform:

1 | o
Xaﬂ,a’ﬁ’ <G7 le q, OJ) - ﬁ / dST d37", e*l(G+q)-r€7l(G +Q)'r Xaﬁ,a’ﬁ’ (I', I'/, (A.))

Let
Zﬁfijrq(G) = /dsr6i(G+q).r‘p;k+q,a(r)%k,ﬁ(r)

then the response function in G-space can be written

(28 14a(@)] 28 1a(@)

onﬁ,a/ﬁ/(G,G/,Qa) NQ Z fzk f]k)

w k — €j i

REVISION HISTORY:

Created March 2012 (SS and JKD)

7.71 genvcl1221 (Source File: genvcl1221.f90)

INTERFACE:
subroutine genvcl1221(ikp,vcl1221)
USES:

use modmain

89

INPUT/OUTPUT PARAMETERS:

ikp : k-point from non-reduced set (in,integer)
vcl1221 : Coulomb matrix elements (out,real(nstsv,nstsv,nkpt))

DESCRIPTION:

Calculates the Coulomb matrix elements of the type V(1,2,2,1). See the routine genvc11223
for details.

REVISION HISTORY:

Created June 2008 (Sharma)

7.72 genvcl1223 (Source File: genvcl1223.f90)

INTERFACE:

subroutine genvcl1223(ikp,vcl1223)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

ikp : k-point from non-reduced set (in,integer)
vcl1223 : Coulomb matrix elements (out,complex(nstsv,nstsv,nstsv,nkpt))

DESCRIPTION:

Calculates Coulomb matrix elements of the type

B it @71 () Pink (1) 0710 () i (1)
v —r/| '

V(1,2,2,3) :/

REVISION HISTORY:

Created 2008 (Sharma)

7.73 genveedu (Source File: genveedu.f90)

INTERFACE:
subroutine genveedu(idu,u,j,vee)

USES:

90

use modmain
use moddftu

INPUT/OUTPUT PARAMETERS:

idu : DFT+U entry (in,integer)

u : parameter U (out,real)

j : parameter J (out,real)

vee : Coulomb matrix elements (out,real(-lmaxdm:lmaxdm,-lmaxdm:lmaxdm,
-lmaxdm:lmaxdm, -1maxdm: lmaxdm))

DESCRIPTION:

Calculates the Coulomb matrix elements used in DFT+U calculations. See Phys. Rev. B
52, 5467 (1995).

REVISION HISTORY:

Created November 2007 (FC,JKD,FB,LN)
Modified July 2009 (FC)

7.74 genvmatmt (Source File: genvmatmt.f90)

INTERFACE:
subroutine genvmatmt
USES:

use modmain
use moddftu

DESCRIPTION:

Calculate the DFT+U potential matrix to be used in the second-variational step and/or
the potential matrix used for fixed tensor moment calculations. See Phys. Rev. B 52, 5467
(1995) and Phys. Rev. B 80, 035121 (2009).

REVISION HISTORY:

Created November 2007 (FC,FB,LN,JKD)
Fixed bug for dftu=3, January 2021 (JKD)
Cleaned up and removed options, September 2021 (JKD)

91

7.75 genvsig (Source File: genvsig.f90)

INTERFACE:
subroutine genvsig
USES:

use modmain

DESCRIPTION:

Generates the Fourier transform of the Kohn-Sham effective potential in the interstitial
region.

REVISION HISTORY:

Created January 2004 (JKD)

7.76 genwfsv (Source File: genwfsv.f90)

INTERFACE:

subroutine genwfsv(tsh,tgp,nst,idx,ngridg_,igfft_,ngp,igpig,apwalm,evecfv, &
evecsv,wfmt,1d,wfir)

USES:

use modmain
use modomp

INPUT/OUTPUT PARAMETERS:

tsh : .true. if wfmt should be in spherical harmonic basis, otherwise
in spherical coordinates (in,logical)
tgp : .true. if wfir should be in G+p-space, otherwise in real-space
(in,logical)
nst : number of states to be calculated (in,integer)
idx : index to states which are to be calculated; if idx(1)=0 then
all states are calculated in the usual order (in,integer(*))
ngridg_ : G-vector grid sizes (in,integer(3))
igfft_ : map from G-vector index to FFT array (in,integer(*))
ngp : number of G+p-vectors (in,integer (nspnfv))
igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax,nspnfv))
apwalm : APW matching coefficients
(in, complex (ngkmax,apwordmax,lmmaxapw,natmtot ,nspnfv))
evecfv : first-variational eigenvectors (in,complex(nmatmax,nstfv,nspnfv))
evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv))
wimt : muffin-tin part of the wavefunctions for every state in spherical

92

coordinates (out,complex(npcmtmax,natmtot,nspinor,nst))
1d : leading dimension of wfir (in,integer)
wfir : interstitial part of the wavefunctions for every state
(out,complex(1ld,nspinor,nst))

DESCRIPTION:
Calculates the second-variational spinor wavefunctions in both the muffin-tin and interstitial

regions for every state of a particular k-point. A coarse radial mesh is assumed in the muffin-
tins with angular momentum cut-off of 1maxo.

REVISION HISTORY:

Created November 2004 (Sharma)
Updated for spin-spirals, June 2010 (JKD)
Packed muffin-tins, April 2016 (JKD)

7.77 genylmg (Source File: genylmg.f90)

INTERFACE:
subroutine genylmg
USES:

use modmain

DESCRIPTION:

Generates a set of spherical harmonics, 47r(—i)li/}m(é), with angular momenta up to lmaxo
for the set of G-vectors. See the routine genylmv.

REVISION HISTORY:

Created June 2003 (JKD)

7.78 genylmv (Source File: genylmv.f90)

INTERFACE:
pure subroutine genylmv(t4pil,lmax,v,ylm)
INPUT/OUTPUT PARAMETERS:

t4pil : .true. if the plane wave prefactor should be included (in,logical)

lmax : maximum angular momentum (in,integer)
v : input vector (in,real(3))
ylm : array of spherical harmonics (out,complex((lmax+1)**2))

93

DESCRIPTION:

Generates a sequence of spherical harmonics, including the Condon-Shortley phase, evalu-
ated at angles (0, ¢) for 0 < | < ljyax. The values are returned in a packed array ylm indexed
with j = I(I+ 1) +m+ 1. If t4pil is set to .true. then a prefactor of 47(—i)! is included.
This is required if the spherical harmonics are to be used in a plane wave expansion:

. l
o—iGr _ 47r§(—i)ljl(Gr) > Yin(G) Yo (8),

m=-—1

where j; are spherical Bessel functions of the first kind.

REVISION HISTORY:

Created March 2004 (JKD)

Improved stability, December 2005 (JKD)
Changed algorithm, June 2019 (JKD)
Included prefactor option, May 2024 (JKD)

7.79 getevecfv (Source File: getevecfv.f90)

INTERFACE:
subroutine getevecfv(fext,ikp,vpl,vgpl,evecfv)
USES:

use modmain
use modramdisk

INPUT/OUTPUT PARAMETERS:

fext : filename extension (in,character(x))

ikp : p-point vector index (in,integer)

vpl : p-point vector in lattice coordinates (in,real(3))

vgpl : G+p-vectors in lattice coordinates (out,real(3,ngkmax,nspnfv))

evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv,nspnfv))

DESCRIPTION:

Reads in a first-variational eigenvector from file. If the input k-point, p, is not in the
reduced set, then the eigenvector of the equivalent point is read in and the required rota-
tion/translation operations applied.

REVISION HISTORY:

Created Feburary 2007 (JKD)
Fixed transformation error, October 2007 (JKD, Anton Kozhevnikov)
Fixed 1l.0. rotation, June 2010 (A. Kozhevnikov)

94

7.80 getvcll1221 (Source File: getvcl1221.f90)

INTERFACE:

subroutine getvcl1221(ikp,vcl1221)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

ikp : k-point from non-reduced set (in,integer)
vcl1221 : Coulomb matrix elements (out,real(nstsv,nstsv,nkpt))

DESCRIPTION:
Retrieves Coulomb matrix elements of the type V(1,2,2,1) from the file VCL1221.0UT.

REVISION HISTORY:

Created 2009 (Sharma)

7.81 getvcll1223 (Source File: getvcl1223.f90)

INTERFACE:

subroutine getvcl1223(ikp,vcl1223)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

ikp : k-point from non-reduced set (in,integer)
vcl1223 : Coulomb matrix elements (out,complex(nstsv,nstsv,nstsv,nkpt))

DESCRIPTION:
Retrieves Coulomb matrix elements of the type V(1,2,2,3) from the file VCL1223.0UT.

REVISION HISTORY:

Created 2009 (Sharma)

95

7.82 ggair_1 (Source File: ggair_1.f90)

INTERFACE:
subroutine ggair_1(rho,grho,g2rho,g3rho)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggair_sp_1.

REVISION HISTORY:
Created November 2009 (JKD)

7.83 ggair_2a (Source File: ggair 2a.f90)

INTERFACE:
subroutine ggair_2a(rho,g2rho,gvrho,grho2)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggair_sp_2a.

REVISION HISTORY:
Created November 2009 (JKD and TMcQ)

7.84 ggair_2b (Source File: ggair_2b.f90)

INTERFACE:
subroutine ggair_2b(g2rho,gvrho,vx,vc,dxdgr2,dcdgr2)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggair_sp_2b.

REVISION HISTORY:
Created November 2009 (JKD and TMcQ)

96

7.85 ggair_sp_1 (Source File: ggair_sp_1.f90)

INTERFACE:
subroutine ggair_sp_1(rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn)
INPUT/OUTPUT PARAMETERS:

rhoup : spin-up density (in,real(ngtot))
rhodn : spin-down density (in,real(ngtot))

grho : |grad rho| (out,real(ngtot))
gup : l|grad rhoup| (out,real(ngtot))
gdn : |grad rhodn| (out,real(ngtot))

g2up : grad~2 rhoup (out,real(ngtot))

g2dn : grad~2 rhodn (out,real(ngtot))

g3rho : (grad rho).(grad |grad rhol|) (out,real(ngtot))
g3up : (grad rhoup).(grad |grad rhoupl|) (out,real(ngtot))
g3dn : (grad rhodn).(grad |grad rhodn|) (out,real(ngtot))

DESCRIPTION:
Computes [Vpl, |Vp'|, [Vp*], V2pT, V2p¥, Vp- (V|Vp|), Vol - (V|Vp!]) and Vo' - (V[VpH))

for the interstitial charge density, as required by the generalised gradient approximation
functionals of type 1 for spin-polarised densities. See routines potxc and modxcifc.

REVISION HISTORY:

Created October 2004 (JKD)
Simplified and improved, October 2009 (JKD)

7.86 ggair_sp_2a (Source File: ggair sp_2a.f90)

INTERFACE:
subroutine ggair_sp_2a(rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn)
USES:

use modmain

DESCRIPTION:

Computes the interstitial gradients V2pT, V2pt, Vp!, Vpt, (Vph)2, (Vp*)? and Vo' - Vo
These are used for GGA functionals of type 2 and meta-GGA. See ggamt_sp_2a for details.

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)

97

7.87 ggair_sp_2b (Source File: ggair_sp_2b.f90)

INTERFACE:

subroutine ggair_sp_2b(g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu?,dxdgd2, &
dxdgud,dcdgu2,dcdgd2,dcdgud)

USES:

use modmain

DESCRIPTION:

Post processing step of interstitial gradients for GGA type 2. See routine ggamt_sp_2a for
full details.

REVISION HISTORY:
Created November 2009 (JKD and TMcQ)

7.88 ggamt_1 (Source File: ggamt_1.f90)

INTERFACE:
subroutine ggamt_1(tsh,is,np,rho,grho,g2rho,g3rho)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggamt_sp_1.

REVISION HISTORY:
Created November 2009 (JKD)

7.89 ggamt_2a (Source File: ggamt_2a.f90)

INTERFACE:
subroutine ggamt_2a(tsh,is,np,rho,g2rho,gvrho,grho2)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggamt_sp_2a.

REVISION HISTORY:
Created November 2009 (JKD and TMcQ)

98

7.90 ggamt _2b (Source File: ggamt_2b.f90)

INTERFACE:
subroutine ggamt_2b(is,np,g2rho,gvrho,vx,vc,dxdgr2,dcdgr2)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggamt_sp_2b.

REVISION HISTORY:
Created November 2009 (JKD and TMcQ)

7.91 ggamt sp_1 (Source File: ggamt_sp_1.f90)

INTERFACE:

subroutine ggamt_sp_1(is,np,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

is : species number (in,integer)

np : number of muffin-tin points (in,integer)

rhoup : spin-up density in spherical coordinates (in,real(np))
rhodn : spin-down density (in,real(np))

grho : |grad rhol| (out,real(np))
gup : lgrad rhoup| (out,real(np))
gdn : |grad rhodn| (out,real(np))

g2up : grad~2 rhoup (out,real(np))

g2dn : grad”2 rhodn (out,real(np))

g3rho : (grad rho).(grad |grad rhol|) (out,real(np))
g3up : (grad rhoup).(grad |grad rhoup|) (out,real(np))
g3dn : (grad rhodn).(grad |grad rhodn|) (out,real(np))

DESCRIPTION:

Computes [Vol, [V, [VpH], V2p!, Vb, V- (V|Vl), V' - (V|Vp!]) and Vot (V]VH)
for a muffin-tin charge density, as required by the generalised gradient approximation func-
tionals of type 1 for spin-polarised densities. The input densities and output gradients are
in terms of spherical coordinates. See routines potxc and modxcifc

REVISION HISTORY:

Created April 2004 (JKD)
Simplified and improved, October 2009 (JKD)

99

7.92 ggamt _sp_2a (Source File: ggamt_sp_2a.f90)

INTERFACE:
subroutine ggamt_sp_2a(is,np,rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn)
USES:

use modmain

DESCRIPTION:

Computes the muffin-tin gradients V2p!, VZp¥, Vp!, Vo, (Vph)2, (Vp+)? and Vo' - V!,
which are passed in to GGA functional subroutines of type 2. The exchange-correlation
energy in these routines has the functional form

Eaclp', p*] = / Preéqe(p(r), pH(r), (Vo' (x))?, (VpH(x))?, Vp! (r) - VpH(r)),

where €,.(r) = €z.(r)p(r) is the xc energy per unit volume, with €. being the xc energy
per electron, and p = p' + p*. From the gradients above, type 2 GGA routines return
€ze, but not directly the xc potentials. Instead they generate the derivatives 9é,./dp'(r),
0é4e/0(Vp'(r))?, and the same for down spin, as well as 9é,./0(Vp'(r) - Vp*(r)). In a
post-processing step invoked by ggamt_sp_2b, integration by parts is used to obtain the xc
potential explicitly with

Oé Oé €
vt —_2r 9 wy—%).yl o 2,0
=) =37(r) (a(mﬂ)?) e

€ 0é
(g Cec) gt Y g2l
(8<W-w>> Pt vph
and similarly for Vi

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)

7.93 ggamt_sp_2b (Source File: ggamt_sp_2b.f90)

INTERFACE:

subroutine ggamt_sp_2b(is,np,g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2, &
dxdgd2,dxdgud,dcdgu2,dcdgd2,dcdgud)

USES:

use modmain

100

DESCRIPTION:

Post processing step of muffin-tin gradients for GGA type 2. See routine ggamt_sp_2a for
full details.

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)

7.94 gndstate (Source File: gndstate.f90)

INTERFACE:
subroutine gndstate
USES:

use modmain
use moddftu
use modxcifc
use modulr

use modgw

use modmpi

use modomp

use modvars
use modramdisk

DESCRIPTION:

Computes the self-consistent Kohn-Sham ground-state. General information is written
to the file INFO.OUT. First- and second-variational eigenvalues, eigenvectors and occupa-
tion numbers are written to the unformatted files EVALFV.0UT, EVALSV.QUT, EVECFV.OUT,
EVECSV.0UT and OCCSV.OUT. The density, magnetisation, Kohn-Sham potential and mag-
netic field are written to STATE.QUT.

REVISION HISTORY:

Created October 2002 (JKD)
Added MPI, August 2010 (JKD)

7.95 grad2rfmt (Source File: grad2rfmt.f90)

INTERFACE:
subroutine grad2rfmt(nr,nri,ri,ri2,wcr,rfmt,g2rfmt)

USES:

101

use modmain

INPUT/OUTPUT PARAMETERS:

nr : number of radial mesh points (in,integer)

nri : number of points on the inner part of the muffin-tin (in,integer)
ri : 1/r on the radial mesh (in,real(nr))

ri2 : 1/r"2 on the radial mesh (in,real(nr))

wer : weights for spline coefficients on radial mesh (in,real(12,nr))
rfmt : real muffin-tin function (in,real(*))

g2rfmt : laplacian of the input function (out,real(x*))

DESCRIPTION:

Calculates the Laplacian of a real muffin-tin function. In other words, given the real spher-
ical harmonic expansion coefficients fj,,(r) of a function f(r), the routine returns

1 92 (141
Fim(r) = ;w(rflm(r)) X 2)flm(r)
which yields
V2f(r) = Fim(r)Rim(P),
im
where Ry, is a real spherical harmonic function.
REVISION HISTORY:
Created July 2009 (JKD)
7.96 gradrfmt (Source File: gradrfmt.f90)
INTERFACE:
subroutine gradrfmt(nr,nri,ri,wcr,rfmt,ld,grfmt)
USES:
use modmain
INPUT/OUTPUT PARAMETERS:
nr : number of radial mesh points (in,integer)
nri : number of points on inner part of muffin-tin (in,integer)
ri : 1/r on the radial mesh (in,real(nr))
wcr : weights for spline coefficients on radial mesh (in,real(12,nr))
rfmt : real muffin-tin function (in,real(*))
14 : leading dimension (in,integer)

grfmt : gradient of rfmt (out,real(ld,3))

102

DESCRIPTION:

Calculates the gradient of a real muffin-tin function. In other words, given the real spherical
harmonic expansion coefficients fi,,,(r) of a function f(r), the routine returns Fy,,, where

Z Flm(T)le(f) = Vf(r),
im

and Ry, is a real spherical harmonic function. This is done by first converting the function
to a complex spherical harmonic expansion and then using the routine gradzfmt. See
routine genrlm.

REVISION HISTORY:

Created August 2003 (JKD)

7.97 gradzfmt (Source File: gradzfmt.f90)

INTERFACE:
subroutine gradzfmt(nr,nri,ri,wcr,zfmt,ld,gzfmt)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

nr : number of radial mesh points (in,integer)
nri : number of points on inner part of muffin-tin (in,integer)
ri : 1/r on the radial mesh (in,real(nr))
wer : weights for spline coefficients on radial mesh (in,real(12,nr))
zfmt : complex muffin-tin function (in,complex(*))
1d : leading dimension (in,integer)
gzfmt : gradient of zfmt (out,complex(1d,3))
DESCRIPTION:

Calculates the gradient of a complex muffin-tin function. In other words, given the spherical
harmonic expansion coefficients, f,,(r), of a function f(r), the routine returns Fy,, where

> Fi(r)Yim (&) = V£(r).
m

This is done using the gradient formula (see, for example, V. Devanathan, Angular Momen-
tum Techniques In Quantum Mechanics)

[+1 d l
Vi (Win(@) = 577 (G 5) YD
l d [+1 1—1/~
+14/ ST <d7“ + 7“) Jim(r)Y (£),

103

where the vector spherical harmonics are determined from Clebsch-Gordan coefficients as
follows:
TR 1 1 A\ AL
Y, (8) = Z ' Yim(t)é

and the (contravariant) spherical unit vectors are given by

; X+ 1y . . . X — iy
€1 = — €y = 7Z, e_1 — .

ol

REVISION HISTORY:

Rewritten May 2009 (JKD)
Modified, February 2020 (JKD)

7.98 gridsize (Source File: gridsize.f90)

INTERFACE:
subroutine gridsize(avec,gmaxvr,npfft,ngridg,ngtot,intgv)

INPUT/OUTPUT PARAMETERS:

avec : lattice vectors (in,real(3,3))

gmaxvr : G-vector cut-off (in,real)

npfft : number of prime factors to use for the FFT (in,integer)

ngridg : G-vector grid sizes (out,integer(3))

ngtot : total number of G-vectors (out,integer)

intgv : integer grid intervals for each direction (out,integer(2,3))
DESCRIPTION:

Finds the G-vector grid which completely contains the vectors with G < Gpax and is
compatible with the FFT routine. The optimal sizes are given by

G a;
’]’L,L' = ma;_(| Z| + 1,

where a; is the ith lattice vector.
REVISION HISTORY:

Created July 2003 (JKD)
Removed modmain and added arguments, September 2012 (JKD)

104

7.99 gwtails (Source File: gwtails.f90)

INTERFACE:
pure complex(8) function gwtails(ge)
USES:

use modmain
use modgw

INPUT/OUTPUT PARAMETERS:
ge : Green’s function at the Matsubara end points (in,complex(4))

DESCRIPTION:

Sums the tails of the Green’s function over the Matsubara frequencies as part of the eval-
uation of the density matrix. Thus if the Green’s function G(ijk,wy) has been determined
numerically over all Fermionic Matsubara frequencies up to £wpy,, then the density matrix
is approximated by

+Ng 2 4
ay 1[5 15} I6;
3 K +7_7 b2 P B b
Yijk = /Bnodd|:] wn n w4:| 3 [2a1 4 a2 48a4)

where a1, as and a4 are chosen so that the Green’s function is equal to
ai a2
Z)=—+ 5+ =+
9(z) = —+ 5 Z
at the points n € {—np, —ng + 2,np — 2, np}.

