1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
! Copyright (C) 2004, 2005 Rickard Armiento
! This file is distributed under the terms of the GNU Lesser General Public
! License. See the file COPYING for license details.
!BOP
! !ROUTINE: xc_am05
! !INTERFACE:
subroutine xc_am05(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc)
! !INPUT/OUTPUT PARAMETERS:
! n : number of density points (in,integer)
! rho : charge density (in,real(n))
! grho : |grad rho| (in,real(n))
! g2rho : grad^2 rho (in,real(n))
! g3rho : (grad rho).(grad |grad rho|) (in,real(n))
! ex : exchange energy density (out,real(n))
! ec : correlation energy density (out,real(n))
! vx : spin-unpolarised exchange potential (out,real(n))
! vc : spin-unpolarised correlation potential (out,real(n))
! !DESCRIPTION:
! Spin-unpolarised exchange-correlation potential and energy functional of
! R. Armiento and A. E. Mattsson, {\it Phys. Rev. B} {\bf 72}, 085108 (2005).
!
! !REVISION HISTORY:
! Created April 2005 (RAR); based on xc_pbe
!EOP
!BOC
implicit none
! arguments
integer, intent(in) :: n
real(8), intent(in) :: rho(n),grho(n),g2rho(n),g3rho(n)
real(8), intent(out) :: ex(n),ec(n),vx(n),vc(n)
! local variables
integer i
real(8), parameter :: pi=3.1415926535897932385d0
real(8) r,kf,s,v,u
real(8) grho_,g2rho_,g3rho_
do i=1,n
r=rho(i)
if (r > 1.d-12) then
grho_=grho(i)
g2rho_=g2rho(i)
g3rho_=g3rho(i)
! exchange energy density and potential
kf=(r*3.d0*pi**2)**(1.d0/3.d0)
s=grho_/(2.d0*kf*r)
v=g2rho_/(r*(2.d0*kf)**2)
u=g3rho_/((r**2)*(2.d0*kf)**3)
call xc_am05_point(r,s,u,v,ex(i),ec(i),vx(i),vc(i),1)
else
ex(i)=0.d0
ec(i)=0.d0
vx(i)=0.d0
vc(i)=0.d0
end if
end do
end subroutine
!EOC
!BOP
! !ROUTINE: xc_am05_point
! !INTERFACE:
subroutine xc_am05_point(rho,s,u,v,ex,ec,vx,vc,pot)
! !INPUT/OUTPUT PARAMETERS:
! rho : electron density (in,real)
! s : gradient of n / (2 kF n)
! u : grad n * grad | grad n | / (n**2 (2 kF)**3)
! v : laplacian of density / (n**2 (2.d0*kf)**3)
! ex : exchange energy density (out,real)
! ec : correlation energy density (out,real)
! vx : spin-unpolarised exchange potential (out,real)
! vc : spin-unpolarised correlation potential (out,real)
! !DESCRIPTION:
! Calculate the spin-unpolarised exchange-correlation potential and energy for
! the Armiento-Mattsson 05 functional for a single point.
!
! !REVISION HISTORY:
! Created April 2005 (RAR)
!EOP
!BOC
implicit none
! arguments
real(8), intent(in) :: rho, s, u, v
integer, intent(in) :: pot
real(8), intent(out) :: ex, ec, vx, vc
! constants
real(8), parameter :: pi=3.1415926535897932385d0
real(8), parameter :: g = 0.8098d0
real(8), parameter :: a = 2.804d0
real(8), parameter :: c = 0.7168d0
! local variables
real(8) s2,exlda, vxlda, eclda, vclda, X, Xs, Xss
real(8) F, Fs, Fss, Hx, Hxs, Hxss, Hc, Hcs, Hcss
real(8) zb, zbs, zbss, w
real(8) n0b, n0bs, n0bss
real(8) ln0b, ln0bs, ln0bss
real(8) zbb, zbbc, zbbs, zbbss
real(8) fxb, fxbs, fxbss
! cutoff
if((rho <= 1.d-16)) then
ex = 0.0d0
ec = 0.0d0
vx = 0.0d0
vc = 0.0d0
return
endif
s2 = s**2
! LDA correlation
call xc_am05_ldapwc(rho,eclda,vclda)
! LDA exchange
call xc_am05_ldax(rho,exlda,vxlda)
!------------------!
! exchange !
!------------------!
! interpolation index
X = 1.0d0 - a*s2/(1.0d0 + a*s2)
! Airy LAA refinement function
call xc_am05_labertw(s**(3.0d0/2.0d0)/sqrt(24.0d0),w)
zb = (3.0d0/2.0d0*w)**(2.0d0/3.0d0)
n0b = w/(2.0d0*pi**2*s**3)
ln0b = -3.0d0/(2.0d0*pi)*(3.0d0*pi**2*n0b)**(1.0d0/3.0d0)
zbbc = ((4.0d0/3.0d0)**(1.0d0/3.0d0)*2.0d0*pi/3.0d0)**4
zbb = (zbbc*zb**2 + zb**4)**(1.0d0/4.0d0)
Fxb = -1.0d0/(ln0b*2.0d0*zbb)
F = (c*s2 + 1.0d0)/(c*s2/Fxb + 1.0d0)
! exchange refinement function
Hx = X + (1.0d0 - X)*F
! exchange energy per particle, Ex = Integrate[n*ex]
ex = exlda*Hx
!---------------------!
