1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
|
! Copyright (C) 2020 J. K. Dewhurst and S. Sharma.
! This file is distributed under the terms of the GNU General Public License.
! See the file COPYING for license details.
!BOP
! !ROUTINE: unitary
! !INTERFACE:
subroutine unitary(n,a)
! !INPUT/OUTPUT PARAMETERS:
! n : order of matrix (in,integer)
! a : complex square matrix (inout,complex(n,n))
! !DESCRIPTION:
! Finds the closest unitary matrix (in terms of the Frobenius norm) to a
! given matrix $A$. Let $U\Sigma V^{\dag}$ be the singular value
! decomposition of $A$. Then it can be shown that $UV^{\dag}$ is the closest
! unitary matrix to $A$. The input matrix is overwritten by this matrix.
!
! !REVISION HISTORY:
! Created January 2020 (JKD)
!EOP
!BOC
implicit none
! arguments
integer, intent(in) :: n
complex(8), intent(inout) :: a(n,n)
! local variables
integer info
complex(8), parameter :: zzero=(0.d0,0.d0),zone=(1.d0,0.d0)
! automatic arrays
real(8) s(n),rwork(5*n)
complex(8) work(3*n)
! allocatable arrays
complex(8), allocatable :: u(:,:),vt(:,:)
! perform singular value decomposition on matrix
allocate(u(n,n),vt(n,n))
call zgesvd('A','A',n,n,a,n,s,u,n,vt,n,work,3*n,rwork,info)
if (info /= 0) then
write(*,*)
write(*,'("Error(unitary): singular value decomposition failed")')
write(*,'(" ZGESVD returned INFO = ",I0)') info
write(*,*)
stop
end if
! multiply the two unitary matrices together and store in the input matrix
call zgemm('N','N',n,n,n,zone,u,n,vt,n,zzero,a,n)
deallocate(u,vt)
end subroutine
!EOC
|