REVISION HISTORY:

Created April 2018 (A. Davydov)
Increased Laurent series order to 4, December 2023 (JKD)

7.100 hermite (Source File: hermite.f90)

INTERFACE:
real(8) function hermite(n,x)
INPUT/OUTPUT PARAMETERS:

n : order of Hermite polynomial (in,integer)
x : real argument (in,real)

105

DESCRIPTION:

Returns the nth Hermite polynomial. The recurrence relation
Hz(l‘) = 2$Hi_1(x) — 2TLHZ‘_2(I'),

with Hy = 1 and H; = 2z, is used. This procedure is numerically stable and accurate to
near machine precision for n < 20.

REVISION HISTORY:

Created April 2003 (JKD)

7.101 hmlaa (Source File: hmlaa.f90)

INTERFACE:
subroutine hmlaa(thr,is,ias,ngp,apwalm,1d,h)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

thr : .true. if the matrix h is real valued (in,logical)
is : species number (in,integer)
ias : joint atom and species number (in,integer)
ngp : number of G+p-vectors (in,integer)
apwalm : APW matching coefficients (in,complex(ngkmax,apwordmax,lmmaxapw))
1d : leading dimension of h (in,integer)
h : Hamiltonian matrix (inout,complex(*))
DESCRIPTION:

Calculates the APW-APW contribution to the Hamiltonian matrix.

REVISION HISTORY:

Created October 2002 (JKD)

7.102 hmlistl (Source File: hmlistl.f90)

INTERFACE:
pure subroutine hmlistl(ngp,igpig,vgpc,1ld,h)
USES:

106

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer)
igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax))
vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax))
14 : leading dimension of h (in,integer)
h : Hamiltonian matrix (inout,complex(*))

DESCRIPTION:

Computes the interstitial contribution to the Hamiltonian matrix for the APW basis func-
tions. The Hamiltonian is given by

1 ~
HY (G +k,G +k) = 5(G+k)- (G’ +k)O(G — G') + V4(G — G'),
where V; is the interstitial Kohn-Sham potential and © is the characteristic function. See
routine gencfun.

REVISION HISTORY:
Created April 2003 (JKD)

7.103 hmlrad (Source File: hmlrad.f90)

INTERFACE:
subroutine hmlrad
USES:

use modmain
use modomp

DESCRIPTION:

Calculates the radial Hamiltonian integrals of the APW and local-orbital basis functions.
In other words, for atom «, it computes integrals of the form

fORi u%l(r)Hug‘,;l,(r)Ter "=0

he . = .
e {IOR@ U)V (Pl (P)r2dr 17> 0

where ug, is the gth APW radial function for angular momentum /; H is the Hamiltonian of
the radial Schrodinger equation; and V77, . is the muffin-tin Kohn-Sham potential. Similar
integrals are calculated for APW-local-orbital and local-orbital-local-orbital contributions.

REVISION HISTORY:

Created December 2003 (JKD)
Updated for compressed muffin-tin functions, March 2016 (JKD)

107

7.104 i3minv (Source File: i3minv.f90)

INTERFACE:
subroutine i3minv(a,b)
INPUT/OUTPUT PARAMETERS:

a : input matrix (in,integer(3,3))
b : output matrix (in,integer(3,3))

DESCRIPTION:
Computes the inverse of a integer 3 x 3 matrix: B = A~L.

REVISION HISTORY:

Created November 2003 (JKD)

7.105 i3mtv (Source File: i3mtv.f90)

INTERFACE:
pure subroutine i3mtv(a,x,y)
INPUT/OUTPUT PARAMETERS:

a : input matrix (in,integer(3,3))
x : input vector (in,integer(3))
y : output vector (out,integer(3))

DESCRIPTION:
Multiplies the transpose of an integer 3 x 3 matrix with a vector.

REVISION HISTORY:

Created April 2007 (JKD)

7.106 init0 (Source File: init0.f90)

INTERFACE:
subroutine initO

USES:

108

use modmain
use modxcifc
use moddftu
use modtddft
use modphonon
use modulr
use modgw
use modtest
use modvars
use modmpi
use modomp

DESCRIPTION:

Performs basic consistency checks as well as allocating and initialising global variables not
dependent on the k-point set.

REVISION HISTORY:

Created January 2004 (JKD)

7.107 initl (Source File: init1.f90)

INTERFACE:
subroutine initil
USES:

use modmain
use moddftu
use modulr

use modtddft
use modgw

use modtest
use modvars

DESCRIPTION:

Generates the k-point set and then allocates and initialises global variables which depend
on the k-point set.

REVISION HISTORY:

Created January 2004 (JKD)

109

7.108 k_tfvwl (Source File: k_tfvw1.f90)

INTERFACE:
elemental subroutine k_tfvwl(rho,grho2,dtdr,dtdgr2)

INPUT/OUTPUT PARAMETERS:

rho : spin-unpolarised charge density (in,real)
grho2 : |grad rhol|"2 (in,real)
dtdr : dtau/drho (out,real)

dtdgr2 : dtau/d(lgrad rhol|~2) (out,real)

DESCRIPTION:

Calculates the derivatives 07/9p and 07/0|Vp|? of the gradient expansion of the kinetic
energy density 7. This includes the Thomas-Fermi and von Weizsacker terms:

_ B 2vm s, LIVAP
74—-10(3ﬂ)<°p +»72 ;o
REVISION HISTORY:
Created December 2021 (JKD)
7.109 k_tfvw (Source File: k_tfvw.f90)
INTERFACE:
subroutine k_tfvw(n,rho,grho2,dtdr,dtdgr2)
INPUT/OUTPUT PARAMETERS:
n : number of density points (in,integer)
rho : spin-unpolarised charge density (in,real(n))
grho2 : |grad rho|~2 (in,real(n))
dtdr : dtau/drho (out,real(n))

dtdgr2 : dtau/dl|grad rhol|~2 (out,real(n))

DESCRIPTION:

Calculates the derivatives 97/9p and 97/9|Vp|? of the gradient expansion of the kinetic
energy density 7 for a set of points. See k_tfvwl.

REVISION HISTORY:

Created December 2021 (JKD)

110

7.110 k_tfvw_sp (Source File: k_tfvw_sp.f90)

INTERFACE:
subroutine k_tfvw_sp(n,rhoup,rhodn,gup2,gdn2,dtdru,dtdrd,dtdgu2,dtdgd2)

INPUT/OUTPUT PARAMETERS:

n : number of density points (in,integer)
rhoup : spin-up charge density (in,real(n))
rhodn : spin-down charge density (in,real(n))
gup2 : |grad rhoup|~2 (in,real(n))

gdn2 : |grad rhodn|"2 (in,real(n))

dtdru : dtauup/drhoup (out,real(n))
dtdrd : dtaudn/drhodn (out,real(n))
dtdgu2 : dtauup/d(lgrad rhoupl|~2) (out,real(n))
dtdgu2 : dtaudn/d(|lgrad rhodn|~2) (out,real(n))

DESCRIPTION:

Calculates the derivatives of the spin-polarised kinetic energy density or'/0p', dr+/0p",
or1/0|Vp'|? and O1+/9|Vp*2. This is done by noting the relation for the kinetic energy
functional [G. L. Oliver and J. P. Perdew, Phys. Rev. A 20, 397 (1979)]

T(p', p*] = 3T[2p"] + 5T [2p"]
and taking, for example,
T (o, Vo ?) = §7(207,4|Vp"),

where the gradient expansion of the unpolarised kinetic energy density is used for 7. See
the routines k_tfvwl, ggamt 4, ggair 4, potxcmt, and potxcir.

REVISION HISTORY:

Created December 2021 (JKD)

7.111 linengy (Source File: linengy.f90)

INTERFACE:
subroutine linengy
USES:

use modmain
use modmpi
use modomp

111

DESCRIPTION:

Calculates the new linearisation energies for both the APW and local-orbital radial func-
tions. See the routine findband.

REVISION HISTORY:

Created May 2003 (JKD)

7.112 lopzflm (Source File: lopzflm.f90)

INTERFACE:
pure subroutine lopzflm(lmax,zflm,1ld,z1flm)

INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)

zflm : coefficients of input spherical harmonic expansion
(in, complex((lmax+1) **2))

14 : leading dimension (in,integer)

z1flm : coefficients of output spherical harmonic expansion
(out,complex(1d,3))

DESCRIPTION:

Applies the angular momentum operator L to a function expanded in terms of complex
spherical harmonics. This makes use of the identities

(Lz +iLy)Yin(0,0) = /(L = m) (L +m + 1)Yip41(6, ¢)
(Lz = iLy)Yin(0,0) = /(L + m)(l = m + 1)Yip_1(6, ¢)

REVISION HISTORY:

Created March 2004 (JKD)

7.113 massnucl (Source File: massnucl.f90)

INTERFACE:
elemental real(8) function massnucl(z)
INPUT/OUTPUT PARAMETERS:

Z : atomic number (in,real)

112

DESCRIPTION:

Computes an approximate nuclear mass from the atomic number Z. The nuclear mass
number, A, is first estimated using

A =4467x10732% +2.163Z — 1.168,

[D. Andrae in Relativistic Electronic Structure Theory - Fundamentals 11, 203 (2002)].
Then the nuclear mass can be determined from:

M:Zmp—l—Nmn—cfQ,

where m,, is the proton mass, m,, is the neutron mass and B is the nuclear binding energy.
The binding energy is approximated by the Weizséacker formula:

B=uayA—agA*? —acZ?A71/3 — asym(Z — N)??A™ 4+ B), 4+ Bshell-

See F. Yang and J. H. Hamilton in Modern Atomic and Nuclear Physics, Revised Edition
2010, for details on the quantities in this formula. In this implementation, B, and Bgen
are set to zero.

REVISION HISTORY:
Created February 2014 (JKD)

7.114 match (Source File: match.f90)

INTERFACE:
subroutine match(ngp,vgpc,gpc,sfacgp,apwalm)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer)
vgpc : Gt+p-vectors in Cartesian coordinates (in,real(3,ngkmax))
gpc : length of G+p-vectors (in,real(ngkmax))

sfacgp : structure factors of G+p-vectors (in,complex(ngkmax,natmtot))
apwalm : APW matching coefficients
(out, complex (ngkmax , apwordmax , lmmaxapw,natmtot))

DESCRIPTION:

Computes the (G + p)-dependent matching coefficients for the APW basis functions. Inside
muffin-tin «, the APW functions are given by

mdx

¢G+p Z Z ZA_]IT)’L G+p ()Yzm(f‘)v

=0 m=—1j=1

113

where A%, (G + p) is the matching coefficient, M}* is the order of the APW and uS; is the
radial function. In the interstitial region, an APW function is a plane wave, exp(i(G + p) -
r)/v/Q, where Q is the unit cell volume. Ensuring continuity up to the (M —1)th derivative
across the muffin-tin boundary therefore requires that the matching coefficients satisfy

My

Z D”A?lm(G + p) =b;,

j=1
where -

D d= u?‘l(r)
K dri-1
r=Rqa
and l
47TZ 1 (1— . * ~ =
b= D1 + Bl V(G pIRa) expli(G 4 p))i (G)

with r,, the atomic position and R, the muffin-tin radius. See routine wfmtfv.

REVISION HISTORY:

Created April 2003 (JKD)
Fixed documentation, June 2006 (JKD)

7.115 mixadapt (Source File: mixadapt.f90)

INTERFACE:
pure subroutine mixadapt(iscl,beta0,betamax,n,nu,mu,beta,f,d)

INPUT/OUTPUT PARAMETERS:

iscl : self-consistent loop number (in,integer)

beta0 : mixing parameter (in,real)

betamax : maximum mixing parameter (in,real)

n : vector length (in,integer)

nu : current output vector as well as the next input vector of the

self-consistent loop (inout,real(n))

mu : used internally (inout,real(n))

beta : used internally (inout,real(n))

f : used internally (inout,real(n))

d : RMS difference between old and new output vectors (out,real)
DESCRIPTION:

Given the input vector u? and output vector v* of the ith self-consistent loop, this routine
generates the next input vector to the loop using an adaptive mixing scheme. The jth
component of the output vector is mixed with a fraction of the same component of the
input vector:

Pt = v+ (1= B85,

114

where B;H = B;- + Bo if f]’: = 1/;- — '“3' does not change sign between loops. If f;f does change
sign, then ﬁ;“ = ([3; + Bo)/2. Note that the array nu serves for both input and output, and
the arrays mu, beta and f are used internally and should not be changed between calls. The
routine is thread-safe so long as each thread has its own independent work arrays. Complex
arrays may be passed as real arrays with n doubled.

REVISION HISTORY:

Created March 2003 (JKD)
Modified, September 2008 (JKD)
Modified, August 2011 (JKD)

7.116 randomu (Source File: modrandom.f90)

INTERFACE:
real(8) function randomu()

DESCRIPTION:

Generates random numbers with a uniform distribution in the interval [0, 1] using the fifth-
order multiple recursive generator of P. L’Ecuyer, F. Blouin, and R. Coutre, ACM Trans.
Modeling Comput. Simulation 3, 87 (1993). The sequence of numbers r; is produced from

x; = (a1wi—1 + aszi—5) mod m
with 7; = x;/m. The period is about 215,

REVISION HISTORY:

Created January 2012 (JKD)
Changed initial state, April 2017 (JKD)

7.117 xcifc (Source File: modxcifc.f90)

INTERFACE:

subroutine xcifc(xctype,n,c_tb09,tempa,rho,rhoup,rhodn,grho,gup,gdn,g2rho,g2up,&

g2dn,g3rho,g3up,g3dn, grho2,gup2,gdn2, gupdn, tau, tauup, taudn,ex,ec,vx,vc,vup, &
vxdn,vcup,vcdn,dxdgr2,dxdgu2,dxdgd2,dxdgud,dcdgr2,dcdgu2,dcdgd?,dcdgud,dxdg2r, &
dxdg2u,dxdg2d,dcdg2r,dcdg2u,dcdg2d, wx,wxup,wxdn,wc,wcup,wcdn,dtdr,dtdru,dtdrd, &
dtdgr2,dtdgu2,dtdgd2,dtdg2r,dtdg2u,dtdg2d)

INPUT/OUTPUT PARAMETERS:

115

xctype : type of exchange-correlation functional (in,integer(3))

n : number of density points (in,integer)

c_tb09 : Tran-Blaha ’09 constant c (in,real,optional)

tempa : temperature in atomic units (in,real,optional)

rho : spin-unpolarised charge density (in,real(n),optional)
rhoup : spin-up charge density (in,real(n),optional)

rhodn : spin-down charge density (in,real(n),optional)

grho : |grad rhol| (in,real(n),optional)

gup : |grad rhoup| (in,real(n),optional)

gdn : |grad rhodn| (in,real(n),optional)

g2rho : grad”2 rho (in,real(n),optional)

g2up : grad”2 rhoup (in,real(n),optional)

g2dn : grad”2 rhodn (in,real(n),optional)

g3rho : (grad rho).(grad |grad rhol) (in,real(n),optional)
g3up : (grad rhoup).(grad |grad rhoupl|) (in,real(n),optional)
g3dn : (grad rhodn).(grad |grad rhodn|) (in,real(n),optional)
grho2 : |grad rho|~2 (in,real(n),optional)

gup2 : |grad rhoupl|~2 (in,real(n),optional)

gdn2 : |grad rhodn|~2 (in,real(n),optional)

gupdn : (grad rhoup).(grad rhodn) (in,real(n),optional)

tau : kinetic energy density (in,real(n),optional)

tauup : spin-up kinetic energy density (in,real(n),optional)
taudn : spin-down kinetic energy density (in,real(n),optional)
ex : exchange energy density (out,real(n),optional)

ec : correlation energy density (out,real(n),optional)

VX : spin-unpolarised exchange potential (out,real(n),optional)
ve : spin-unpolarised correlation potential (out,real(n),optional)
vxup : spin-up exchange potential (out,real(n),optional)

vxdn : spin-down exchange potential (out,real(n),optional)
vcup : spin-up correlation potential (out,real(n),optional)
vedn : spin-down correlation potential (out,real(n),optional)

dxdgr2 : de_x/d(lgrad rho|~2) (out,real(n),optional)

dxdgu2 : de_x/d(lgrad rhoup|~2) (out,real(n),optional)

dxdgd2 : de_x/d(lgrad rhodn|~2) (out,real(n),optional)

dxdgud : de_x/d((grad rhoup).(grad rhodn)) (out,real(n),optional)
dcdgr2 : de_c/d(lgrad rho|~2) (out,real(n),optional)

dcdgu2 : de_c/d(lgrad rhoup|~2) (out,real(n),optional)

dcdgd2 : de_c/d(lgrad rhodn|~2) (out,real(n),optional)

dcdgud : de_c/d((grad rhoup).(grad rhodn)) (out,real(n),optional)
dxdg2r : de_x/d(grad”2 rho) (out,real(n),optional)

dxdg2u : de_x/d(grad~2 rhoup) (out,real(n),optional)

dxdg2d : de_x/d(grad~2 rhodn) (out,real(n),optional)

dcdg2r : de_c/d(grad~2 rho) (out,real(n),optional)

dcdg2u : de_c/d(grad”2 rhoup) (out,real(n),optional)

dcdg2d : de_c/d(grad”2 rhodn) (out,real(n),optional)

WX : de_x/dtau (out,real(n),optional)
wxup : de_x/dtauup (out,real(n),optional)
wxdn : de_x/dtaudn (out,real(n),optional)

116

we : de_c/dtau (out,real(n),optional)

wcup : de_c/dtauup (out,real(n),optional)
wcdn : de_c/dtaudn (out,real(n),optional)
dtdr : dtau/drho (out,real(n),optional)

dtdru : dtauup/drhoup (out,real(n),optional)

dtdrd : dtaudn/drhodn (out,real(n),optional)

dtdgr2 : dtau/dl|grad rhol|~2 (out,real(n),optional)
dtdgu2 : dtauup/d(lgrad rhoupl|~2) (out,real(n),optional)
dtdgd2 : dtaudn/d(|lgrad rhodn|~2) (out,real(n),optional)
dtdg2r : dtau/d(grad~2 rho) (out,real(n),optional)
dtdg2u : dtauup/d(grad”2 rhoup) (out,real(n),optional)
dtdg2d : dtaudn/d(grad”2 rhodn) (out,real(n),optional)

DESCRIPTION:

Interface to the exchange-correlation routines. In the most general case (meta-GGA), the
exchange-correlation energy is given by

Erelp', p*] = /d?’r p(r) eae(p’, 0%, [V pl, V'], [Vp*], V2T, V2p*, 7),
where p(r) = p'(r) + p*(r) is the density;

T(r) =) Vi(r) - Vi(r)

i occ

is twice the spin-contracted kinetic energy density; and e,. is the exchange-correlation
energy per electron.