! correlation !
!---------------------!
! correlation refinement function
Hc = X + g*(1.0d0 - X)
! correlation energy per particle, Ec = Integrate[rho*ec]
ec = eclda*Hc
if (pot == 0) return
!----------------------------!
! exchange potential !
!----------------------------!
! interpolation index derivatives, dX/ds
Xs = -2.0d0*a*s/(1.0d0 + a*s2)**2
Xss = 2.0d0*a*(3.0d0*a*s2-1.0d0)/(1.0d0+a*s2)**3
! airy LAA refinement function derivatives, dF/ds
zbs = zb/(s + s*w)
zbss = - zb*w*(5.0d0+2.0d0*w)/(2.0d0*s2*(1.0d0+w)**3)
n0bs = sqrt(zb)*(-2.0d0*zb+s*zbs)/(2.0d0*pi**2*s2**2)
n0bss = (16.0d0*zb**2+s**2*zbs**2+2.0d0*s*zb*(-6.0d0* &
zbs+s*zbss))/(4.0d0*pi**2*s**5*sqrt(zb))
ln0bs = -(3.0d0/pi)**(1.0d0/3.0d0)*n0bs/ &
(2.0d0*n0b**(2.0d0/3.0d0))
ln0bss = (2.0d0*n0bs**2-3.0d0*n0b*n0bss)/(2.0d0* &
3.0d0**(2.0d0/3.0d0)*pi**(1.0d0/3.0d0)*n0b**(5.0d0/3.0d0))
zbbs = zb*(zbbc+2*zb**2)*zbs/ &
(2.0d0*(zb**2*(zbbc+zb**2))**(3.0d0/4.0d0))
zbbss = zb**2*(-zbbc*(zbbc-2.0d0*zb**2)*zbs**2+ &
2.0d0*zb*(zbbc+zb**2)*(zbbc+2.0d0*zb**2)*zbss)/ &
(4.0d0*(zb**2*(zbbc+zb**2))**(7.0d0/4.0d0))
Fxbs = (zbb*ln0bs+ln0b*zbbs)/(2.0d0*ln0b**2*zbb**2)
Fxbss = (-2.0d0*ln0b**2*zbbs**2+zbb**2*(-2.0d0*ln0bs**2 + &
ln0b*ln0bss)+ln0b*zbb*(-2.0d0*ln0bs*zbbs+ln0b*zbbss))/ &
(2.0d0*ln0b**3*zbb**3)
Fs = (c*s*(2.0d0*(Fxb-1.0d0)*Fxb + s*(1.0d0+c*s2)*Fxbs))/ &
(c*s2 + Fxb)**2
Fss = (c*(-2.0d0*(3.0d0*c*s2-Fxb)*(Fxb-1.0d0)*Fxb+ &
4.0d0*s*(-c*s2+Fxb+2.0d0*c*s2*Fxb)*Fxbs - &
2.0d0*s2*(1.0d0+c*s2)*Fxbs**2+s2*(1.0d0+c*s2)* &
(c*s2 + Fxb)*Fxbss))/(c*s2+Fxb)**3
! GGA refinement function derivatives, dF/ds
Hxs = - (X - 1.0d0)*Fs - (F - 1.0d0)*Xs
Hxss = - 2.0d0*Fs*Xs - (X - 1.0d0)*Fss - (F - 1.0d0)*Xss
! vx formula for gradient dependent functional,
! generalized form of Eq. (24) in PRB 33, 8800 (1986)
vx = vxlda*(Hx - s*Hxs) + &
exlda*((4.0d0/3.0d0*s-v/s)*Hxs - &
(u-4.0d0/3.0d0*s**3)*(Hxss/s-Hxs/s2))
!-------------------------------!
! correlation potential !
!-------------------------------!
! correlation refinement function derivatives, dF/ds
Hcs = Xs - g*Xs
Hcss = Xss - g*Xss
! vc formula for gradient dependent functional,
! generalized form of Eq. (24) in Phys. Rev. B 33, 8800 (1986)
vc = vclda*(Hc - s*Hcs) + &
eclda*((4.0d0/3.0d0*s - v/s)*Hcs - &
(u - 4.0d0/3.0d0*s**3)*(Hcss/s - Hcs/s2))
end subroutine
!EOC
!BOP
! !ROUTINE: xc_am05_ldax
! !INTERFACE:
subroutine xc_am05_ldax(n,ex,vx)
! !INPUT/OUTPUT PARAMETERS:
! n : electron density (in,real)
! ex : exchange energy per electron (out,real)
! vx : exchange potential (out,real)
! !DESCRIPTION:
! Local density approximation exchange.
