## File: rfmtinp.f90

package info (click to toggle)
elkcode 5.4.24-2
 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465  ! Copyright (C) 2003-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rfmtinp ! !INTERFACE: real(8) function rfmtinp(nr,nri,r,r2,rfmt1,rfmt2) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of radial mesh points on the inner part of the muffin-tin ! (in,integer) ! r : radial mesh (in,real(nr)) ! r2 : r^2 on radial mesh (in,real(nr)) ! rfmt1 : first real function inside muffin-tin (in,real(*)) ! rfmt2 : second real function inside muffin-tin (in,real(*)) ! !DESCRIPTION: ! Calculates the inner product of two real functions in the muffin-tin. So ! given two real functions of the form ! $$f({\bf r})=\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}f_{lm}(r)R_{lm} ! (\hat{\bf r})$$ ! where $R_{lm}$ are the real spherical harmonics, the function returns ! $$I=\int\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}f_{lm}^1(r)f_{lm}^2(r)r^2 ! dr\;.$$ ! The radial integral is performed using a high accuracy cubic spline method. ! See routines {\tt genrlm} and {\tt fint}. ! ! !REVISION HISTORY: ! Created November 2003 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: r(nr),r2(nr) real(8), intent(in) :: rfmt1(*),rfmt2(*) ! local variables integer n,ir,i ! automatic arrays real(8) fr(nr) ! external functions real(8) splint external splint ! inner part of muffin-tin n=lmmaxi-1 i=1 do ir=1,nri fr(ir)=dot_product(rfmt1(i:i+n),rfmt2(i:i+n))*r2(ir) i=i+lmmaxi end do ! outer part of muffin-tin n=lmmaxo-1 do ir=nri+1,nr fr(ir)=dot_product(rfmt1(i:i+n),rfmt2(i:i+n))*r2(ir) i=i+lmmaxo end do ! integrate rfmtinp=splint(nr,r,fr) return end function !EOC