REVISION HISTORY:

Created October 2002 (JKD)

7.118 getxcdata (Source File: modxcifc.f90)

INTERFACE:
subroutine getxcdata(xctype,xcdescr,xcspin,xcgrad,hybrid,hybridc)

INPUT/OUTPUT PARAMETERS:

xctype : type of exchange-correlation functional (in,integer(3))
xcdescr : description of functional (out,character(264))

xcspin : spin treatment (out,integer)

xcgrad : gradient treatment (out,integer)

hybrid : .true. if functional a hybrid (out,logical)

hybridc : hybrid exact exchange mixing coefficient (out,real(8))

117

DESCRIPTION:

Returns data on the exchange-correlation functional labeled by xctype. The character array
xcdescr contains a short description of the functional including journal references. The
variable xcspin is set to 1 or 0 for spin-polarised or -unpolarised functionals, respectively.
For functionals which require the gradients of the density xcgrad is set to 1, otherwise it is
set to 0.

REVISION HISTORY:

Created October 2002 (JKD)

7.119 moment (Source File: moment.f90)

INTERFACE:
subroutine moment
USES:

use modmain
use modtest

DESCRIPTION:

Computes the muffin-tin, interstitial and total moments by integrating the magnetisation.

REVISION HISTORY:

Created January 2005 (JKD)

7.120 mossbauer (Source File: mossbauer.f90)

INTERFACE:
subroutine mossbauer
USES:

use modmain
use modmpi
use modtest

DESCRIPTION:

Computes the contact charge density and magnetic hyperfine field for each atom and outputs
the data to the file MOSSBAUER.OUT. See S. Bliigel, H. Akai, R. Zeller, and P. H. Dederichs,
Phys. Rev. B 35, 3271 (1987).

REVISION HISTORY:

118

Created May 2004 (JKD)

Contact hyperfine field evaluated at the nuclear radius rather than averaged
over the Thomson sphere, June 2019 (JKD)

Added spin and orbital dipole terms, July 2019 (JKD)

7.121 mtdmin (Source File: mtdmin.f90)

INTERFACE:

pure subroutine mtdmin(is, js,dmin)

USES:

use modmain

INPUT/OUTPUT PARAMETERS:

is, js : species numbers (out,integer)
dmin : minimum distance between muffin-tin surfaces (out,real)

DESCRIPTION:

Finds the atomic species pair for which the distance between the muffin-tin surfaces is a
minimum. This distance may be negative if the muffin-tins overlap.

REVISION HISTORY:

Created October 2011 (JKD)

7.122 nfftifc (Source File: nfftifc.f90)

INTERFACE:

subroutine nfftifc(np,nd,n)

INPUT/OUTPUT PARAMETERS:

np : number of allowed primes (in,integer)
nd : number of dimensions (in,integer)
n : required/available grid size (inout,integer(nd))

DESCRIPTION:

Interface to the grid requirements of the fast Fourier transform routine. Most routines
restrict n to specific prime factorisations. This routine returns the next largest grid size
allowed by the FF'T routine.

REVISION HISTORY:

Created October 2002 (JKD)

119

7.123 nonlinopt (Source File: nonlinopt.f90)

INTERFACE:
subroutine nonlinopt
USES:

use modmain
use modmpi
use modomp
use modtest

DESCRIPTION:

Calculates the second-order response tensor x*°(—2w;w,w), where a, b and ¢ label Carte-
sian directions. This tensor is used for determining the optical second-harmonic generation
of materials. We follow the convention of Sipe and Ghahramani in Phys. Rev. B 48, 11705
(1993); and Hughes and Sipe in Phys. Rev. B 53, 10751 (1996). The individual contribu-
tions X%?C(—Qw;w,w), n?}’c(—2w;w,w) and ia??c(—%ﬁw,w) are also written separately to

file.

REVISION HISTORY:

Rewrote earlier version, June 2010 (Sharma)
Improved parallelism, January 2020 (R. Cohen)
Rewrote, thanks to corrections from X. Gonze, March 2022 (JKD)

7.124 numlist (Source File: numlist.f90)

INTERFACE:
subroutine numlist(str,n,list)
INPUT/OUTPUT PARAMETERS:

str : string to be converted to list of numbers (in,character(*))

n : on entry, the maximum allowed number of elements; on exit, the number
of elements in the list (inout,integer)

list : list of elements (out,integer(n))

DESCRIPTION:

Converts a space- or comma-separated string of integers, including ranges, to a list. For
example, the string ‘1,2,10-13 5 6’ would be converted to the list 1,2,10,11,12,13,5,6.

REVISION HISTORY:

Created May 2015 (Manh Duc Le)

120

7.125 occupy (Source File: occupy.f90)

INTERFACE:
subroutine occupy
USES:

use modmain
use modtest

DESCRIPTION:

Finds the Fermi energy and sets the occupation numbers for the second-variational states
using the routine fermi. Also determines the density of states at the Fermi surface as well
as the direct and indirect band gaps.

REVISION HISTORY:

Created February 2004 (JKD)
Added gap estimation, November 2009 (F. Cricchio)
Added adaptive smearing width, April 2010 (T. Bjorkman)

7.126 olpistl (Source File: olpistl.f90)

INTERFACE:
pure subroutine olpistl(ngp,igpig,ld,o)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer)
igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax))
14 : leading dimension of o (in,integer)
) : overlap matrix (inout,complex(*))
DESCRIPTION:

Computes the interstitial contribution to the overlap matrix for the APW basis functions.
The overlap is given by .
OYG +k,G +k)=6(G -G,

where © is the characteristic function. See routine gencfun.
REVISION HISTORY:
Created April 2003 (JKD)

121

7.127 olprad (Source File: olprad.f90)

INTERFACE:
subroutine olprad
USES:

use modmain
use modomp

DESCRIPTION:

Calculates the radial overlap integrals of the APW and local-orbital basis functions. In
other words, for atom «, it computes integrals of the form

R;
2
O?p:/o gy, (r)vy (r)rodr
and
R;
Oy —/0 vg(r)v;‘/(r)err, Iy =1y

where u;‘.l is the gth APW radial function for angular momentum [; and vy is the pth
local-orbital radial function and has angular momentum 1,,.

REVISION HISTORY:
Created November 2003 (JKD)

7.128 pade (Source File: pade.f90)

INTERFACE:
pure subroutine pade(ni,zi,ui,no,zo,uo)
INPUT/OUTPUT PARAMETERS:
ni : number of input points (in,integer)
zi : input points (in,complex(ni))
ui : input function values (in,complex(ni))
no : number of output points (in,integer)
zo : output points (in,complex(no))
uo : output function values (out,complex(no))

DESCRIPTION:

Calculates a Padé approximant of a function, given the function evaluated on a set of points
in the complex plane. The function is returned for a set of complex output points. The
algorithm from H. J. Vidberg and J. W. Serene J. Low Temp. Phys. 29, 179 (1977) is used.

REVISION HISTORY:

Created December 2010 (Antonio Sanna)

122

7.129 plotld (Source File: plot1d.f90)

INTERFACE:

subroutine plotld(fnuml,fnum2,nf,rfmt,rfir)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

fnuml : plot file number (in,integer)
fnum2 : vertex location file number (in,integer)

nf : number of functions (in,integer)

rfmt : real muffin-tin function (in,real (npmtmax,natmtot,nf))

rfir : real intersitial function (in,real(ngtot,nf))
DESCRIPTION:

Produces a 1D plot of the real functions contained in arrays rfmt and rfir along the lines
connecting the vertices in the global array vvlpld. See routine rfpts.

REVISION HISTORY:
Created June 2003 (JKD)

7.130 plot2d (Source File: plot2d.f90)

INTERFACE:
subroutine plot2d(tproj,fnum,nf,rfmt,rfir)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

tproj : .true. if nf=3 and the vector function should be projected onto the
2D plotting plane axes (in,logical)
fnum : plot file number (in,integer)
nf : number of functions (in,integer)
rfmt : real muffin-tin function (in,real(npmtmax,natmtot,nf))
rfir : real intersitial function (in,real(ngtot,nf))
DESCRIPTION:

Produces a 2D plot of the real functions contained in arrays rfmt and rfir on the paral-
lelogram defined by the corner vertices in the global array velp2d. See routine rfpts.

REVISION HISTORY:
Created June 2003 (JKD)

123

7.131 plot3d (Source File: plot3d.f90)

INTERFACE:

subroutine plot3d(fnum,nf,rfmt,rfir)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

fnum : plot file number (in,integer)

nf : number of functions (in,integer)

rfmt : real muffin-tin function (in,real (npmtmax,natmtot,nf))
rfir : real intersitial function (in,real(ngtot,nf))

DESCRIPTION:

Produces a 3D plot of the real functions contained in arrays rfmt and rfir in the paral-
lelepiped defined by the corner vertices in the global array vclp3d. See routine rfarray.

REVISION HISTORY:

Created June 2003 (JKD)
Modified, October 2008 (F. Bultmark, F. Cricchio, L. Nordstrom)

7.132 plotptld (Source File: plotpt1d.f90)

INTERFACE:
subroutine plotptld(cvec,nv,np,vvl,vpl,dv,dp)
INPUT/OUTPUT PARAMETERS:

cvec : matrix of (reciprocal) lattice vectors stored column-wise

(in,real(3,3))

nv : number of vertices (in,integer)

np : number of connecting points (in,integer)

vvl : vertex vectors in lattice coordinates (in,real(3,nv))

vpl : connecting point vectors in lattice coordinates (out,real(3,np))

dv : cummulative distance to each vertex (out,real(nv))

dp : cummulative distance to each connecting point (out,real(unp))
DESCRIPTION:

Generates a set of points which interpolate between a given set of vertices. Vertex points
are supplied in lattice coordinates in the array vvl and converted to Cartesian coordinates
with the matrix cvec. Interpolating points are stored in the array vpl. The cummula-
tive distances to the vertices and points along the path are stored in arrays dv and dp,
respectively.

REVISION HISTORY:

124

Created June 2003 (JKD)
Improved September 2007 (JKD)
Improved again, July 2010 (T. McQueen and JKD)

7.133 polar (Source File: polar.f90)

INTERFACE:
subroutine polar(pvl)
USES:

use modmain
use modmpi
use modomp

INPUT/OUTPUT PARAMETERS:
pvl : polarisation vector modulo 2π (out,real(8))
DESCRIPTION:

Calculates the polarisation vector modulo 27 in lattice coordinates using the formula of R.
D. King-Smith and David Vanderbilt [Phys. Rev. B 47, 1651(R) (1993)], namely

P = Z Im In det ((uik+ak, [tjk))
k

where Ak; = (1/n;)B; and By is a reciprocal lattice vector. The number of points n; is
equal to that of the original k-point grid in direction of B;, multiplied by nskpolar. See
also the routines polark and bornechg.

REVISION HISTORY:
Created May 2020 (JKD)

7.134 polynm (Source File: polynm.f90)

INTERFACE:
pure real(8) function polynm(m,np,xa,ya,x)
INPUT/OUTPUT PARAMETERS:

m : order of derivative (in,integer)

np : number of points to fit (in,integer)

ip : point at which m’th derivative is to be evaluated (in,integer)
xa : abscissa array (in,real(up))

ya : ordinate array (in,real(np))

x : evaluation abscissa (in,real)

125

DESCRIPTION:

Fits a polynomial of order n, — 1 to a set of n, points. If m > 0 the function returns the
mth derviative of the polynomial at x, while for m < 0 the integral of the polynomial from
the first point in the array to x is returned.

REVISION HISTORY:

Created October 2002 (JKD)
Simplified, January 2025 (JKD)

7.135 potcoul (Source File: potcoul.f90)

INTERFACE:
subroutine potcoul
USES:

use modmain
use modomp

DESCRIPTION:

Calculates the Coulomb potential of the real charge density stored in the global variables
rhomt and rhoir by solving Poisson’s equation. These variables are coverted to complex
representations and passed to the routine zpotcoul.

REVISION HISTORY:

Created April 2003 (JKD)

7.136 potdmag (Source File: potdmag.f90)

INTERFACE:
subroutine potdmag
USES:

use modmain

DESCRIPTION:

Calculates the scalar potential associated with the diamagnetic coupling to an external
magnetic field. The vector potential corresponding to a constant magnetic field B is given
by
1
A(r) = §B X I.

126

Substituting this into

1 1

- 2
H=—-(p+-A
5P+ -A)
yields (among other terms) the diamagnetic contribution to the electronic Hamiltonian:
B27“2 .
Hgia = W(l -(B- I’)2)~

This is applied in the muffin-tins by noting that the term in the brackets is purely angular
and can be represented as coefficients fj,,, of the real spherical harmonics Ry, (6,). These
are given by

foo=+/5/3t, fooo=tB,B,, fa-1=1tB,B.,
foo = (t/V12)(B2+ B} —2B2), fu=tB,B., fao=(t/2)(B} - B2),
where t = 4,/7/15.
REVISION HISTORY:

Suggested by M. Fechner
Created June 2025 (JKD)

7.137 potks (Source File: potks.f90)

INTERFACE:
subroutine potks(txc)
USES:

use modmain
use modxcifc

INPUT/OUTPUT PARAMETERS:

txc : .true. if the exchange-correlation energy density and potentials
should be calculated (in,logical)

DESCRIPTION:

Computes the Kohn-Sham effective potential by adding together the Coulomb and exchange-
correlation potentials. Also computes the effective magnetic field. See routines potcoul and
potxc.

REVISION HISTORY:

Created April 2003 (JKD)

127

7.138 potnucl (Source File: potnucl.f90)

INTERFACE:
subroutine potnucl(ptnucl,nr,r,zn,vn)

INPUT/OUTPUT PARAMETERS:

ptnucl : .true. if the nucleus is a point charge (in,logical)

nr : number of radial mesh points (in,integer)

T : radial mesh (in,real(ar))

zn : nuclear charge (in,real)

vn : potential on radial mesh (out,real(nr))
DESCRIPTION:

Computes the nuclear Coulomb potential on a radial mesh. The nuclear radius R is esti-
mated from the nuclear charge Z and the potential is given by

Vo {ZBR2=1)2R* v <R
(r) = Z/r r>R

assuming that the nucleus is a uniformly charged sphere. If ptnucl is .true. then the
nucleus is treated as a point particle.

REVISION HISTORY:

Created January 2009 (JKD)

7.139 potplot (Source File: potplot.f90)

INTERFACE:
subroutine potplot
USES:

use modmain

DESCRIPTION:

Outputs the exchange, correlation and Coulomb potentials, read in from STATE.OUT, for
1D, 2D or 3D plotting.

REVISION HISTORY:

Created June 2003 (JKD)

128

7.140 potxc (Source File: potxc.f90)

INTERFACE:

subroutine potxc(tsh,xctype_,rhomt_,rhoir_,magmt_,magir_,taumt_,tauir_,exmt_, &
exir_,ecmt_,ecir_,vxcmt_,vxcir_,bxcmt_,bxcir_,wxcmt_,wxcir_)

USES:

use modmain
use modomp

DESCRIPTION:

Computes the exchange-correlation potential and energy density. In the muffin-tin, the
density is transformed from spherical harmonic coefficients p;,, to spherical coordinates
(0,¢) with a backward spherical harmonic transformation (SHT). Once calculated, the
exchange-correlation potential and energy density are transformed with a forward SHT.

REVISION HISTORY:

Created April 2003 (JKD)

7.141 r3cross (Source File: r3cross.f90)

INTERFACE:
pure subroutine r3cross(x,y,z)
INPUT/OUTPUT PARAMETERS:

x : input vector 1 (in,real(3))
y : input vector 2 (in,real(3))
z : output cross-product (out,real(3))

DESCRIPTION:
Returns the cross product of two real 3-vectors.

REVISION HISTORY:

Created September 2002 (JKD)

129

7.142 r3frac (Source File: r3frac.f90)

INTERFACE:
pure subroutine r3frac(eps,v)
INPUT/OUTPUT PARAMETERS:

eps : zero component tolerance (in,real)
v : input vector (inout,real(3))

DESCRIPTION:

Finds the fractional part of each component of a real 3-vector using the function frac (z) =
x — |z]. A component is taken to be zero if it lies within the intervals [0,¢) or (1 — ¢, 1].

REVISION HISTORY:

Created January 2003 (JKD)
Removed iv, September 2011 (JKD)

7.143 r3mdet (Source File: r3mdet.f90)

INTERFACE:
pure real(8) function r3mdet(a)
INPUT/OUTPUT PARAMETERS:

a : input matrix (in,real(3,3))

DESCRIPTION:

Returns the determinant of a real 3 x 3 matrix A.

REVISION HISTORY:

Created May 2003 (JKD)

7.144 r3minv (Source File: r3minv.f90)

INTERFACE:
subroutine r3minv(a,b)
INPUT/OUTPUT PARAMETERS:

a : input matrix (in,real(3,3))
b : output matrix (out,real(3,3))

130

DESCRIPTION:

Computes the inverse of a real 3 x 3 matrix.

REVISION HISTORY:

Created April 2003 (JKD)

7.145 r3mm (Source File: r3mm.f90)

INTERFACE:
pure subroutine r3mm(a,b,c)
INPUT/OUTPUT PARAMETERS:

a : input matrix 1 (in,real(3,3))
b : input matrix 2 (in,real(3,3))
c : output matrix (out,real(3,3))

DESCRIPTION:
Multiplies two real 3 x 3 matrices.

REVISION HISTORY:

Created April 2003 (JKD)

7.146 r3mmt (Source File: r3mmt.f90)

INTERFACE:
pure subroutine r3mmt(a,b,c)
INPUT/OUTPUT PARAMETERS:

a : input matrix 1 (in,real(3,3))
b : input matrix 2 (in,real(3,3))
c : output matrix (out,real(3,3))

DESCRIPTION:
Multiplies a real matrix with the transpose of another.

REVISION HISTORY:

Created January 2003 (JKD)

131

7.147 r3mtm (Source File: r3mtm.f90)

INTERFACE:
pure subroutine r3mtm(a,b,c)
INPUT/OUTPUT PARAMETERS:

a : input matrix 1 (in,real(3,3))
b : input matrix 2 (in,real(3,3))
c : output matrix (out,real(3,3))

DESCRIPTION:
Multiplies the transpose of one real 3 x 3 matrix with another.

REVISION HISTORY:

Created January 2003 (JKD)

7.148 1r3mtv (Source File: r3mtv.f90)

INTERFACE:
pure subroutine r3mtv (a,x, y)
HVP(ﬂE/O(ﬂTP[ﬂT}%4RAJJEJUZRS:

a : input matrix (in,real(3,3))
x : input vector (in,real(3))
y : output vector (out,real(3))

DESCRIPTION:
Multiplies the transpose of a real 3 x 3 matrix with a vector.

REVISION HISTORY:

Created January 2003 (JKD)

7.149 r3mv (Source File: r3mv.f90)

INTERFACE:
pure subroutine r3mv(a,x,y)

INPUT/OUTPUT PARAMETERS:

132

a : input matrix (in,real(3,3))
X : input vector (in,real(3))
y : output vector (out,real(3))

DESCRIPTION:
Multiplies a real 3 x 3 matrix with a vector.

REVISION HISTORY:

Created January 2003 (JKD)

7.150 radnucl (Source File: radnucl.f90)

INTERFACE:
elemental real(8) function radnucl(z)
INPUT/OUTPUT PARAMETERS:

Zz : atomic number (in,real)

DESCRIPTION:

Computes an approximate nuclear charge radius from the atomic number Z. The nuclear
mass number, A, is estimated using

A=4.467 x 10732% +2.163Z — 1.168,

[D. Andrae in Relativistic Electronic Structure Theory - Fundamentals 11, 203 (2002)], and
the nuclear charge radius can be determined from
1 T2) A1/3,

T:(T0+W+A4/3

where rg = 0.9071, r; = 1.105 and ro = —0.548 [I. Angeli, Atomic Data and Nuclear Data
Tables 87, 185 (2004)].

REVISION HISTORY:

Created October 2011 (JKD)

7.151 rdirac (Source File: rdirac.f90)

INTERFACE:
subroutine rdirac(sol,n,l,k,nr,r,vr,eval,g0,f0)

INPUT/OUTPUT PARAMETERS:

133

sol : speed of light in atomic units (in,real)

n : principal quantum number (in,integer)

1 : quantum number 1 (in,integer)

k : quantum number k (1 or 1+1) (in,integer)

nr : number of radial mesh points (in,integer)

r : radial mesh (in,real(nr))

vr : potential on radial mesh (in,real(nr))

eval : eigenvalue without rest-mass energy (inout,real)

g0 : major component of the radial wavefunction (out,real(nr))

fO0 : minor component of the radial wavefunction (out,real(nr))
DESCRIPTION:

Finds the solution to the radial Dirac equation for a given potential v(r) and quantum
numbers n, k and [. The method involves integrating the equation using the predictor-
corrector method and adjusting F until the number of nodes in the wavefunction equals
n —1[1—1. The calling routine must provide an initial estimate for the eigenvalue. Note that
the arrays g0 and £0 represent the radial functions multiplied by 7.

