## File: zfmtinp.f90

package info (click to toggle)
elkcode 5.4.24-2
 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980  ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zfmtinp ! !INTERFACE: complex(8) function zfmtinp(nr,nri,r,r2,zfmt1,zfmt2) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on the inner part of the muffin-tin (in,integer) ! r : radial mesh (in,real(nr)) ! r2 : r^2 on radial mesh (in,real(nr)) ! zfmt1 : first complex muffin-tin function in spherical harmonics ! (in,complex(*)) ! zfmt2 : second complex muffin-tin function (in,complex(*)) ! !DESCRIPTION: ! Calculates the inner product of two complex fuctions in the muffin-tin. In ! other words, given two complex functions of the form ! $$f({\bf r})=\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}f_{lm}(r)Y_{lm} ! (\hat{\bf r}),$$ ! the function returns ! $$I=\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}\int f_{lm}^{1*}(r) ! f_{lm}^2(r)r^2\,dr\;.$$ ! ! !REVISION HISTORY: ! Created November 2003 (Sharma) ! Modified, September 2013 (JKD) ! Modified for packed functions, June 2016 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: r(nr),r2(nr) complex(8), intent(in) :: zfmt1(*),zfmt2(*) ! local variables integer ir,i complex(8) z1 ! automatic arrays real(8) fr1(nr),fr2(nr) ! external functions real(8) splint complex(8) zdotc external splint,zdotc ! compute the dot-products for each radial point i=1 if (lmaxi.eq.1) then do ir=1,nri z1=(conjg(zfmt1(i))*zfmt2(i) & +conjg(zfmt1(i+1))*zfmt2(i+1) & +conjg(zfmt1(i+2))*zfmt2(i+2) & +conjg(zfmt1(i+3))*zfmt2(i+3))*r2(ir) fr1(ir)=dble(z1) fr2(ir)=aimag(z1) i=i+4 end do else do ir=1,nri z1=zdotc(lmmaxi,zfmt1(i),1,zfmt2(i),1)*r2(ir) fr1(ir)=dble(z1) fr2(ir)=aimag(z1) i=i+lmmaxi end do end if do ir=nri+1,nr z1=zdotc(lmmaxo,zfmt1(i),1,zfmt2(i),1)*r2(ir) fr1(ir)=dble(z1) fr2(ir)=aimag(z1) i=i+lmmaxo end do ! integrate over r zfmtinp=cmplx(splint(nr,r,fr1),splint(nr,r,fr2),8) return end function !EOC