!
! !REVISION HISTORY:
! Created April 2005 (RAR)
!EOP
!BOC
implicit none
! arguments
real(8), intent(in) :: n
real(8), intent(out) :: ex
real(8), intent(out) :: vx
! constants
real(8), parameter :: pi=3.1415926535897932385d0
vx=-(3.d0*n/pi)**(1.d0/3.d0)
ex=(3.d0/4.d0)*vx
end subroutine
!EOC
!BOP
! !ROUTINE: xc_am05_ldapwc
! !INTERFACE:
subroutine xc_am05_ldapwc(n,ec,vc)
! !INPUT/OUTPUT PARAMETERS:
! n : electron density (in,real)
! ec : correlation energy per electron (out,real)
! vc : correlation potential (out,real)
! !DESCRIPTION:
! Correlation energy and potential of the Perdew-Wang parameterisation of
! the Ceperley-Alder electron gas {\it Phys. Rev. B} {\bf 45}, 13244 (1992)
! and {\it Phys. Rev. Lett.} {\bf 45}, 566 (1980). This is a clean-room
! implementation from paper.
!
! !REVISION HISTORY:
! Created April 2005 (RAR)
!EOP
!BOC
implicit none
! arguments
real(8), intent(in) :: n
real(8), intent(out) :: ec
real(8), intent(out) :: vc
! constants
real(8), parameter :: pi=3.1415926535897932385d0
real(8), parameter :: a01 = 0.21370d0
real(8), parameter :: b01 = 7.5957d0
real(8), parameter :: b02 = 3.5876d0
real(8), parameter :: b03 = 1.6382d0
real(8), parameter :: b04 = 0.49294d0
! paper actually use this:
! real(8), parameter (A0 = 0.031091d0)
! but routines now "defacto standard" was distributed using:
real(8), parameter :: A0 = 0.0310907d0
! local variables
real(8) rsq
real(8) Q0, Q1, Q1p, ecrs
rsq = (3.0d0/(4.0d0*pi*n))**(1.0d0/6.0d0)
ec = -2.0d0*A0*(1.0d0 + a01*rsq**2)* &
log(1.0d0 + 1.0d0/ &
(2.0d0*A0*rsq*(b01 + rsq*(b02 + rsq*(b03 + b04*rsq)))))
Q0 = -2.0d0*A0*(1.0d0 + a01*rsq**2)
Q1 = 2.0d0*A0*rsq*(b01 + rsq*(b02 + rsq*(b03 + b04*rsq)))
Q1p = A0*(b01/rsq+2.0d0*b02+3.0d0*b03*rsq+4.0d0*b04*rsq**2)
ecrs = -2.0d0*A0*a01*log(1.0d0 + 1.0d0/Q1)-Q0*Q1p/(Q1**2+Q1)
vc = ec - rsq**2/3.0d0*ecrs
end subroutine
!EOC
!BOP
! !ROUTINE: xc_am05_labertw
! !INTERFACE:
subroutine xc_am05_labertw(z,val)
! !INPUT/OUTPUT PARAMETERS:
! z : function argument (in,real)
! val : value of lambert W function of z (out,real)
! !DESCRIPTION:
! Lambert $W$-function using the method of Corless, Gonnet, Hare, Jeffrey and
! Knuth, {\it Adv. Comp. Math.} {\bf 5}, 329 (1996). The approach is based
! loosely on that in GNU Octave by N. N. Schraudolph, but this implementation
! is for real values and the principal branch only.
!
! !REVISION HISTORY:
! Created April 2005 (RAR)
!EOP
!BOC
implicit none
! arguments
real(8), intent(in) :: z
real(8), intent(out) :: val
! local variables
real(8) e,t,p
integer i
! if z too low, go with the first term of the power expansion, z
if (z < 1.d-20) then
val=z
return
end if
e=exp(1.d0)
! inital guess
if (abs(z+1.d0/e) > 1.45d0) then
! asymptotic expansion at 0 and Inf
val=log(z)
val=val-log(val)
else
! series expansion about -1/e to first order
val=1.d0*sqrt(2.d0*e*z+2.d0)-1.d0
end if
! find val through iteration
do i=1,10
p=exp(val)
t=val*p-z
if (val /= -1.d0) then
t=t/(p*(val+1.d0)-0.5d0*(val+2.d0)*t/(val+1.d0))
else
t=0.d0
end if
val=val-t
if (abs(t) < (2.48d0*1.d-14)*(1.d0+abs(val))) return
end do
! this should never happen!
write(*,*)
write(*,'("Error(xc_am05_labertw): iteration limit reached")')
write(*,'(" Likely cause: improper numbers (INFs, NaNs) in density")')
write(*,*)
stop
end subroutine
!EOC
|