REVISION HISTORY:

Created September 2002 (JKD)

7.152 rdiracint (Source File: rdiracint.f90)

INTERFACE:
pure subroutine rdiracint(sol,kpa,e,nr,r,vr,nn,g0,gl,f0,f1)

INPUT/OUTPUT PARAMETERS:

sol : speed of light in atomic units (in,real)

kpa : quantum number kappa (in,integer)

e : energy (in,real)

nr : number of radial mesh points (in,integer)

r : radial mesh (in,real(nr))

vr : potential on radial mesh (in,real(ar))

nn : number of nodes (out,integer)

g0 : major component multiplied by r (out,real(nr))

gl : radial derivative of g0 (out,real(nr))

f0 : minor component multiplied by r (out,real(nr))

f1 : radial derivative of fO (out,real(nr))
DESCRIPTION:

134

Integrates the radial Dirac equation from r = 0 outwards. This involves using the predictor-
corrector method to solve the coupled first-order equations (in atomic units)

(d +K>GK—1{2E0+E—V}FH

ar

d K 1
= L) Fo=—2{E-V}G,,
<d7“) c{ Vic

r

where G, = rg, and F, = rf, are the major and minor components multiplied by r,
respectively; V is the external potential; Ej is the electron rest energy; E is the eigen
energy (excluding Ey); and k =1 for j =1 — % ork=—(+1)forj=1+ %

REVISION HISTORY:

Created September 2002 (JKD)
Polynomial order fixed to 3, September 2013 (JKD)

7.153 rdmdedc (Source File: rdmmdedc.f90)

INTERFACE:
subroutine rdmdedc(dedc)
USES:

use modmain
use modrdm
use modomp

INPUT/OUTPUT PARAMETERS:
dedc : energy derivative (out,complex(nstsv,nstsv,nkpt))

DESCRIPTION:

Calculates the derivative of the total energy w.r.t. the second-variational coefficients evecsv.

REVISION HISTORY:

Created 2008 (Sharma)

7.154 rdmdedn (Source File: rdmdedn.f90)

INTERFACE:
subroutine rdmdedn(dedn)

USES:

135

use modmain
use modrdm
use modomp

INPUT/OUTPUT PARAMETERS:
dedn : free energy derivative (out,real(nstsv,nkpt))

DESCRIPTION:

Calculates the negative of the derivative of total free energy w.r.t. occupation numbers.

REVISION HISTORY:

Created 2008 (Sharma)

7.155 rdmdexcdc (Source File: rdmdexcdc.f90)

INTERFACE:
subroutine rdmdexcdc(dedc)
USES:

use modmain
use modrdm

INPUT/OUTPUT PARAMETERS:
dedc : energy derivative (inout,complex(nstsv,nstsv,nkpt))

DESCRIPTION:

Calculates the derivative of the exchange-correlation energy w.r.t. evecsv and adds the
result to the total.

REVISION HISTORY:

Created 2008 (Sharma)

7.156 rdmdexcdn (Source File: rdmdexcdn.f90)

INTERFACE:
subroutine rdmdexcdn(dedn)
USES:

use modmain
use modrdm

136

INPUT/OUTPUT PARAMETERS:
dedn : energy derivative (inout,real(nstsv,nkpt))

DESCRIPTION:

Calculates the derivative of the exchange-correlation energy w.r.t. occupation numbers and
adds the result to the total.

REVISION HISTORY:

Created 2008 (Sharma)

7.157 rdmdkdc (Source File: rdmdkdc.f90)

INTERFACE:
subroutine rdmdkdc
USES:

use modmain
use modrdm
use modomp

DESCRIPTION:
Calculates the derivative of kinetic energy w.r.t. the second-variational coefficients evecsv.

REVISION HISTORY:

Created October 2008 (Sharma)

7.158 rdmdtsdn (Source File: rdmdtsdn.f90)

INTERFACE:
subroutine rdmdtsdn(dedn)
USES:

use modmain
use modrdm

INPUT/OUTPUT PARAMETERS:

dedn : energy derivative (inout,real(nstsv,nkpt))

137

DESCRIPTION:

Calculates the derivative of the entropic contribution to the free energy with respect to the
occupation numbers and adds it to the total.

REVISION HISTORY:

Created 2008 (Baldsiefen)

7.159 rdmenergy (Source File: rdmenergy.f90)

INTERFACE:
subroutine rdmenergy
USES:

use modmain
use modrdm
use modtest

DESCRIPTION:

Calculates RDMFT total energy (free energy for finite temperatures).

REVISION HISTORY:

Created 2008 (Sharma)
Updated for free energy 2009 (Baldsiefen)

7.160 rdmengyxc (Source File: rdmengyxc.f90)

INTERFACE:
subroutine rdmengyxc
USES:

use modmain
use modrdm

DESCRIPTION:

Calculates RDMFT exchange-correlation energy.

REVISION HISTORY:

Created 2008 (Sharma)

138

7.161 rdmentropy (Source File: rdmentropy.f90)

INTERFACE:
subroutine rdmentropy
USES:

use modmain
use modrdm

DESCRIPTION:

Calculates RDMFT entropy S = — ", n;10g(n /Nmax) + (Mmax — 1) 10g(1 — 1 /Nimax), where
Nmax 18 the maximum allowed occupancy (1 or 2).

REVISION HISTORY:

Created 2008 (Baldsiefen)

7.162 rdmeval (Source File: rdmeval.f90)

INTERFACE:
subroutine rdmeval
USES:

use modmain
use modrdm

DESCRIPTION:

RDMEFT eigenvalues are determined by calculating the derivative of the total energy with
respect to the occupation number at half the maximum occupancy (nmax/2).

REVISION HISTORY:

Created 2009 (Sharma)

7.163 rdmft (Source File: rdmft.f90)

INTERFACE:
subroutine rdmft

USES:

139

use modmain
use modrdm
use modmpi

DESCRIPTION:

Main routine for one-body reduced density matrix functional theory (RDMFT).

REVISION HISTORY:
Created 2008 (Sharma)

7.164 rdmminc (Source File: rdmminc.f90)

INTERFACE:
subroutine rdmminc
USES:

use modmain
use modrdm
use modmpi

DESCRIPTION:

Minimizes the total energy with respect to the second-variational coefficients evecsv. The
steepest-descent algorithm is used.

REVISION HISTORY:
Created 2008 (Sharma)

7.165 rdmminn (Source File: rdmminn.f90)

INTERFACE:
subroutine rdmminn
USES:

use modmain
use modrdm
use modmpi

DESCRIPTION:
Minimizes the total energy w.r.t. occupation numbers. The steepest-descent algorithm is

used.

REVISION HISTORY:
Created 2008 (Sharma)

140

7.166 rdmvaryc (Source File: rdmvaryc.f90)

INTERFACE:
subroutine rdmvaryc
USES:

use modmain
use modrdm
use modmpi

DESCRIPTION:

Calculates new evecsv from old by using the derivatives of the total energy w.r.t. evecsv.
A single step of steepest-descent is made.

REVISION HISTORY:

Created 2009 (Sharma)

7.167 rdmvaryn (Source File: rdmvaryn.f90)

INTERFACE:
subroutine rdmvaryn
USES:

use modmain
use modrdm
use modmpi

DESCRIPTION:

Calculates new occupation numbers from old by using the derivatives of the total energy:

nyeV = n‘l?ld — 77, where 7T is chosen such that 0 < n; < nya with

i = 9i(Nmax —ni) gi >0
;=
gini 9i <0

where g; = OF /On; — k, and & is chosen such that), ~; = 0.

REVISION HISTORY:

Created 2009 (JKD,Sharma)

141

7.168 rdmwritededn (Source File: rdmwritededn.f90)

INTERFACE:
subroutine rdmwritededn(dedn)
USES:

use modmain
use modrdm

INPUT/OUTPUT PARAMETERS:
dedn : derivative of energy (in,real(unstsv,nkpt))

DESCRIPTION:

Writes the derivative of total energy with respect to occupation numbers to file RDM_DEDN . OUT.

REVISION HISTORY:

Created 2008 (Sharma)

7.169 rdmwriteengy (Source File: rdmwriteengy.f90)

INTERFACE:
subroutine rdmwriteengy(fnum)
USES:

use modmain
use modrdm

INPUT/OUTPUT PARAMETERS:

fnum : file number for writing output (in,integer)

DESCRIPTION:

Writes all contributions to the total energy to file.

REVISION HISTORY:

Created 2008 (Sharma)

142

7.170 readefm (Source File: readefm.f90)

INTERFACE:
subroutine readefm
USES:

use modmain

DESCRIPTION:

Reads the Fermi energy from the file EFERMI.QUT.

REVISION HISTORY:
Created March 2005 (JKD)

7.171 readinput (Source File: readinput.f90)

INTERFACE:
subroutine readinput
USES:

use modmain
use moddftu
use modrdm
use modphonon
use modtest
use modrandom
use modpw

use modtddft
use modulr
use modvars
use modgw

use modbog
use modw90
use modtdhfc
use modmpi
use modomp
use modramdisk

DESCRIPTION:

Reads in the input parameters from the file elk.in. Also sets default values for the input
parameters

REVISION HISTORY:
Created September 2002 (JKD)

143

7.172 readstate (Source File: readstate.f90)

INTERFACE:
subroutine readstate
USES:

use modmain
use moddftu

DESCRIPTION:

Reads in the charge density and other relevant variables from the file STATE.QUT. Checks
for version and parameter compatibility.

REVISION HISTORY:

Created May 2003 (JKD)

7.173 reciplat (Source File: reciplat.f90)

INTERFACE:
subroutine reciplat(avec,bvec,omega,omegabz)

INPUT/OUTPUT PARAMETERS:

avec : lattice vectors (in,real(3,3))

bvec : reciprocal lattice vectors (out,real(3,3))

omega : unit cell volume (out,real)

omegabz : Brillouin zone volume (out,real)
DESCRIPTION:

Generates the reciprocal lattice vectors from the real-space lattice vectors

2

b1 = ?<ag X a3)
2

by = ?<a3 X ap)

27
b3 = ?(al X az)

and finds the unit cell volume Q = |s|, where s = a; - (az x a3), and the Brillouin zone
volume Qpz = (27)3/Q.

REVISION HISTORY:

Created September 2002 (JKD)

144

7.174 rfinp (Source File: rfinp.f90)

INTERFACE:
real(8) function rfinp(rfmtl,rfirl,rfmt2,rfir2)
USES:

use modmain
use modomp

INPUT/OUTPUT PARAMETERS:

rfmtl : first function in real spherical harmonics for all muffin-tins
(in,real (npmtmax,natmtot))

rfirl : first real interstitial function in real-space (in,real(ngtot))

rfmt2 : second function in real spherical harmonics for all muffin-tins
(in,real (npmtmax,natmtot))

rfir2 : second real interstitial function in real-space (in,real(ngtot))

DESCRIPTION:

Calculates the inner product of two real functions over the entire unit cell. The input muffin-
tin functions should have angular momentum cut-off lmaxo. In the interstitial region, the
integrand is multiplied with the characteristic function, ©(r), to remove the contribution
from the muffin-tin. See routines rfmtinp and gencfun.

REVISION HISTORY:
Created July 2004 (JKD)

7.175 rfinterp (Source File: rfinterp.f90)

INTERFACE:
subroutine rfinterp(ni,xi,wci,fi,no,xo0,fo)

INPUT/OUTPUT PARAMETERS:

ni : number of input points (in,integer)

xi : input abscissa array (in,real(ni))

wci : input spline coefficient weights (in,real(12,ni))

fi : input data array (in,real(ni))

no : number of output points (in,integer)

X0 : output abscissa array (in,real(no))

fo : output interpolated function (out,real(no))
DESCRIPTION:

Given a function defined on a set of input points, this routine uses a clamped cubic spline
to interpolate the function on a different set of points. See routine spline.

REVISION HISTORY:

145

Created January 2005 (JKD)
Arguments changed, April 2016 (JKD)

7.176 rfirctof (Source File: rfirctof.f90)

INTERFACE:

subroutine rfirctof (rfirc,rfir)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

rfirc : real input function on coarse grid (in,real(ngtc))
rfir : real output function on fine grid (out,real(ngtot))

DESCRIPTION:

Converts a real function on a coarse grid given by sizes ngdgc to a function on a fine grid
given by ngridg. This is done by first Fourier transforming rfirc to G-space, zeroing the
missing values and then transforming back to rfir.

REVISION HISTORY:
Created March 2020 (JKD)

7.177 rfmtctof (Source File: rfmtctof.f90)

INTERFACE:
subroutine rfmtctof (rfmt)
USES:

use modmain
use modomp

INPUT/OUTPUT PARAMETERS:
rfmt : real muffin-tin function (in,real (npmtmax,natmtot))

DESCRIPTION:

Converts a real muffin-tin function from a coarse to a fine radial mesh by using cubic spline
interpolation. See rfinterp and spline.

REVISION HISTORY:
Created October 2003 (JKD)

146

7.178 rfmtinp (Source File: rfmtinp.f90)

INTERFACE:
pure real(8) function rfmtinp(nr,nri,wr,rfmtl,rfmt2)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

nr : number of radial mesh points (in,integer)

nri : number of radial mesh points on the inner part of the muffin-tin
(in,integer)

wr : weights for integration on radial mesh (in,real(ar))

rfmtl : first real function inside muffin-tin (in,real(x))
rfmt2 : second real function inside muffin-tin (in,real(*))

DESCRIPTION:

Calculates the inner product of two real functions in the muffin-tin. So given two real
functions of the form

lmax l

f(I') = Z Z flm(T)le(f‘)

=0 m=—1

where Ry, are the real spherical harmonics, the function returns

l

Imax
) 3D SN ACTACETS

=0 m=—1

REVISION HISTORY:

Created November 2003 (Sharma)

7.179 rfmtlm (Source File: rfmtlm.f90)

INTERFACE:

pure subroutine rfmtlm(lm,nr,nri,rfmt,fr)

USES:
use modmain
Im : required (1,m) component (in,integer)
nr : number of radial mesh points (in,integer)
nri : number of points on inner part of muffin-tin (in,integer)
rfmt : real muffin-tin function (in,real(npmtmax))
fr : (1,m) component function on radial mesh (out,real(nr))

147

DESCRIPTION:

Given a function expanded in real spherical harmonics

lmax l

F@) =YY" fun(r)Rim(®),

=0 m=—1

where [,ax corresponds to lmaxi and lmaxo on the inner and outer parts of the muffin-tin,
respectively, this routine returns a particular component function f,,. See also genrlmv.

REVISION HISTORY:

Created April 2016 (JKD)

7.180 rhocore (Source File: rhocore.f90)

INTERFACE:
subroutine rhocore
USES:

use modmain

DESCRIPTION:

Adds the core density and magnetisation to the muffin-tin functions. Also computes the
amount of leakage of core charge from the muffin-tin spheres into the interstitial.

REVISION HISTORY:

Created April 2003 (JKD)
Fixed core moment direction, October 2012 (M. Meinert)

7.181 rhoinit (Source File: rhoinit.f90)

INTERFACE:
subroutine rhoinit
USES:

use modmain
use modomp

148

DESCRIPTION:

Initialises the crystal charge density. Inside the muffin-tins it is set to the spherical atomic
density. In the interstitial region it is taken to be constant such that the total charge is
correct. Requires that the atomic densities have already been calculated.

REVISION HISTORY:

Created January 2003 (JKD)

7.182 rhomagk (Source File: rhomagk.f90)

INTERFACE:

subroutine rhomagk(ngp,igpig,wppt,occsvp,apwalm,evecfv,evecsv,rhomt_,rhoir_, &
magmt_,magir_)

USES:

use modmain
use modomp

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer (nspnfv))
igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax,nspnfv))
wppt : weight of input p-point (in,real)

occsvp : occupation number for each state (in,real(nstsv))
apwalm : APW matching coefficients
(in, complex (ngkmax ,apwordmax,lmmaxapw,natmtot,nspnfv))
evecfv : first-variational eigenvectors (in,complex(nmatmax,nstfv,nspnfv))
evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv))

rhomt_ : muffin-tin density (inout,real(npcmtmax,natmtot))

rhoir_ : interstitial density (inout,real(ngtc))

magmt_ : muffin-tin magnetisation (inout,real(npcmtmax,natmtot,ndmag))

magir_ : interstitial magnetisation (inout,real(ngtc,ndmag))
DESCRIPTION:

Generates the partial valence charge density and magnetisation from the eigenvectors at
a particular k-point. In the muffin-tin region, the wavefunction is obtained in terms of
its (I, m)-components from both the APW and local-orbital functions. Using a backward
spherical harmonic transform (SHT), the wavefunction is converted to real-space and the
density obtained from its modulus squared. A similar process is used for the interstitial
density in which the wavefunction in real-space is obtained from a Fourier transform of the
APW functions. See routines wfmtsv, genshtmat and eveqn.

REVISION HISTORY:

149

Created April 2003 (JKD)

Removed conversion to spherical harmonics, January 2009 (JKD)
Partially de-phased the muffin-tin magnetisation for spin-spirals,
February 2009 (FC, FB & LN)

Optimisations, July 2010 (JKD)

7.183 rhomagsh (Source File: rhomagsh.f90)

INTERFACE:
subroutine rhomagsh
USES:

use modmain
use modomp

DESCRIPTION:

Converts the muffin-tin density and magnetisation from spherical coordinates to a spherical
harmonic expansion. See rhomagk.

REVISION HISTORY:

Created January 2009 (JKD)

7.184 rhonorm (Source File: rhonorm.f90)

INTERFACE:
subroutine rhonorm
USES:

use modmain

DESCRIPTION:

Loss of precision of the calculated total charge can result because the muffin-tin density is
computed on a set of (0, ¢) points and then transformed to a spherical harmonic represen-
tation. This routine adds a constant to the density so that the total charge is correct. If
the error in total charge exceeds a certain tolerance then a warning is issued.

REVISION HISTORY:

Created April 2003 (JKD)
Changed from rescaling to adding, September 2006 (JKD)

150

7.185 rhoplot (Source File: rhoplot.f90)

INTERFACE:
subroutine rhoplot
USES:

use modmain

DESCRIPTION:

Outputs the charge density, read in from STATE.QUT, for 1D, 2D or 3D plotting.

REVISION HISTORY:

Created June 2003 (JKD)

7.186 rotaxang (Source File: rotaxang.f90)

INTERFACE:
subroutine rotaxang(eps,rot,det,v,th)
INPUT/O UTPUT PARAMETERS:

eps : zero vector tolerance (in,real)
rot : rotation matrix (in,real(3,3))
det : matrix determinant (out,real)

v : normalised axis vector (out,real(3))
th : rotation angle (out,real)
DESCRIPTION:

Given a rotation matrix

cosf + 2%(1 —cos) zy(l —cosf) + zsinf z2(1 — cosf) — ysinb
R(V,0) = | 2y(1 —cosf) — zsinf cos® +y*(1 —cosf) yz(1 —cosd) + zsinf |,
zz(1 —cosf) +ysind yz(1 —cosf) —xsinf cosf + z?(1 — cosh)

this routine determines the axis of rotation v and the angle of rotation 6. If R corresponds
to an improper rotation then only the proper part is used and det is set to —1. The rotation
convention follows the ‘right-hand rule’.

REVISION HISTORY:

Created December 2006 (JKD)

151

7.187 roteuler (Source File: roteuler.f90)

INTERFACE:
subroutine roteuler(rot,ang)
INPUT/OUTPUT PARAMETERS:

rot : proper rotation matrix (in,real(3,3))
ang : Euler angles (alpha, beta, gamma) (out,real(3))

DESCRIPTION:

Given a rotation matrix

R(a, B,7) =
cosy cos 3 cos @ — sin -y sin « cosycos fsina+sinycosa —cosysinf
—sinycosfcosa —cosysina —sinycosfsina + cosycosa sinysing |,
sin S cos « sin 3 sin o cos 8

this routine determines the Euler angles, (a, 3,7). This corresponds to the so-called ‘y-
convention’, which involves the following successive rotations of the coordinate system:

1. The z1-, x9-, x3-axes are rotated anticlockwise through an angle o about the x3 axis
2. The -, x%-, xh-axes are rotated anticlockwise through an angle § about the zf, axis
3. The zY-, z4-, z%-axes are rotated anticlockwise through an angle v about the zf axis

Note that the Euler angles are not necessarily unique for a given rotation matrix.

REVISION HISTORY:

Created May 2003 (JKD)
Fixed problem thanks to Frank Wagner, June 2013 (JKD)

7.188 rotrflm (Source File: rotrfmt.f90)

INTERFACE:
subroutine rotrflm(rot,lmax,n,ld,rflml,rflm2)

INPUT/OUTPUT PARAMETERS:

rot : rotation matrix (in,real(3,3))

lmax : maximum angular momentum (in,integer)

n : number of functions to rotate (in,integer)
14 : leading dimension (in,integer)

rflml : coefficients of the real spherical harmonic expansion for each
function (in,real(ld,n))
rflm2 : coefficients of rotated functions (out,complex(ld,n))

152

DESCRIPTION:

Rotates a set of real functions

fie) = fi Rim(F)
Im

for all i, given the coefficients f; and a rotation matrix R. This is done by first the
computing the Euler angles («, 3,7) of R™! (see routine roteuler) and then applying the
spherical harmonic rotation matrix generated by the routine rlmrot.

REVISION HISTORY:

Created December 2008 (JKD)

7.189 rlmrot (Source File: rotrfmt.f90)

INTERFACE:
subroutine rlmrot(p,ang,lmax,1ld,d)

INPUT/OUTPUT PARAMETERS:

P : if p=-1 then the rotation matrix is improper (in,integer)

ang : Euler angles; alpha, beta, gamma (in,real(3))

lmax : maximum angular momentum (in,integer)

ld : leading dimension (in,integer)

d : real spherical harmonic rotation matrix (out,real(ld,*))
DESCRIPTION:

Returns the rotation matrix in the basis of real spherical harmonics given the three Euler
angles, (a,3,7), and the parity, p, of the rotation. The matrix is determined using the
formula of V. V. Nechaev, [J. Struct. Chem. 35, 115 (1994)], suitably modified for our
definition of the real spherical harmonics (m; > 0, mg > 0):

Af)o = déov
Al o = V2(=1)™dp,,, cos(mia),

Af)mg = \/5(71)7”2dlm20 COS(mQ’Y)a
Al—mlo = f\/ﬁdéml sin(mya),
Ay = V2,0 5in(msy),

Almlm2 = (—=1)™(=1)"*{cos(myic) cos(may)[da + dg] — sin(myic) sin(may)[da — dB]},
Ainer = (—1)™{sin(my) cos(may)[da — dp] + cos(mia) sin(mavy)[da + dpl},
Al_m1m2 = —(—1)"*{sin(mi) cos(ma7y)[da + dp| + cos(mia) sin(may)[da — dpl},
AL .. = cos(mia) cos(may)[da — dp] — sin(mia) sin(may)[da + dp],

153

where dy = dl_ml_m27 dp = (—l)mlalﬁm_m2 and d is the rotation matrix about the y-axis

for complex spherical harmonics. See the routines genrlm, roteuler and ylmroty.

REVISION HISTORY:

Created December 2008 (JKD)

7.190 rotzflm (Source File: rotzfim.f90)

INTERFACE:
subroutine rotzflm(rot,lmin,lmax,lmmax,n,ld,zflml,zf1lm2)

INPUT/OUTPUT PARAMETERS:

rot : rotation matrix (in,real(3,3))

Imin : minimum angular momentum (in,integer)

lmax : maximum angular momentum (in,integer)
lmmax : (lmax+1)~2 or larger (in,integer)

n : number of functions to rotate (in,integer)
1d : leading dimension (in,integer)

zflml : coefficients of the complex spherical harmonic expansion for each
function (in,complex(1ld,n))
zf1lm2 : coefficients of rotated functions (out,complex(ld,n))

DESCRIPTION:

Rotates a set of complex functions

fie) = flnYim(®)
lm

for all i, given the coefficients f; and a rotation matrix R. This is done by first the
computing the Euler angles («, 3,7) of R™! (see routine roteuler) and then applying the
spherical harmonic rotation matrix generated by the routine ylmrot.

REVISION HISTORY:

Created April 2003 (JKD)
Modified, December 2008 (JKD)

7.191 rschrodint (Source File: rschrodint.f90)

INTERFACE:
pure subroutine rschrodint(sol,l,e,nr,r,vr,nn,p0,pl,q0,ql)

INPUT/OUTPUT PARAMETERS:

154

sol : speed of light in atomic units (in,real)

1 : angular momentum quantum number (in,integer)

e : energy (in,real)

nr : number of radial mesh points (in,integer)

r : radial mesh (in,real(anr))

vr : potential on radial mesh (in,real(nr))

nn : number of nodes (out,integer)

pO : radial function P (out,real(ur))

pl : radial derivative of P (out,real(nr))

g0 : radial function Q (out,real(ur))

gl : radial derivative of Q (out,real(nr))
DESCRIPTION:

Integrates the scalar relativistic radial Schrodinger equation from r = 0 outwards. This
involves using the predictor-corrector method to solve the coupled first-order equations (in
atomic units)

d 1

—P =2MQ; + P,

dr r

d 1 I(1+1)

%Ql —*;szL SN2 + (V- E)| B,

where V is the external potential, F is the eigen energy and M = 1+(E—V)/2c%. Following
the convention of Koelling and Harmon, J. Phys. C: Solid State Phys. 10, 3107 (1977), the
functions P; and @); are defined by

Pr=rg
T dg
Cgl__QAJ dr’

where g; is the major component of the Dirac equation (see the routine rdiracint).

REVISION HISTORY:
Created October 2003 (JKD)

7.192 rtozflmn (Source File: rtozfmt.f90)

INTERFACE:
pure subroutine rtozflmn(lmax,n,ld,rflm,zflm)
INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)

n : number of functions to convert (in,integer)

1d : leading dimension (in,integer)

rflm : coefficients of real spherical harmonic expansion (in,real(ld,n))

zflm : coefficients of complex spherical harmonic expansion
(out,complex(1ld,n))

155

DESCRIPTION:

Converts a real function, ry,, expanded in terms of real spherical harmonics into a complex
spherical harmonic expansion, zj,:

75 (rim +1(=1)"r_m) M >0

(=D)™r_p — i) m <0

S-S

Zlm =

Tim m=20
See routine genrlm.

REVISION HISTORY:

Created April 2003 (JKD)

7.193 rvfcross (Source File: rvfcross.f90)

INTERFACE:

subroutine rvfcross(rvimtl,rvfirl,rvimt2,rvfir2,rvfmt3,rvfir3)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

rvfmtl : first input muffin-tin field (in,real(npmtmax,natmtot,3))
rvfirl : first input interstitial field (in,real(ngtot,3))

rvfmt2 : second input muffin-tin field (in,real(npmtmax,natmtot,3))
rvfir2 : second input interstitial field (in,real(ngtot,3))

rvfmt3 : output muffin-tin field (out,real(npmtmax,natmtot,3))
rvfir3 : output interstitial field (out,real(ngtot,3))

DESCRIPTION:

Given two real vector fields, f; and f5, defined over the entire unit cell, this routine computes
the local cross product

f3(I‘> = fl(r) X fQ(I‘).

REVISION HISTORY:

Created February 2007 (JKD)

156

7.194 sbesseldm (Source File: sbesseldm.f90)

INTERFACE:
subroutine sbesseldm(m,lmax,x,djl)

INPUT/OUTPUT PARAMETERS:

m : order of derivatve (in,integer)

lmax : maximum order of Bessel function (in,integer)

X : real argument (in,real)

djl : array of returned values (out,real(0:1lmax))
DESCRIPTION:

Computes the mth derivative of the spherical Bessel function of the first kind, j;(z), for

argument x and [= 0,1, ..., lnax. For x > 1 this is done by repeatedly using the relations
d . l . .
%Jl(m) = 5]1(95) — Ji1(2)

i) = 2 @) — i)

While for x < 1 the series expansion of the Bessel function is used

dm - 2i +1)! ;
i (z) = Z (2i+1) L2 -m

dam ! (—2)1il(2i + 1 — m)!(2i + 2 + 1)II

1=0

This procedure is numerically stable and accurate to near machine precision for [< 30 and
m < 6.

REVISION HISTORY:

Created March 2003 (JKD)
Modified to return an array of values, October 2004 (JKD)

7.195 sbessel (Source File: sbessel.f90)

INTERFACE:
subroutine sbessel(lmax,x,jl)
INPUT/OUTPUT PARAMETERS:

lmax : maximum order of Bessel function (in,integer)
X : real argument (in,real)
jl1 : array of returned values (out,real(0:1lmax))

157

DESCRIPTION:

Computes the spherical Bessel functions of the first kind, j;(x), for real argument = and
1 =0...lp.x The recurrence relation

(@) = 2 w) — (@)

is used downwards for & < lyax or upwards for x > lyax. The asymptotic form
l

. - T
@)~ G

is used for x <« 1. This procedure is numerically stable and accurate to near machine
precision for [< 50.

REVISION HISTORY:

Created January 2003 (JKD)
Modified to return an array of values, October 2004 (JKD)
Improved stability, August 2006 (JKD)

7.196 sbesseli (Source File: sbesseli.f90)

INTERFACE:
subroutine sbesseli(lmax,x,jl)
INPUT/OUTPUT PARAMETERS:

lmax : maximum order of Bessel function (in,integer)

X : real argument (in,real)
jl : array of returned values (out,real(0:1lmax))
DESCRIPTION:

Computes spherical Bessel functions with imaginary argument, jl(aj) = i'j(iz), for real x
and [= 0...[lhax. The recurrence relation

~ 2041+ ~
Jig1(z) = . Ji(@) + ji—i(x)

is used either downwards for x < 2[,,x or upwards for x > 2l,.x. The starting values are
Jo(x) = sinh(x)/x and ji(x) = (jo(x) — cosh(x))/xz. The asymptotic form

~ —T !
i) ~ (z(z n i)u

is used for z < 1.

REVISION HISTORY:

Created April 2008 from sbessel routine (Lars Nordstrom)
Fixed accuracy issue and changed name, September 2021 (JKD)

158

7.197 sdelta (Source File: sdelta.f90)

INTERFACE:
real(8) function sdelta(stype,x)
INPUT/OUTPUT PARAMETERS:

stype : smearing type (in,integer)
X : real argument (in,real)

DESCRIPTION:

Returns a normalised smooth approximation to the Dirac delta function. These functions
are defined such that
/ 6(z)dx = 1.

The effective width, w, of the delta function may be varied by using the normalising trans-
formation -
6(z/w)

w

S (x) =
Currently implimented are:
0. Gaussian
Methfessel-Paxton order 1
Methfessel-Paxton order 2
Fermi-Dirac

Square-wave impulse

Ot W=

Lorentzian

See routines stheta, sdelta_mp, sdelta_fd and sdelta_sq.

REVISION HISTORY:
Created April 2003 (JKD)

7.198 getsdata (Source File: sdelta.f90)

INTERFACE:
subroutine getsdata(stype,sdescr)
INPUT/OUTPUT PARAMETERS:

stype : smearing type (in,integer)
sdescr : smearing scheme description (out,character(*))

DESCRIPTION:

Returns a description of the smearing scheme as string sdescr up to 256 characters long.

REVISION HISTORY:
Created April 2003 (JKD)

159

7.199 sdelta_fd (Source File: sdelta_fd.f90)

INTERFACE:
elemental real(8) function sdelta_fd(x)
INPUT/OUTPUT PARAMETERS:

x : real argument (in,real)

DESCRIPTION:

Returns the Fermi-Dirac approximation to the Dirac delta function

~ e_x

d(x) = m.

REVISION HISTORY:
Created April 2003 (JKD)

7.200 sdelta_mp (Source File: sdelta_mp.f90)

INTERFACE:
real(8) function sdelta_mp(n,x)
INPUT/OUTPUT PARAMETERS:

n : order (in,integer)
x : real argument (in,real)

DESCRIPTION:

Returns the smooth approximation to the Dirac delta function of order N given by Meth-
fessel and Paxton, Phys. Rev. B 40, 3616 (1989),

N

where Hj is the jth-order Hermite polynomial. This function has the property

/ " §(x)P(x) = P(0),

where P(z) is any polynomial of degree 2N + 1 or less. The case N = 0 corresponds to
Gaussian smearing. This procedure is numerically stable and accurate to near machine
precision for N < 10.

REVISION HISTORY:
Created April 2003 (JKD)

160

7.201 sdelta_sq (Source File: sdelta_sq.f90)

INTERFACE:
elemental real(8) function sdelta_sq(x)
INPUT/OUTPUT PARAMETERS:

x : real argument (in,real)

DESCRIPTION:

Returns the square-wave pulse approximation to the Dirac delta function

< (1 Jal<1)2
5(x)“{ 0 |z >1/2

REVISION HISTORY:

Created July 2008 (JKD)

7.202 sfacmag (Source File: sfacmag.f90)

INTERFACE:
subroutine sfacmag
USES:

use modmain
use modpw
use modtest

DESCRIPTION:

Outputs magnetic structure factors, i.e. the Fourier transform coefficients of each compo-
nent j of magnetization m(r),

mmzéﬁmﬁwm,

to the files SFACMAG_j.OUT. The lattice coordinates (h,k,l) of H-vectors in this file are
transformed by the matrix vhmat. See also routines zftrf and genhvec.

REVISION HISTORY:

Created July 2010 (Alexey I. Baranov)
Added multiplicity of the H-vectors, Oct. 2010 (Alexey I. Baranov)

161

7.203 sfacrho (Source File: sfacrho.f90)

INTERFACE:
subroutine sfacrho
USES:

use modmain
use modpw
use modtest

DESCRIPTION:

Outputs X-ray structure factors, i.e. the Fourier transform coefficients of the total electron
density

FH) = /ng’r p(r)eHr

to the file SFACRHO.QUT. The lattice coordinates (h,k,l) of the H-vectors in this file are
transformed by the matrix vhmat. If and energy window is set using the variable wsfac,
then only those states within the window are used to compute the density. See also routines
zftrf and genhvec.

REVISION HISTORY:

Created July 2010 (Alexey I. Baranov)
Added multiplicity of the H-vectors, Oct. 2010 (Alexey I. Baranov)

7.204 shankeli (Source File: shankeli.f90)

INTERFACE:
subroutine shankeli(lmax,x,hl)
INPUT/OUTPUT PARAMETERS:

lmax : maximum order of Hankel function (in,integer)

X : real argument (in,real)
hl : array of returned values (out,real(0:1lmax))
DESCRIPTION:

Computes the spherical Hankel function of the first kind with imaginary argument, Bl(ac) =
i'hy(iz), for real 2 and I = 0. ..lynax. The recurrence relation

Foi(@) = 2 @) @)

162

is used upwards. The starting values there are ho(z) = —e™%/z and hy () = ho(z)(1+1/x).
For x <« 1 we use the asymptotic form

- —(21—1)!
e~ g

REVISION HISTORY:

Created April 2008 from sbessel routine (Lars Nordstrom)
Changed name, September 2021 (JKD)

7.205 sort (Source File: sort.f90)

INTERFACE:
subroutine sort(n,x)
INPUT/OUTPUT PARAMETERS:

n : number of elements in array (in,integer)
x : real array (inout,real(n))

DESCRIPTION:

Sorts elements of a real array into ascending order. See sortidx.

REVISION HISTORY:
Created May 2024 (JKD)

7.206 sortidx (Source File: sortidx.f90)

INTERFACE:
pure subroutine sortidx(n,x,idx)

INPUT/OUTPUT PARAMETERS:

n : number of elements in array (in,integer)

X : real array (in,real(n))

idx : permutation index (out,integer(n))
DESCRIPTION:

Finds the permutation index idx which sorts the real array x into ascending order. No
sorting of the array x itself is performed. Uses the heapsort algorithm.

REVISION HISTORY:

Created October 2002 (JKD)
Included tolerance eps, April 2006 (JKD)

163

7.207 sphcover (Source File: sphcover.f90)

INTERFACE:
subroutine sphcover(n,tp)
INPUT/OUTPUT PARAMETERS:

n : number of required points (in,integer)
tp : (theta, phi) coordinates (out,real(2,n))

DESCRIPTION:

Produces a set of N points which cover the unit sphere nearly optimally. The points in
spherical (0, ¢) coordinates are generated using the explicit ‘golden section’ formula:

0. = arccos [1 — (k‘ — %) 52]

where §z = 2/n and d¢ = m(1 — V/5).
REVISION HISTORY:

Created April 2008 (JKD)
Improved covering, October 2009 (JKD)

7.208 sphcerd (Source File: spherd.f90)

INTERFACE:
pure subroutine sphcrd(v,r,tp)
INPUT/OUTPUT PARAMETERS:

v : input vector (in,real(3))
r : length of v (out,real)
tp : (theta, phi) coordinates (out,real(2))

DESCRIPTION:

Returns the spherical coordinates (r, 6, ¢) of a vector

v = (rsin(f) cos(¢), rsin() sin(¢), r cos(H)).

REVISION HISTORY:

Created October 2002 (JKD)

164

7.209 spline (Source File: spline.f90)

INTERFACE:
subroutine spline(n,x,f,cf)

INPUT/OUTPUT PARAMETERS:

n : number of points (in,integer)

x : abscissa array (in,real(n))

f : input data array (in,real(mn))

cf : cubic spline coefficients (out,real(3,n))
DESCRIPTION:

Calculates the coefficients of a cubic spline fitted to input data. In other words, given a
set of data points f; defined at xz;, where ¢ = 1...n, the coefficients ¢; are determined such
that

yi(z) = fi+ci(e — @) + (e — 25)* + (2 — 2:)°,
is the interpolating function for x € [x;, z;11). The coefficients are determined piecewise by
fitting a cubic polynomial to adjacent points.

REVISION HISTORY:

Created November 2011 (JKD)

7.210 stheta (Source File: stheta.f90)

INTERFACE:
real(8) function stheta(stype,x)
INPUT/OUTPUT PARAMETERS:

stype : smearing type (in,integer)
X : real argument (in,real)

DESCRIPTION:

Returns the Heaviside step function corresponding to the smooth approximation to the
Dirac delta function:

O(z) = /x dtb(t).

—00

See function sdelta for details.

REVISION HISTORY:

Created April 2003 (JKD)

165

7.211 stheta fd (Source File: stheta _fd.f90)

INTERFACE:
elemental real(8) function stheta_fd(x)
INPUT/OUTPUT PARAMETERS:

x : real argument (in,real)

DESCRIPTION:

Returns the Fermi-Dirac approximation to the Heaviside step function

REVISION HISTORY:
Created April 2003 (JKD)

7.212 stheta_mp (Source File: stheta mp.f90)

INTERFACE:
real(8) function stheta_mp(n,x)
INPUT/OUTPUT PARAMETERS:

n : order (in,integer)
x : real argument (in,real)

DESCRIPTION:

Returns the smooth approximation to the Heaviside step function of order N given by
Methfessel and Paxton, Phys. Rev. B 40, 3616 (1989),

O(x) =1— Sy(x)

where

(1) .
Sn(z) = So(x) + ; i!4”\/7?H2i_1(x)6 .

So(z) = %(1 —erf(x))

and H; is the jth-order Hermite polynomial. This procedure is numerically stable and
accurate to near machine precision for N < 10.

REVISION HISTORY:
Created April 2003 (JKD)

166

7.213 stheta_sq (Source File: stheta_sq.f90)

INTERFACE:
elemental real(8) function stheta_sq(x)
INPUT/OUTPUT PARAMETERS:

x : real argument (in,real)

DESCRIPTION:

Returns the Heaviside step function corresponding to the square-wave pulse approximation
to the Dirac delta function

3 0 r<-—1/2
O(r) =< x+1/2 -1/2<x<1/2
1 rz>1

REVISION HISTORY:

Created July 2008 (JKD)

7.214 sumrule (Source File: sumrule.f90)

INTERFACE:
subroutine sumrule

DESCRIPTION:

Applies the same correction to all the dynamical matrices such that the matrix for q = 0
satisfies the acoustic sum rule. In other words, the matrices are updated with

3
q q 0,0 .0
DY = D = wiugiviy;
k=1

for all q, where w,g is the kth eigenvalue of the q = 0 dynamical matrix and v,g.i the ith
component of its eigenvector. The eigenvalues are assumed to be arranged in &iscending
order. This ensures that the g = 0 dynamical matrix has 3 zero eigenvalues, which the
uncorrected matrix may not have due to the finite exchange-correlation grid.

REVISION HISTORY:

Created May 2005 (JKD)

167

7.215 symrf (Source File: symrf.f90)

INTERFACE:

subroutine symrf(nrmt_,nrmti_,npmt_,ngridg_,ngtot_,ngvec_,nfgrz_,igfft_,igrzf_,&
1d,rfmt,rfir)

USES:

use modmain
use modomp

INPUT/OUTPUT PARAMETERS:

nrmt_ : number of radial points for each species (in,integer(nspecies))
nrmti_ : number of radial points on the inner part (in,integer(uspecies))
npmt_ : total number of points in each muffin-tin (in,integer(nspecies))
ngridg_ : G-vector grid sizes (in,integer(3))
ngtot_ : total number of G-vectors (in,integer)
ngvec_ : number of G-vectors within cut-off (in,integer)
nfgrz_ : number of FFT elements for real-complex transforms (in,integer)
igfft_ : map from G-vector index to FFT array (in,integer(ngvec_))
igrzf_ : map from real-complex FFT index to G-point index
(in,integer (nfgrz_)
14 : leading dimension (in,integer)
rfmt : real muffin-tin function (inout,real(ld,natmtot))
rfir : real intersitial function (inout,real(ngtot_))
DESCRIPTION:

Symmetrises a real scalar function defined over the entire unit cell using the full set of crystal
symmetries. In the muffin-tin of a particular atom the spherical harmonic coefficients of
every equivlent atom are rotated and averaged. The interstitial part of the function is first
Fourier transformed to G-space, and then averaged over each symmetry by rotating the
Fourier coefficients and multiplying them by a phase factor corresponding to the symmetry
translation.

REVISION HISTORY:

Created May 2007 (JKD)

7.216 symrfir (Source File: symrfir.f90)

INTERFACE:
subroutine symrfir(ngridg_,ngtot_,ngvec_,nfgrz_,igfft_,igrzf ,rfir)

USES:

168

use modmain

INPUT/OUTPUT PARAMETERS:

ngridg_ : G-vector grid sizes (in,integer(3))
ngtot_ : total number of G-vectors (in,integer)
ngvec_ : number of G-vectors within cut-off (in,integer)
nfgrz_ : number of FFT elements for real-complex transforms (in,integer)
igfft_ : map from G-vector index to FFT array (in,integer(ngvec_))
igrzf_ : map from real-complex FFT index to G-point index
(in,integer(nfgrz_))
rfir : real intersitial function (inout,real(ngtot_))
DESCRIPTION:

Symmetrises a real scalar interstitial function. The function is first Fourier transformed to
G-space, and then averaged over each symmetry by rotating the Fourier coefficients and
multiplying them by a phase factor corresponding to the symmetry translation.

REVISION HISTORY:

Created July 2007 (JKD)

7.217 symrvf (Source File: symrvf.f90)

INTERFACE:

subroutine symrvf (tspin,tnc,nrmt_,nrmti_,npmt_,ngridg_,ngtot_,ngvec_,nfgrz_, &
igfft_,igrzf_,1d1,rvfmt,1d2,rvfir)

USES:

use modmain
use modomp

INPUT/OUTPUT PARAMETERS:

tspin : .true. if spin rotations should be used (in,logical)

tnc : .true. if the vector field is non-collinear, otherwise it is
collinear along the z-axis (in,logical)

nrmt_ : number of radial points for each species (in,integer(nspecies))

nrmti_ : number of radial points on the inner part (in,integer(uspecies))

npmt_ : total number of points in each muffin-tin (in,integer(nspecies))

ngridg_ : G-vector grid sizes (in,integer(3))

ngtot_ : total number of G-vectors (in,integer)

ngvec_ : number of G-vectors within cut-off (in,integer)

nfgrz_ : number of FFT elements for real-complex transforms (in,integer)

igfft_ : map from G-vector index to FFT array (in,integer(ngvec_))

igrzf_ : map from real-complex FFT index to G-point index

169

(in,integer(nfgrz_)

1ld1 : leading dimension (in,integer)

rvimt : real muffin-tin vector field (in,real(ldl,natmtot,*))

1d2 : leading dimension (in,integer)

rvfir : real interstitial vector field (in,real(1d2,*))
DESCRIPTION:

Symmetrises a vector field defined over the entire unit cell using the full set of crystal
symmetries. If a particular symmetry involves rotating atom 1 into atom 2, then the spatial
and spin rotations of that symmetry are applied to the vector field in atom 2 (expressed
in spherical harmonic coefficients), which is then added to the field in atom 1. This is
repeated for all symmetry operations. The fully symmetrised field in atom 1 is then rotated
and copied to atom 2. Symmetrisation of the interstitial part of the field is performed by
symrviir. See also symrfmt and findsym.

REVISION HISTORY:

Created May 2007 (JKD)
Fixed problem with improper rotations, February 2008 (L. Nordstrom,
F. Bultmark and F. Cricchio)

7.218 symrvfir (Source File: symrvfir.f90)

INTERFACE:

subroutine symrvfir(tspin,tnc,ngridg_,ngtot_,ngvec_,nfgrz_,igfft_,igrzf_,1d, &
rvfir)

USES:
use modmain

INPUT/OUTPUT PARAMETERS:

tspin : .true. if spin rotations should be used (in,logical)
tnc : .true. if the vector field is non-collinear, otherwise it is
collinear along the z-axis (in,logical)
ngridg_ : G-vector grid sizes (in,integer(3))
ngtot_ : total number of G-vectors (in,integer)
ngvec_ : number of G-vectors within cut-off (in,integer)
nfgrz_ : number of FFT elements for real-complex transforms (in,integer)
igfft_ : map from G-vector index to FFT array (in,integer(ngvec_))
igrzf_ : map from real-complex FFT index to G-point index
(in,integer (nfgrz_))
1d : leading dimension (in,integer)
rvfir : real interstitial vector function (inout,real(ld,*))

170

DESCRIPTION:

Symmetrises a real interstitial vector function. See routines symrvf and symrfir for details.

REVISION HISTORY:

Created July 2007 (JKD)

7.219 symveca (Source File: symveca.f90)

INTERFACE:
subroutine symveca(vca)
USES:
use modmain
INPUT/OUTPUT PARAMETERS:
vca : vectors in Cartesian coordinates for all atoms (in,real(3,natmtot))

DESCRIPTION:

Symmetrises a 3-vector at each atomic site by rotating and averaging over equivalent atoms.
Only the spatial part of each crystal symmetry is used.

REVISION HISTORY:

Created June 2004 (JKD)

7.220 timesec (Source File: timesec.f90)

INTERFACE:
subroutine timesec(ts)
INPUT/O UTPUT PARAMETERS:

ts : system time in seconds (out,real)

DESCRIPTION:

Outputs the system time in seconds.

REVISION HISTORY:

Created September 2010 (JKD)

171

7.221 tm2todm (Source File: tm2todm.f90)

INTERFACE:
subroutine tm2todm(l,k,p,1ld,wkp,dm)

INPUT/OUTPUT PARAMETERS:

1 : angular momentum quantum number (in,integer)

k : angular momentum tensor moment label (in,integer)
P : spin tensor moment label (in,integer)

1ld : leading dimension (in,integer)

wkp : 2-index tensor moment components (in,real(-1d:1d,-1:1))
dm : real density matrix (out,real(1ld,2,1d,2))

DESCRIPTION:
Calculates the real density matrix

P k
D=3, > wils

y=—pr=—k

from the real 2-index coefficients w];;’; and the uncoupled tensor moment matrices given by

rif;(mlol,mm):(—l)lM2+S“2¢<2k+1><2p+1>(l ‘ l)(p)

—mo T My —0o2 Y O]

where [is the angular momentum quantum number, s = % and the irreducible represen-

tations are labeled by k € {0,...,2l} and p € {0,1}. The variables x € {—Fk,..., k}
and y € {—1,0,1} index the components in the array wkp. These matrices are real and
orthonormal in the sense .,

tr (Fﬁgfg,i,) = 5kkz’5pp’5acar’5yy"
For a detailed derivation see Phys. Rev. B 80, 035121 (2009) and J. Phys.: Condens.
Matter 7, 9947 (1995). See also the routine tm3todm.

REVISION HISTORY:

Created 2007 (Francesco Cricchio and Lars Nordstrom)
Changed normalisation and decoupled loops, January 2022 (JKD)

7.222 tm3todm (Source File: tm3todm.f90)

INTERFACE:
subroutine tm3todm(l,k,p,r,1ld,wkpr,dm)

INPUT/OUTPUT PARAMETERS:

172

1 : angular momentum quantum number (in,integer)
k : k-index of tensor moment (in,integer)
P : p-index of tensor moment (in,integer)
r : r-index of tensor moment (in,integer)

1d : leading dimension (in,integer)

wkpr : 3-index tensor moment components (in,real(-1d:1d))

dm : complex Hermitian density matrix (out,complex(1ld,2,1d,2))
DESCRIPTION:

The 3-index coupled tensor moment matrices are given by

k D
kpr Er pY\rk
v TI Y Y (_w t)rxg,

r=—ky=—p Y
where the irreducible representations are labeled by k& € {0,...,2l}, p € {0,1}, r € {|k —
ply...,k+p} and F%’ are the uncoupled tensor moments (note that the phase (—1)**¥ in

the original formula has been removed because of the Wigner 35 condition z +y = t). The
coupled tensor moment matrices are real and orthonormal in the sense

tr (Ffprl“f,/p/r/) = 5kk/5pp/57,,n/5tt/.
It can also be shown that the matrices are complete, thus any general complex matrix D of
dimension 2(2! + 1) can be expanded as

1 k+p r

21
R MDD SE

k=0 p=0 r=|k—p| t=—7

k
where z,7

" are complex numbers. Likewise, any real matrix can be expanded in real tensor
moments wf P Using the the symmetry properties of the Wigner 3j-symbols, one can show

that the transpose
(37)" = (~y)Frreretriy

and thus both the symmetric and antisymmetric parts of Ffp " transform under rotation
within the same irreducible representation. Consequently, any complex Hermitian matrix

D can be written as
k k Lk
D= E w, " [(th)s + Z(Ftpr)A],
k7p7r7t

where the subscripts S and A refer to the symmetric and antisymmetric parts of the matrix,
respectively. This routine generates the Hermitian density matrix D as described above
from the real tensor moments wf P’ For a detailed derivation see Phys. Rev. B 80, 035121
(2009), J. Phys.: Condens. Matter 7, 9947 (1995) and G. van der Laan in Spin-Orbit-
Influenced Spectroscopies of Magnetic Solids. Lecture Notes in Physics, 466 (1996). See
also the routines tm2todm and tm3rtoz.

REVISION HISTORY:

Created 2007 (Francesco Cricchio and Lars Nordstrom)
Changed normalisation, made the moments real and the matrix Hermitian,
January 2022 (JKD)

173

7.223 trzhmm (Source File: trzhmm.f90)

INTERFACE:
pure real(8) function trzhmm(n,a,b)

INPUT/OUTPUT PARAMETERS:

n : order of matrix (in,integer)

a : Hermitian matrix A (in,complex(n,n))

b : Hermitian matrix B (in,complex(n,n))
DESCRIPTION:

Calculates the trace of the product of two Hermitian matrices, tr(AB). Only the upper
triangular parts of A and B are referenced.

REVISION HISTORY:

Created December 2021 (JKD)

7.224 unitary (Source File: unitary.f90)

INTERFACE:
subroutine unitary(n,a)
INPUT/OUTPUT PARAMETERS:

n : order of matrix (in,integer)
a : complex square matrix (inout,complex(n,n))

DESCRIPTION:

Finds the closest unitary matrix (in terms of the Frobenius norm) to a given matrix A. Let
UXVT be the singular value decomposition of A. Then it can be shown that UVT is the
closest unitary matrix to A. The input matrix is overwritten by this matrix.

REVISION HISTORY:

Created January 2020 (JKD)

7.225 vecfbz (Source File: vecfbz.f90)

INTERFACE:

subroutine vecfbz(eps,bvec,vpl)

174

INPUT/OUTPUT PARAMETERS:

eps : zero component tolerance (in,real)

bvec : reciprocal lattice vectors (in,real(3,3))

vpl : input vector in lattice coordinates (inout,real(3))
DESCRIPTION:

Maps a vector in lattice coordinates to the first Brillouin zone. This is done by first removing
its integer components and then adding primitive reciprocal lattice vectors until the shortest
vector is found.

REVISION HISTORY:

Created September 2008 (JKD)

7.226 vecplot (Source File: vecplot.f90)

INTERFACE:
subroutine vecplot

DESCRIPTION:

Outputs a 2D or 3D vector field for plotting. The vector field can be the magnetisation
vector field, m; the exchange-correlation magnetic field, By.; or the electric field E = —V 1.
The magnetisation is obtained from the spin density matrix, p,g, by solving

pas(r) = 5 (1(r)das + 0 m(r)),

where n = tr p,g is the total density. In the case of 2D plots, the magnetisation vectors are
still 3D, but are in the coordinate system of the plane.

REVISION HISTORY:

Created August 2004 (JKD)
Included electric field plots, August 2006 (JKD)

7.227 wimtfv (Source File: wfmtfv.f90)

INTERFACE:
subroutine wfmtfv(ias,ngp,apwalm,evecfv,wfmt)
USES:

use modmain

175

INPUT/OUTPUT PARAMETERS:

ias : joint atom and species number (in,integer)

ngp : number of G+p-vectors (in,integer)

apwalm : APW matching coefficients (in,complex(ngkmax,apwordmax,lmmaxapw))

evecfv : first-variational eigenvector (in,complex(nmatmax))

wimt : complex muffin-tin wavefunction passed in as real array
(out,real(2,*))

DESCRIPTION:

Calculates the first-variational wavefunction in the muffin-tin in terms of a spherical har-
monic expansion. For atom « and a particular k-point p, the r-dependent (I, m)-coefficients
of the wavefunction for the ith state are given by

alm szpZA]lm G+ p + Zblpdm 5ll

where b'P is the ith eigenvector returned from routine eveqn; A, 'm(G + p) is the matching
cmﬁkwmerEtMHmhnﬁﬂwAPWﬂ%ﬂsﬁwAPWhamMﬁmdmnﬂWHsmemmmﬂof
local-orbitals; vf" is the jth local-orbital radial function; and (a, j,m) is a compound index
for the location of the local-orbital in the eigenvector. See routines genapwfr, genlofr,
match and eveqn.

REVISION HISTORY:

Created April 2003 (JKD)

Fixed description, October 2004 (C. Brouder)

Removed argument ist, November 2006 (JKD)

Changed arguments and optimised, December 2014 (JKD)

7.228 wigner3j (Source File: wigner3;j.f90)

INTERFACE:
real(8) function wigner3j(j1,j2,j3,m1,m2,m3)
INPUT/OUTPUT PARAMETERS:

j1, j2, j3 : angular momentum quantum numbers (in,integer)
ml, m2, m3 : magnetic quantum numbers (in,integer)

DESCRIPTION:

176

Returns the Wigner 3j-symbol. There are many equivalent formulae for the 3j-symbols,
the following provides high accuracy for j < 50

JioJ2 g3\ _

mi1 Mo M3
(_1)j1+j2+m3 (41 +m1)! (G2 +m2)! (43 + m3)! (j3 — m3)! (j1 — [(jo —ma2)! Z
(Go—g1+73) (1 —je + 73! (J1 + 52 — g3)! (1 —I—J1 —I—Jz + J3)!

%
(J2 — J1 + J3) (g1 — 2 + 73)! (J1 + J2 — J3)!
(js—j1—ma+ k) (js —je+mi1+ k) (j1 + Jo — js — k) k! (J1 — 1—k)!(j2+m2—k)!7

where the sum is over all integers k for which the factorials in the summand are non-negative.

REVISION HISTORY:

Created November 2002 (JKD)

7.229 wigner3jf (Source File: wigner3jf.f90)

INTERFACE:
real(8) function wigner3jf(ji2,j22,j32,m12,m22,m32)
INPUT/OUTPUT PARAMETERS:

j12, j22, j32 : angular momentum quantum numbers times 2 (in,integer)
ml12, m22, m32 : magnetic quantum numbers times 2 (in,integer)

DESCRIPTION:

Returns the Wigner 3j-symbol for the case where the arguments may be fractional, i.e.
multiples of % The input parameters to this function are taken to be twice their actual
values, which allows them to remain integers. The formula used is identical to that in
wigner3j.

REVISION HISTORY:

Created January 2014 (JKD)

7.230 writeefg (Source File: writeefg.f90)

INTERFACE:
subroutine writeefg

USES:

177

use modmain
use modtest

DESCRIPTION:

Computes the electric field gradient (EFG) tensor for each atom, «, and writes it to the file
EFG.0UT along with its eigenvalues. The EFG is defined by
yo = 9*Vl(r) 7
J 6rz~8r]~ r=r,

where V{. is the Coulomb potential with the [= m = 0 component removed in each muffin-
tin. The derivatives are computed explicitly using the routine gradrfmt.

REVISION HISTORY:

Created May 2004 (JKD)
Fixed serious problem, November 2006 (JKD)

7.231 writeefm (Source File: writeefm.f90)

INTERFACE:
subroutine writeefm
USES:

use modmain

DESCRIPTION:

Writes the Fermi energy to the file EFERMI . QUT.

REVISION HISTORY:
Created March 2005 (JKD)

7.232 writeeval (Source File: writeeval.f90)

INTERFACE:
subroutine writeeval
USES:

use modmain

DESCRIPTION:

Outputs the second-variational eigenvalues and occupation numbers to the file EIGVAL.QUT.

REVISION HISTORY:
Created June 2003 (JKD)

178

7.233 writegclq (Source File: writegclq.f90)

INTERFACE:
subroutine writegclq
USES:

use modmain

DESCRIPTION:

Outputs the volume-averaged integral of 47/¢? in the small parallelepiped around each
discrete g-point to the file GCLQ.0UT. These represent the regularised Coulomb Green’s
function in reciprocal space for small ¢q. See the routine gengclq.

REVISION HISTORY:

Created June 2005 (JKD)

7.234 writegeom (Source File: writegeom.f90)

INTERFACE:
subroutine writegeom(fnum)
USES:
use modmain
INPUT/OUTPUT PARAMETERS:
fnum : file number for writing output (in,integer)

DESCRIPTION:

Outputs the lattice vectors and atomic positions to file, in a format which may be then used
directly in elk.in.

REVISION HISTORY:

Created January 2004 (JKD)

179

7.235 writeiad (Source File: writeiad.f90)

INTERFACE:

subroutine writeiad(fnum)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

fnum : file number for writing output (in,integer)

DESCRIPTION:

Outputs the interatomic distances to file.

REVISION HISTORY:

Created May 2005 (JKD)

7.236 writeinfo (Source File: writeinfo.f90)

INTERFACE:
subroutine writeinfo(fnum)
USES:

use modmain
use moddftu
use modrdm
use modgw
use modxcifc
use modmpi

INPUT/OUTPUT PARAMETERS:
fnum : unit specifier for INFO.OUT file (in,integer)

DESCRIPTION:

Outputs basic information about the run to the file INFO.0UT. Does not close the file
afterwards.

REVISION HISTORY:

Created January 2003 (JKD)
Updated with DFT+U quantities July 2009 (FC)

180

7.237 writekpts (Source File: writekpts.f90)

INTERFACE:
subroutine writekpts
USES:

use modmain

DESCRIPTION:

Writes the k-points in lattice coordinates, weights and number of G + k-vectors to the file
KPOINTS.OQUT.

REVISION HISTORY:

Created June 2003 (JKD)

7.238 writelinen (Source File: writelinen.f90)

INTERFACE:
subroutine writelinen
USES:

use modmain

DESCRIPTION:

Writes the linearisation energies for all APW and local-orbital functions to the file LINENGY . OUT.

REVISION HISTORY:

Created February 2004 (JKD)

7.239 writepmat (Source File: writepmat.f90)

INTERFACE:
subroutine writepmat
USES:

use modmain
use modmpi
use modramdisk

181

DESCRIPTION:

Calculates the momentum matrix elements using routine genpmat and writes them to direct
access file PMAT.OUT.

REVISION HISTORY:

Created November 2003 (Sharma)

7.240 writestate (Source File: writestate.f90)

INTERFACE:
subroutine writestate
USES:

use modmain
use moddftu

DESCRIPTION:

Writes the charge density, potentials and other relevant variables to the file STATE.OUT.
Note to developers: changes to the way the variables are written should be mirrored in
readstate.

REVISION HISTORY:
Created May 2003 (JKD)

7.241 writesym (Source File: writesym.f90)

INTERFACE:
subroutine writesym
USES:

use modmain

DESCRIPTION:

Outputs the Bravais, crystal and site symmetry matrices to files SYMLAT . OUT, SYMCRYS.QUT
and SYMSITE.OUT, respectively. Also writes out equivalent atoms and related crystal sym-
metries to EQATOMS. OUT.

REVISION HISTORY:
Created October 2002 (JKD)

182

7.242 writetddos (Source File: writetddos.f90)

INTERFACE:
subroutine writetddos
USES:

use modmain
use modtddft
use modmpi

DESCRIPTION:

Calculates the time-dependent density of states (DOS). This is defined as

DOS(w:1) = g5y [% 3 8o —) Pat)

where
Fac(t) =) Fincl(pincl b ()7,
J
with occupation numbers f;i, ground-state orbitals y;x and time-dependent orbitals ¢ ;i (t).

REVISION HISTORY:
Created April 2015 (JKD)

7.243 writetm3 (Source File: writetm3.f90)

INTERFACE:
subroutine writetm3
USES:

use modmain
use moddftu
use modtest
use modvars

DESCRIPTION:

Decompose the density matrix into 3-index tensor moments and write to TENSMOM. OUT. See
Phys. Rev. B 80, 035121 (2009) and J. Phys.: Condens. Matter 7 9947 (1995). See also
the routines tm2todm and tm3todm.

REVISION HISTORY:

Created April 2008 (F. Cricchio and L. Nordstrom)
Updated, December 2021 (JKD)

183

7.244 writevcl1221 (Source File: writevcl1221.f90)

INTERFACE:
subroutine writevcl1221
USES:

use modmain
use modmpi
use modomp

DESCRIPTION:

Generates Coulomb matrix elements of the type V(1,2,2,1) and outputs them to the file
VCL1221.00UT.

REVISION HISTORY:

Created 2008 (Sharma)

7.245 writevcl1223 (Source File: writevcl1223.f90)

INTERFACE:
subroutine writevcl1223
USES:

use modmain
use modmpi
use modomp

DESCRIPTION:

Generates Coulomb matrix elements of the type V(1,2,2,3) and outputs them to the file
VCL1223.0UT. Also writes the real diagonal of this matrix, V'(1,2,2,1), to VCL1221.0UT.

REVISION HISTORY:

Created 2008 (Sharma)

7.246 xc_amO05 (Source File: xc_am05.f90)

INTERFACE:

subroutine xc_am05(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc)

184

INPUT/OUTPUT PARAMETERS:

n : number of density points (in,integer)
rho : charge density (in,real(n))
grho : |grad rhol (in,real(n))

g2rho : grad”2 rho (in,real(n))
g3rho : (grad rho).(grad |grad rhol|) (in,real(n))

ex : exchange energy density (out,real(n))

ec : correlation energy density (out,real(n))

VX : spin-unpolarised exchange potential (out,real(n))

ve : spin-unpolarised correlation potential (out,real(n))
DESCRIPTION:

Spin-unpolarised exchange-correlation potential and energy functional of R. Armiento and
A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).

REVISION HISTORY:

Created April 2005 (RAR); based on xc_pbe

7.247 xc_amO05_point (Source File: xc_am05.f90)

INTERFACE:
subroutine xc_amO5_point(rho,s,u,v,ex,ec,vx,vc,pot)
HW%UVOUTPUTPARAMETER&

rho : electron density (in,real)

s : gradient of n / (2 kF n)
: grad n * grad | grad n | / (n**2 (2 kF)**3)
v : laplacian of density / (n**2 (2.d0*kf)*x*3)
ex : exchange energy density (out,real)
ec : correlation energy density (out,real)
vX : spin-unpolarised exchange potential (out,real)
vc : spin-unpolarised correlation potential (out,real)
DESCRIPTION:

Calculate the spin-unpolarised exchange-correlation potential and energy for the Armiento-
Mattsson 05 functional for a single point.

REVISION HISTORY:

Created April 2005 (RAR)

185

7.248 xc_amO05_ldax (Source File: xc_am05.f90)

INTERFACE:
subroutine xc_am05_ldax(n,ex,vx)
INPUT/OUTPUT PARAMETERS:

n : electron density (in,real)
ex : exchange energy per electron (out,real)
vx : exchange potential (out,real)

DESCRIPTION:
Local density approximation exchange

REVISION HISTORY:

Created April 2005 (RAR)

7.249 xc_amO05_ldapwc (Source File: xc_am05.f90)

INTERFACE:
subroutine xc_am05_ldapwc(n,ec,vc)
]NPUT/O UTPUT PARAMETERS:

n : electron density (in,real)
ec : correlation energy per electron (out,real)
vc : correlation potential (out,real)

DESCRIPTION:

Correlation energy and potential of the Perdew-Wang parameterisation of the Ceperley-
Alder electron gas Phys. Rev. B 45, 13244 (1992) and Phys. Rev. Lett. 45, 566 (1980).
This is a clean-room implementation from paper.

REVISION HISTORY:

Created April 2005 (RAR)

7.250 xc_amO05_ labertw (Source File: xc_am05.f90)

INTERFACE:

subroutine xc_am05_labertw(z,val)

186

INPUT/OUTPUT PARAMETERS:

z : function argument (in,real)
val : value of lambert W function of z (out,real)

DESCRIPTION:

Lambert W-function using the method of Corless, Gonnet, Hare, Jeffrey and Knuth, Adv.
Comp. Math. 5, 329 (1996). The approach is based loosely on that in GNU Octave by N.
N. Schraudolph, but this implementation is for real values and the principal branch only.

REVISION HISTORY:

Created April 2005 (RAR)

7.251 xc_pbe (Source File: xc_pbe.f90)

INTERFACE:

subroutine xc_pbe(n,kappa,mu,beta,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho, &
g3up,g3dn, ex,ec,vxup,vxdn,vcup,vcdn)

INPUT/OUTPUT PARAMETERS:

n : number of density points (in,integer)

kappa : parameter for large-gradient limit (in,real)
mu : gradient expansion coefficient (in,real)
beta : gradient expansion coefficient (in,real)

rhoup : spin-up charge density (in,real(n))
rhodn : spin-down charge density (in,real(n))

grho : |grad rhol (in,real(n))
gup : lgrad rhoup| (in,real(n))
gdn : |grad rhodn| (in,real(n))

g2up : grad~2 rhoup (in,real(n))

g2dn : grad”2 rhodn (in,real(n))

g3rho : (grad rho).(grad |grad rhol) (in,real(n))
g3up : (grad rhoup).(grad |grad rhoup|) (in,real(n))
g3dn : (grad rhodn).(grad |grad rhodn|) (in,real(n))

ex : exchange energy density (out,real(n))

ec : correlation energy density (out,real(n))

vxup : spin-up exchange potential (out,real(n))

vxdn : spin-down exchange potential (out,real(n))

vcup : spin-up correlation potential (out,real(n))

vcdn : spin-down correlation potential (out,real(n))
DESCRIPTION:

Spin-polarised exchange-correlation potential and energy of the generalised gradient ap-
proximation functional of J. P. Perdew, K. Burke and M. Ernzerhof Phys. Rev. Lett. 77,

187

3865 (1996) and 78, 1396(E) (1997). The parameter x, which controls the large-gradient
limit, can be set to 0.804 or 1.245 corresponding to the value in the original article or the
revised version of Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).

REVISION HISTORY:

Modified routines written by K. Burke, October 2004 (JKD)

7.252 xc_pwca (Source File: xc_pwca.f90)

INTERFACE:
subroutine xc_pwca(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn)
INPUT/OUTPUT PARAMETERS:

n : number of density points (in,integer)
rhoup : spin-up charge density (in,real(n))
rhodn : spin-down charge density (in,real(n))

ex : exchange energy density (out,real(n))

ec : correlation energy density (out,real(n))

vxup : spin-up exchange potential (out,real(n))

vxdn : spin-down exchange potential (out,real(n))

vcup : spin-up correlation potential (out,real(n))

vcdn : spin-down correlation potential (out,real(n))
DESCRIPTION:

Spin-polarised exchange-correlation potential and energy of the Perdew-Wang parameteri-
sation of the Ceperley-Alder electron gas: Phys. Rev. B 45, 13244 (1992) and Phys. Rev.
Lett. 45, 566 (1980).

REVISION HISTORY:

Created January 2004 (JKD)
Rewrote, October 2011 (JKD)

7.253 xc_pzca (Source File: xc_pzca.f90)

INTERFACE:
subroutine xc_pzca(n,rho,ex,ec,vx,vc)

INPUT/OUTPUT PARAMETERS:

188

n : number of density points (in,integer)
rho : charge density (in,real(n))

ex : exchange energy density (out,real(n))

ec : correlation energy density (out,real(n))

vx : exchange potential (out,real(n))

vc : correlation potential (out,real(n))
DESCRIPTION:

Spin-unpolarised exchange-correlation potential and energy of the Perdew-Zunger parame-
terisation of Ceperley-Alder electron gas: Phys. Rev. B 23, 5048 (1981) and Phys. Rev.
Lett. 45, 566 (1980).

REVISION HISTORY:

Created October 2002 (JKD)

7.254 xc_vbh (Source File: xc_vbh.f90)

INTERFACE:
subroutine xc_vbh(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn)
INPUT/OUTPUT PARAMETERS:

n : number of density points (in,integer)
rhoup : spin-up charge density (in,real(n))
rhodn : spin-down charge density (in,real(n))

ex : exchange energy density (out,real(n))

ec : correlation energy density (out,real(n))

vxup : spin-up exchange potential (out,real(n))

vxdn : spin-down exchange potential (out,real(n))

vcup : spin-up correlation potential (out,real(n))

vcdn : spin-down correlation potential (out,real(n))
DESCRIPTION:

Spin-polarised exchange-correlation potential and energy functional of von Barth and Hedin:
J. Phys. C'5, 1629 (1972). Note that the implementation is in Rydbergs in order to follow
the paper step by step, at the end the potential and energy are converted to Hartree.

REVISION HISTORY:

Created September 2007 (F. Cricchio)

189

7.255 xc_xalpha (Source File: xc_xalpha.f90)

INTERFACE:
subroutine xc_xalpha(n,rho,exc,vxc)
INPUT/OUTPUT PARAMETERS:

n : number of density points (in,integer)

rho : charge density (in,real(n))

exc : exchange-correlation energy density (out,real(n))
vxc : exchange-correlation potential (out,real(mn))

DESCRIPTION:

X, approximation to the exchange-correlation potential and energy density. See J. C.
Slater, Phys. Rev. 81, 385 (1951).

REVISION HISTORY:

Modified an ABINIT routine, September 2006 (JKD)

7.256 ylmrot (Source File: ylmrot.f90)

INTERFACE:
subroutine ylmrot(p,ang,lmax,1d,d)
INPUT/OUTPUT PARAMETERS:

P : if p=-1 then the rotation matrix is improper (in,integer)
ang : Euler angles; alpha, beta, gamma (in,real(3))
lmax : maximum angular momentum (in,integer)

1d : leading dimension (in,integer)
d : complex spherical harmonic rotation matrix (out,complex(1ld,*))
DESCRIPTION:

Returns the rotation matrix in the basis of complex spherical harmonics given the three
Euler angles, («, 3,7), and the parity, p, of the rotation. The matrix is given by the formula

Diﬂlmg (o, B,7) = d' (ﬁ)e—i(m1a+m2”l)7

mima

where d is the rotation matrix about the y-axis. For improper rotations, i.e. those which
are a combination of a rotation and inversion, D is modified with DinlmQ — (—l)lDime.
See the routines roteuler and ylmroty.

REVISION HISTORY:

Created December 2008 (JKD)

190

7.257 ylmroty (Source File: ylmroty.f90)

INTERFACE:
subroutine ylmroty(beta,lmax,ld,dy)
INPUT/OUTPUT PARAMETERS:

beta : rotation angle about y-axis (in,real)
lmax : maximum angular momentum (in,integer)

ld : leading dimension (in,integer)
dy : rotation matrix for complex spherical harmonics (out,real(ld,*))
DESCRIPTION:

Returns the rotation matrix in the basis of complex spherical harmonics for a rotation of
angle 8 about the y-axis. This matrix is real and is given by the formula

dy s (B) =1+ m) (L — ma)(L+m2)! (1 — m2)!]/?
2(l—k)—mao+m 2k+mao—m
(cos g) (=) mmartm <sin g) o
X Z(—l)k)
k k!(l+m1—k:)!(l—mg—k)!(mg—ml—i—k)!

where k£ runs through all integer values for which the factorials exist.

REVISION HISTORY:

Created December 2008 (JKD)

7.258 z2mctm (Source File: z2mctm.f90)

INTERFACE:
pure subroutine z2mctm(a,b,c)
INPUT/OUTPUT PARAMETERS:

a : input matrix 1 (in,complex(2,2))
b : input matrix 2 (in,complex(2,2))
c : output matrix (out,complex(2,2))

DESCRIPTION:

Multiplies the conjugate transpose of one complex 2 x 2 matrix with another. Note that
the output matrix cannot be one of the input matrices.

REVISION HISTORY:

Created October 2007 (JKD)

191

7.259 z2mmct (Source File: z2mmct.f90)

INTERFACE:
pure subroutine z2mmct(a,b,c)
INPUT/OUTPUT PARAMETERS:

a : input matrix 1 (in,complex(2,2))
b : input matrix 2 (in,complex(2,2))
c : output matrix (out,complex(2,2))

DESCRIPTION:

Multiplies a 2 x 2 matrix with the conjugate transpose of another. Note that the output
matrix cannot be one of the input matrices.

REVISION HISTORY:

Created October 2007 (JKD)

7.260 z2mm (Source File: z2mm.f90)

INTERFACE:
pure subroutine z2mm(a,b,c)
INPUT/OUTPUT PARAMETERS:

a : input matrix 1 (in,complex(2,2))
b : input matrix 2 (in,complex(2,2))
c : output matrix (out,complex(2,2))

DESCRIPTION:

Multiplies two complex 2 x 2 matrices. Note that the output matrix cannot be one of the
input matrices.

REVISION HISTORY:

Created October 2007 (JKD)

7.261 zbsht (Source File: zbsht.f90)

INTERFACE:

subroutine zbsht(nr,nri,zfmtl,zfmt2)

192

USES:
use modmain
IAUUYT/O[ﬂFP[ﬂF}%4RAA[EYIH%§

nr : number of radial mesh points (in,integer)
nri : number of points on the inner part of the muffin-tin (in,integer)
zfmtl : input complex muffin-tin function in spherical harmonics
(in, complex (*))
zfmt2 : output complex muffin-tin function in spherical coordinates
(out,complex(*))

DESCRIPTION:

Performs a backward spherical harmonic transform (SHT) on a complex muffin-tin function
expressed in spherical harmonics to obtain a function in spherical coordinates. See also
genshtmat and zfsht.

REVISION HISTORY:

Created October 2013 (JKD)

7.262 zfmtinp (Source File: zfmtinp.f90)

INTERFACE:

pure complex(8) function zfmtinp(nr,nri,wr,zfmtl,zfmt2)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

nr : number of radial mesh points (in,integer)
nri : number of points on the inner part of the muffin-tin (in,integer)
wr : weights for integration on radial mesh (in,real(nr))

zfmtl : first complex muffin-tin function in spherical harmonics
(in,complex(*))
zfmt2 : second complex muffin-tin function (in,complex(*))

DESCRIPTION:

Calculates the inner product of two complex fuctions in the muffin-tin. In other words,
given two complex functions of the form

lmax 1

FE@) =3 fun(r)Yim(®),

=0 m=—1

193

the function returns

8
5
%

Z:l: / r) i, (r)rdr .

J;M

REVISION HISTORY:

Created November 2003 (Sharma)
Modified, September 2013 (JKD)
Modified for packed functions, June 2016 (JKD)

7.263 zfsht (Source File: zfsht.f90)

INTERFACE:

subroutine zfsht(nr,nri,zfmtl,zfmt2)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

nr : number of radial mesh points (in,integer)
nri : number of points on the inner part of the muffin-tin (in,integer)
zfmtl : input complex muffin-tin function in spherical coordinates
(in,complex (*))
zfmt2 : output complex muffin-tin function in spherical harmonics
(out, complex(*))

DESCRIPTION:

Performs a forward spherical harmonic transform (SHT) on a complex muffin-tin function
in spherical coordinates to obtain a function expressed in spherical harmonics. See also
genshtmat and zbsht.

REVISION HISTORY:

Created October 2013 (JKD)

7.264 zftrf (Source File: zftrf.f90)

INTERFACE:
subroutine zftrf(npv,ivp,vpc,rfmt,rfir,zfp)

USES:

194

use modmain

INPUT/OUTPUT PARAMETERS:

npv : number of P-vectors (in,integer)
ivp : integer coordinates of the P-vectors (in,integer(3,npv))
vpc : P-vectors in Cartesian coordinates (in,real(3,npv))

rfmt : real muffin-tin function (in,real (npmtmax,natmtot))

rfir : real interstitial function (in,real(ngtot))

zfp : Fourier expansion coefficients of the real-space function
(out,complex (npv))

DESCRIPTION:

Given a real function periodic in the unit cell, f(r), this routine calculates its complex
Fourier expansion coefficients:

™ . . Ra
FP) = & [@ fe)O)e P+ TS PR S0V (B) [dr iR ().

Ilm
where © is the smooth characteristic function of the interstitial region, 2 is the unit cell
volume and R, is the muffin-tin radius of atom «.
REVISION HISTORY:

Created July 2010 (Alexey I. Baranov)
Modified, November 2010 (JKD)
Optimised, May 2024 (JKD)

7.265 zmdet (Source File: zmdet.f90)

INTERFACE:
complex(8) function zmdet(n,a)
INPUT/OUTPUT PARAMETERS:

n : order of matrix (in,integer)
a : complex square matrix (inout,complex(n,n))

DESCRIPTION:

Calculates the determinant of a complex matrix A by using its LU decomposition with
partial pivoting. Let A = PLU where P is the permutation matrix corresponding to row
interchanges, then

Al = [PI|L[|U]

n
= (_1)]3 H Uiia
i=1
where p is the number of interchanges. Note that the input matrix is destroyed on exit.

REVISION HISTORY:

195

Created January 2020 (JKD)

7.266 zpotclmt (Source File: zpotclmt.f90)

INTERFACE:
pure subroutine zpotclmt(nr,nri,ld,rl,wpr,zrhomt,zvclmt)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

nr : number of radial mesh points (in,integer)

nri : number of points on inner part of muffin-tin (in,integer)

1d : leading dimension (in,integer)

rl : r"1 on the radial mesh (in,real(ld,-lmaxo-1:1lmaxo+2))

wpr : weights for partial integration on radial mesh (in,real(4,nr))

zrhomt : muffin-tin charge density (in,complex(*))
zvclmt : muffin-tin Coulomb potential (out,complex(*))

DESCRIPTION:

Solves the Poisson equation for the charge density contained in an isolated muffin-tin using
the Green’s function approach. In other words, the spherical harmonic expansion of the
Coulomb potential, Vj,,, is obtained from the density expansion, py,, by

am 1 " N2 5 g l Rplm(rl) ’
Vim(r) = Ar1 (rlﬂ/o pim (r')r™ " dr +T/T =1 dr’ |,

where R is the muffin-tin radius.

REVISION HISTORY:

Created April 2003 (JKD)

7.267 zpotcoul (Source File: zpotcoul.f90)

INTERFACE:

subroutine zpotcoul(iash,nrmt_,nrmti_,npmt_,1d1l,rl,ngridg_,igfft_,ngp,gpc, &
gclgp,1d2, jlgprmt,ylmgp,sfacgp,zrhoir,1d3,zvclmt,zvclir)

USES:
use modmain

INPUT/OUTPUT PARAMETERS:

196

iash : if iash > O then the homogeous solution is stored for this
muffin-tin in the array zvclmt(:,natmtot+1) (in,integer)

nrmt_ : number of radial points for each species (in,integer(nspecies))

nrmti_ : number of radial points on inner part (in,integer(nspecies))

npmt _ : total number of points in muffin-tins (in,integer(nspecies))

1d1 : leading dimension (in,integer)

rl : r"1 on radial mesh for each species
(in,real(1dl,-lmaxo-1:1maxo+2,nspecies))

ngridg_ : G-vector grid sizes (in,integer(3))

igfft_ : map from G-vector index to FFT array (in,integer(*))

ngp : number of G+p-vectors (in,integer)

gpc : G+p-vector lengths (in,real(ngp))

gclgp : Coulomb Green’s function in G+p-space (in,real(ngp))

142 : leading dimension (in,integer)

jlgprmt : spherical Bessel functions for evergy G+p-vector and muffin-tin
radius (in,real(0:1lnpsd,ld2,nspecies))

ylmgp : spherical harmonics of the G+p-vectors (in,complex(lmmaxo,ngp))
sfacgp : structure factors of the G+p-vectors (in,complex(1ld2,natmtot))
zrhoir : interstitial charge density (in,complex(*))

1d3 : leading dimension (in,integer)

zvclmt : muffin-tin Coulomb potential, with the contribution from the

isolated muffin-tin density precalculated and passed in
(inout,complex(1d3,*))
zvclir : interstitial Coulomb potential (out,complex(*))

DESCRIPTION:

Calculates the Coulomb potential of a complex charge density by solving Poisson’s equation
using the method of M. Weinert, J. Math. Phys. 22, 2433 (1981). First, the multipole
moments of the muffin-tin charge are determined for the jth atom of the ith species by

R;
MT 1+2
Qijiim = /0 2 pigiam (r)dr + 2i5Y00 610

where R; is the muffin-tin radius and z;; is a point charge located at the atom center (usually
the nuclear charge, which should be taken as negative). Next, the multipole moments of
the continuation of the interstitial density, p', into the muffin-tin are found with

111 (GR; . . A
= it B0 52 I G explia)i (),
G (]

remembering that
. jl-‘rn(x) 1
1 = 1
e A CTOEE DITRCE

should be used for the case G = 0. A pseudocharge is now constructed which is equal to
the real density in the interstitial region and whose multipoles are the difference between
the real and interstitial muffin-tin multipoles. This pseudocharge density is smooth in the
sense that it can be expanded in terms of the finite set of G-vectors. In each muffin-tin the

197

pseudocharge has the form

1 ! 2\ Vi
P _ I z : A

Ilm

where

P (2l+2Ni+3)”(MT 1)
ng;lm - 2£VNZ'(2l+1)” ij;lm qz];lm

and N; ~ %RiGmax is generally a good choice. The pseudocharge in reciprocal space is
given by

—i) iy n+1(GR;) p . A
P(G))+ 2Ny T QPJ ZG}?)NH Piistm €XP(—iG - 135)Yin (G)

ij;lm

which may be used for solving Poisson’s equation directly
PP (G)
VP(G) = it G>0
0 G=0

The usual Green’s function approach is then employed to determine the potential in the
muffin-tin sphere due to charge in the sphere. In other words

Am 1 " MT . /.42 i p%[le(T/) / 1 z;
Vzglm() 2l—|—1(rl+1/ pzylm(" dr + /T Tdr +Yoo r&o

where the last term is the monopole arising from the point charge. All that remains is to
add the homogenous solution of Poisson’s equation,

-3 Vit (7 ,)lnm@),

to the muffin-tin potential so that it is continuous at the muffin-tin boundary. Therefore
the coefficients, pg_lm, are given by

zg lm = 47” Zjl GT eXp(iG ’ rl])Yljn(G) ‘/z] lm(R)

Finally note that the G-vectors passed to the routine can represent vectors with a non-zero
offset, G + p say, which is required for calculating Coulomb matrix elements.

REVISION HISTORY:

Created April 2003 (JKD)

198

7.268 ztorflmn (Source File: ztorfmt.f90)

INTERFACE:
pure subroutine ztorflmn(lmax,n,ld,zflm,rflm)
INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)

n : number of functions to convert (in,integer)

1d : leading dimension (in,integer)

zflm : coefficients of complex spherical harmonic expansion
(in,complex(1d,n))

rflm : coefficients of real spherical harmonic expansion (out,real(ld,n))

DESCRIPTION:

Converts a real function, z,,, expanded in terms of complex spherical harmonics into a real
spherical harmonic expansion, 7,:

sRe(zim + (=1)"21-m) m >0

V2
Tim = %Im(—zlm +(=D)"z_pm) m<O
Re(zim) m =0

See routine genrlm.

REVISION HISTORY:

Created April 2003 (JKD)

199

	Introduction
	Acknowledgments
	Units
	Compiling and running Elk
	Compiling the code
	Parallelism in Elk

	Memory requirements
	Stack space

	Linking with the Libxc functional library
	Running the code
	Species files
	Examples

	Input blocks
	atoms
	autokpt
	autolinengy
	autoswidth
	avec
	avecref
	beta0
	betamax
	bfdmag
	bfieldc
	bfieldcu
	bforb
	broydpm
	c_tb09
	chgexs
	cmagz
	deltaem
	deltaph
	deltast
	dft+u
	dlefe
	dncgga
	dosmsum
	dosssum
	dtimes
	epsband
	epschg
	epsengy
	epsforce
	epslat
	epsocc
	epspot
	epsstress
	emaxelnes
	emaxrf
	fracinr
	fsmtype
	ftmtype
	fxclrc
	fxctype
	gmaxrf
	gmaxvr
	hdbse
	highq
	hmaxvr
	hxbse
	hybrid
	hybridc
	intraband
	isgkmax
	kstlist
	latvopt
	lmaxapw
	lmaxdos
	lmaxi
	lmaxo
	lmirep
	lorbcnd
	lorbordc
	lradstp
	maxitoep
	maxscl
	mbwgrf
	mixsave
	mixtype
	mixsdb
	molecule
	momfix
	momfixm
	mommtfix
	mommtfixm
	mrmtav
	mstar
	mustar
	ncbse
	ndspem
	nefvit
	nempty
	ngridk
	ngridq
	nosource
	notes
	npmae
	ntemp
	num_wann
	nvbse
	nwrite
	nxoapwlo
	optcomp
	phwrite
	plot1d
	plot2d
	plot3d
	primcell
	pulse
	q0cut
	radkpt
	ramp
	readadu
	reducebf
	reduceh
	reducek
	reduceq
	rgkmax
	rmtall
	rmtdelta
	rmtscf
	rndavec
	rotavec
	scale
	scale1/2/3
	scissor
	scrpath
	socscf
	spincore
	spinorb
	spinpol
	spinsprl
	sppath
	ssdph
	stype
	swidth
	tasks
	tau0atp
	tau0latv
	tau0oep
	taufsm
	tempk
	tforce
	tefvit
	tefvr
	tm3fix
	tmwrite
	trdbfcr
	trdvclr
	tsediag
	tshift
	tstime
	vhmat
	vhighq
	vklem
	vkloff
	vqlss
	wmaxgw
	wplot
	wsfac
	xctype

	Contributing to Elk
	Licensing

	Routine/Function Prologues
	afindtstep (Source File: afindtstep.f90)
	allatoms (Source File: allatoms.f90)
	atom (Source File: atom.f90)
	atpstep (Source File: atpstep.f90)
	axangrot (Source File: axangrot.f90)
	axangsu2 (Source File: axangsu2.f90)
	bandstr (Source File: bandstr.f90)
	bdipole (Source File: bdipole.f90)
	bfieldfsm (Source File: bfieldfsm.f90)
	brzint (Source File: brzint.f90)
	cflmnconj (Source File: cfmtconj.f90)
	charge (Source File: charge.f90)
	checkmt (Source File: checkmt.f90)
	clebgor (Source File: clebgor.f90)
	dielectric (Source File: dielectric.f90)
	dmatsu2 (Source File: dmatsu2.f90)
	dmatulm (Source File: dmatulm.f90)
	dmtotm3 (Source File: dmtotm3.f90)
	dos (Source File: dos.f90)
	efieldmt (Source File: efieldmt.f90)
	elfplot (Source File: elfplot.f90)
	eliashberg (Source File: eliashberg.f90)
	energy (Source File: energy.f90)
	engyfdu (Source File: engyfdu.f90)
	erf (Source File: erf.f90)
	eulerrot (Source File: eulerrot.f90)
	eveqn (Source File: eveqn.f90)
	eveqnfv (Source File: eveqnfv.f90)
	eveqnfvr (Source File: eveqnfvr.f90)
	factr (Source File: factr.f90)
	fderiv (Source File: fderiv.f90)
	findband (Source File: findband.f90)
	findlambda (Source File: findlambda.f90)
	findngkmax (Source File: findngkmax.f90)
	findprimcell (Source File: findprimcell.f90)
	findswidth (Source File: findswidth.f90)
	findsymcrys (Source File: findsymcrys.f90)
	findsym (Source File: findsym.f90)
	findsymlat (Source File: findsymlat.f90)
	force (Source File: force.f90)
	forcek (Source File: forcek.f90)
	fsmooth (Source File: fsmooth.f90)
	fyukawa0 (Source File: fyukawa0.f90)
	fyukawa (Source File: fyukawa.f90)
	gaunt (Source File: gaunt.f90)
	gauntyry (Source File: gauntyry.f90)
	gcd (Source File: gcd.f90)
	genafieldt (Source File: genafieldt.f90)
	genapwfr (Source File: genapwfr.f90)
	gencfun (Source File: gencfun.f90)
	gencore (Source File: gencore.f90)
	genfdu (Source File: genfdu.f90)
	genfdufr (Source File: genfdufr.f90)
	genffacgp (Source File: genffacgp.f90)
	gengclq (Source File: gengclq.f90)
	gengkvec (Source File: gengkvec.f90)
	gengvec (Source File: gengvec.f90)
	genidxlo (Source File: genidxlo.f90)
	genjlgprmt (Source File: genjlgprmt.f90)
	genkmat (Source File: genkmat.f90)
	genlmirep (Source File: genlmirep.f90)
	genlofr (Source File: genlofr.f90)
	genpmatk (Source File: genpmatk.f90)
	genppts (Source File: genppts.f90)
	genrlmv (Source File: genrlmv.f90)
	genrmesh (Source File: genrmesh.f90)
	gensdmat (Source File: gensdmat.f90)
	gensfacgp (Source File: gensfacgp.f90)
	genshtmat (Source File: genshtmat.f90)
	genspchi0 (Source File: genspchi0.f90)
	genvcl1221 (Source File: genvcl1221.f90)
	genvcl1223 (Source File: genvcl1223.f90)
	genveedu (Source File: genveedu.f90)
	genvmatmt (Source File: genvmatmt.f90)
	genvsig (Source File: genvsig.f90)
	genwfsv (Source File: genwfsv.f90)
	genylmg (Source File: genylmg.f90)
	genylmv (Source File: genylmv.f90)
	getevecfv (Source File: getevecfv.f90)
	getvcl1221 (Source File: getvcl1221.f90)
	getvcl1223 (Source File: getvcl1223.f90)
	ggair_1 (Source File: ggair_1.f90)
	ggair_2a (Source File: ggair_2a.f90)
	ggair_2b (Source File: ggair_2b.f90)
	ggair_sp_1 (Source File: ggair_sp_1.f90)
	ggair_sp_2a (Source File: ggair_sp_2a.f90)
	ggair_sp_2b (Source File: ggair_sp_2b.f90)
	ggamt_1 (Source File: ggamt_1.f90)
	ggamt_2a (Source File: ggamt_2a.f90)
	ggamt_2b (Source File: ggamt_2b.f90)
	ggamt_sp_1 (Source File: ggamt_sp_1.f90)
	ggamt_sp_2a (Source File: ggamt_sp_2a.f90)
	ggamt_sp_2b (Source File: ggamt_sp_2b.f90)
	gndstate (Source File: gndstate.f90)
	grad2rfmt (Source File: grad2rfmt.f90)
	gradrfmt (Source File: gradrfmt.f90)
	gradzfmt (Source File: gradzfmt.f90)
	gridsize (Source File: gridsize.f90)
	gwtails (Source File: gwtails.f90)
	hermite (Source File: hermite.f90)
	hmlaa (Source File: hmlaa.f90)
	hmlistl (Source File: hmlistl.f90)
	hmlrad (Source File: hmlrad.f90)
	i3minv (Source File: i3minv.f90)
	i3mtv (Source File: i3mtv.f90)
	init0 (Source File: init0.f90)
	init1 (Source File: init1.f90)
	k_tfvw1 (Source File: k_tfvw1.f90)
	k_tfvw (Source File: k_tfvw.f90)
	k_tfvw_sp (Source File: k_tfvw_sp.f90)
	linengy (Source File: linengy.f90)
	lopzflm (Source File: lopzflm.f90)
	massnucl (Source File: massnucl.f90)
	match (Source File: match.f90)
	mixadapt (Source File: mixadapt.f90)
	randomu (Source File: modrandom.f90)
	xcifc (Source File: modxcifc.f90)
	getxcdata (Source File: modxcifc.f90)
	moment (Source File: moment.f90)
	mossbauer (Source File: mossbauer.f90)
	mtdmin (Source File: mtdmin.f90)
	nfftifc (Source File: nfftifc.f90)
	nonlinopt (Source File: nonlinopt.f90)
	numlist (Source File: numlist.f90)
	occupy (Source File: occupy.f90)
	olpistl (Source File: olpistl.f90)
	olprad (Source File: olprad.f90)
	pade (Source File: pade.f90)
	plot1d (Source File: plot1d.f90)
	plot2d (Source File: plot2d.f90)
	plot3d (Source File: plot3d.f90)
	plotpt1d (Source File: plotpt1d.f90)
	polar (Source File: polar.f90)
	polynm (Source File: polynm.f90)
	potcoul (Source File: potcoul.f90)
	potdmag (Source File: potdmag.f90)
	potks (Source File: potks.f90)
	potnucl (Source File: potnucl.f90)
	potplot (Source File: potplot.f90)
	potxc (Source File: potxc.f90)
	r3cross (Source File: r3cross.f90)
	r3frac (Source File: r3frac.f90)
	r3mdet (Source File: r3mdet.f90)
	r3minv (Source File: r3minv.f90)
	r3mm (Source File: r3mm.f90)
	r3mmt (Source File: r3mmt.f90)
	r3mtm (Source File: r3mtm.f90)
	r3mtv (Source File: r3mtv.f90)
	r3mv (Source File: r3mv.f90)
	radnucl (Source File: radnucl.f90)
	rdirac (Source File: rdirac.f90)
	rdiracint (Source File: rdiracint.f90)
	rdmdedc (Source File: rdmdedc.f90)
	rdmdedn (Source File: rdmdedn.f90)
	rdmdexcdc (Source File: rdmdexcdc.f90)
	rdmdexcdn (Source File: rdmdexcdn.f90)
	rdmdkdc (Source File: rdmdkdc.f90)
	rdmdtsdn (Source File: rdmdtsdn.f90)
	rdmenergy (Source File: rdmenergy.f90)
	rdmengyxc (Source File: rdmengyxc.f90)
	rdmentropy (Source File: rdmentropy.f90)
	rdmeval (Source File: rdmeval.f90)
	rdmft (Source File: rdmft.f90)
	rdmminc (Source File: rdmminc.f90)
	rdmminn (Source File: rdmminn.f90)
	rdmvaryc (Source File: rdmvaryc.f90)
	rdmvaryn (Source File: rdmvaryn.f90)
	rdmwritededn (Source File: rdmwritededn.f90)
	rdmwriteengy (Source File: rdmwriteengy.f90)
	readefm (Source File: readefm.f90)
	readinput (Source File: readinput.f90)
	readstate (Source File: readstate.f90)
	reciplat (Source File: reciplat.f90)
	rfinp (Source File: rfinp.f90)
	rfinterp (Source File: rfinterp.f90)
	rfirctof (Source File: rfirctof.f90)
	rfmtctof (Source File: rfmtctof.f90)
	rfmtinp (Source File: rfmtinp.f90)
	rfmtlm (Source File: rfmtlm.f90)
	rhocore (Source File: rhocore.f90)
	rhoinit (Source File: rhoinit.f90)
	rhomagk (Source File: rhomagk.f90)
	rhomagsh (Source File: rhomagsh.f90)
	rhonorm (Source File: rhonorm.f90)
	rhoplot (Source File: rhoplot.f90)
	rotaxang (Source File: rotaxang.f90)
	roteuler (Source File: roteuler.f90)
	rotrflm (Source File: rotrfmt.f90)
	rlmrot (Source File: rotrfmt.f90)
	rotzflm (Source File: rotzflm.f90)
	rschrodint (Source File: rschrodint.f90)
	rtozflmn (Source File: rtozfmt.f90)
	rvfcross (Source File: rvfcross.f90)
	sbesseldm (Source File: sbesseldm.f90)
	sbessel (Source File: sbessel.f90)
	sbesseli (Source File: sbesseli.f90)
	sdelta (Source File: sdelta.f90)
	getsdata (Source File: sdelta.f90)
	sdelta_fd (Source File: sdelta_fd.f90)
	sdelta_mp (Source File: sdelta_mp.f90)
	sdelta_sq (Source File: sdelta_sq.f90)
	sfacmag (Source File: sfacmag.f90)
	sfacrho (Source File: sfacrho.f90)
	shankeli (Source File: shankeli.f90)
	sort (Source File: sort.f90)
	sortidx (Source File: sortidx.f90)
	sphcover (Source File: sphcover.f90)
	sphcrd (Source File: sphcrd.f90)
	spline (Source File: spline.f90)
	stheta (Source File: stheta.f90)
	stheta_fd (Source File: stheta_fd.f90)
	stheta_mp (Source File: stheta_mp.f90)
	stheta_sq (Source File: stheta_sq.f90)
	sumrule (Source File: sumrule.f90)
	symrf (Source File: symrf.f90)
	symrfir (Source File: symrfir.f90)
	symrvf (Source File: symrvf.f90)
	symrvfir (Source File: symrvfir.f90)
	symveca (Source File: symveca.f90)
	timesec (Source File: timesec.f90)
	tm2todm (Source File: tm2todm.f90)
	tm3todm (Source File: tm3todm.f90)
	trzhmm (Source File: trzhmm.f90)
	unitary (Source File: unitary.f90)
	vecfbz (Source File: vecfbz.f90)
	vecplot (Source File: vecplot.f90)
	wfmtfv (Source File: wfmtfv.f90)
	wigner3j (Source File: wigner3j.f90)
	wigner3jf (Source File: wigner3jf.f90)
	writeefg (Source File: writeefg.f90)
	writeefm (Source File: writeefm.f90)
	writeeval (Source File: writeeval.f90)
	writegclq (Source File: writegclq.f90)
	writegeom (Source File: writegeom.f90)
	writeiad (Source File: writeiad.f90)
	writeinfo (Source File: writeinfo.f90)
	writekpts (Source File: writekpts.f90)
	writelinen (Source File: writelinen.f90)
	writepmat (Source File: writepmat.f90)
	writestate (Source File: writestate.f90)
	writesym (Source File: writesym.f90)
	writetddos (Source File: writetddos.f90)
	writetm3 (Source File: writetm3.f90)
	writevcl1221 (Source File: writevcl1221.f90)
	writevcl1223 (Source File: writevcl1223.f90)
	xc_am05 (Source File: xc_am05.f90)
	xc_am05_point (Source File: xc_am05.f90)
	xc_am05_ldax (Source File: xc_am05.f90)
	xc_am05_ldapwc (Source File: xc_am05.f90)
	xc_am05_labertw (Source File: xc_am05.f90)
	xc_pbe (Source File: xc_pbe.f90)
	xc_pwca (Source File: xc_pwca.f90)
	xc_pzca (Source File: xc_pzca.f90)
	xc_vbh (Source File: xc_vbh.f90)
	xc_xalpha (Source File: xc_xalpha.f90)
	ylmrot (Source File: ylmrot.f90)
	ylmroty (Source File: ylmroty.f90)
	z2mctm (Source File: z2mctm.f90)
	z2mmct (Source File: z2mmct.f90)
	z2mm (Source File: z2mm.f90)
	zbsht (Source File: zbsht.f90)
	zfmtinp (Source File: zfmtinp.f90)
	zfsht (Source File: zfsht.f90)
	zftrf (Source File: zftrf.f90)
	zmdet (Source File: zmdet.f90)
	zpotclmt (Source File: zpotclmt.f90)
	zpotcoul (Source File: zpotcoul.f90)
	ztorflmn (Source File: ztorfmt.f90)

