File: distributedmatrix.py

package info (click to toggle)
elpa 2019.11.001-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 10,380 kB
  • sloc: f90: 33,804; ansic: 24,131; sh: 4,583; asm: 834; makefile: 683; python: 634; perl: 141
file content (399 lines) | stat: -rw-r--r-- 16,892 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
"""distributedmatrix.py -- classes for distributed matrices

This file contains the python classes to use with the wrapper.
"""
import numpy as np
from functools import wraps
from .wrapper import Elpa

class ProcessorLayout:
    """Create rectangular processor layout for use with distributed matrices"""
    def __init__(self, comm):
        """Initialize processor layout.

        Args:
            comm: MPI communicator from mpi4py
        """
        nprocs = comm.Get_size()
        rank = comm.Get_rank()
        for np_cols in range(int(np.sqrt(nprocs)), 0, -1):
            if nprocs % np_cols == 0:
              break
        #if nprocs == 1:
        #    np_cols = 1
        np_rows = nprocs//np_cols
        # column major distribution of processors
        my_pcol = rank // np_rows
        my_prow = rank % np_rows
        self.np_cols, self.np_rows = np_cols, np_rows
        self.my_pcol, self.my_prow = my_pcol, my_prow
        self.comm = comm
        self.comm_f = comm.py2f()


class DistributedMatrix:
    """Class for generating a distributed block-cyclic matrix

    The data attribute contains the array in the correct size for the local
    processor.
    """
    def __init__(self, processor_layout, na, nev, nblk, dtype=np.float64):
        """Initialize distributed matrix for a given processor layout.

        Args:
            processor_layout (ProcessorLayout): has to be created from MPI
                communicator
            na (int): dimension of matrix
            nev (int): number of eigenvectors/eigenvalues to be computed
            nblk (int): block size of distributed matrix
            dtype: data type of matrix
        """
        self.na = na
        self.nev = nev
        self.nblk = nblk
        self.processor_layout = processor_layout

        # get local size
        self.na_rows = self.numroc(na, nblk, processor_layout.my_prow, 0,
                                   processor_layout.np_rows)
        self.na_cols = self.numroc(na, nblk, processor_layout.my_pcol, 0,
                                   processor_layout.np_cols)
        # create array
        self.data = np.empty((self.na_rows, self.na_cols),
                             dtype=dtype, order='F')

        self.elpa = None

    @classmethod
    def from_communicator(cls, comm, na, nev, nblk, dtype=np.float64):
        """Initialize distributed matrix from a MPI communicator.

        Args:
            comm: MPI communicator from mpi4py
            na (int): dimension of matrix
            nev (int): number of eigenvectors/eigenvalues to be computed
            nblk (int): block size of distributed matrix
            dtype: data type of matrix
        """
        processor_layout = ProcessorLayout(comm)
        return cls(processor_layout, na, nev, nblk, dtype)

    @classmethod
    def from_comm_world(cls, na, nev, nblk, dtype=np.float64):
        """Initialize distributed matrix from the MPI_COMM_WORLD communicator.

        Args:
            na (int): dimension of matrix
            nev (int): number of eigenvectors/eigenvalues to be computed
            nblk (int): block size of distributed matrix
            dtype: data type of matrix
        """
        from mpi4py import MPI
        comm = MPI.COMM_WORLD
        processor_layout = ProcessorLayout(comm)
        return cls(processor_layout, na, nev, nblk, dtype)

    @classmethod
    def like(cls, matrix):
        """Get a DistributedMatrix with the same parameters as matrix"""
        return cls(matrix.processor_layout, matrix.na, matrix.nev, matrix.nblk,
                   matrix.data.dtype)

    def get_local_index(self, global_row, global_col):
        """compute local row and column indices from global ones

        Returns a tuple of the local row and column indices
        """
        local_row = self.indxg2l(global_row, self.nblk,
                                 self.processor_layout.my_prow, 0,
                                 self.processor_layout.np_rows)
        local_col = self.indxg2l(global_col, self.nblk,
                                 self.processor_layout.my_pcol, 0,
                                 self.processor_layout.np_cols)
        return local_row, local_col

    def get_global_index(self, local_row, local_col):
        """compute global row and column indices from local ones

        Returns a tuple of the global row and column indices
        """
        global_row = self.indxl2g(local_row, self.nblk,
                                  self.processor_layout.my_prow, 0,
                                  self.processor_layout.np_rows)
        global_col = self.indxl2g(local_col, self.nblk,
                                  self.processor_layout.my_pcol, 0,
                                  self.processor_layout.np_cols)
        return global_row, global_col

    def is_local_index(self, global_row, global_col):
        """check if global index is stored on current processor"""
        return self.is_local_row(global_row) and self.is_local_col(global_col)

    def is_local_row(self, global_row):
        """check if global row is stored on this processor"""
        process_row = self.indxg2p(global_row, self.nblk,
                                   self.processor_layout.my_prow, 0,
                                   self.processor_layout.np_rows)
        return process_row == self.processor_layout.my_prow

    def is_local_col(self, global_col):
        process_col = self.indxg2p(global_col, self.nblk,
                                   self.processor_layout.my_pcol, 0,
                                   self.processor_layout.np_cols)
        return process_col == self.processor_layout.my_pcol

    @staticmethod
    def indxg2l(indxglob, nb, iproc, isrcproc, nprocs):
        """compute local index from global index indxglob

        original netlib scalapack source:

        .. code-block:: fortran

            INDXG2L = NB*((INDXGLOB-1)/(NB*NPROCS))+MOD(INDXGLOB-1,NB)+1
        """
        # adapt to python 0-based indexing
        return nb*(indxglob//(nb*nprocs)) + indxglob%nb

    @staticmethod
    def indxl2g(indxloc, nb, iproc, isrcproc, nprocs):
        """compute global index from local index indxloc

        original netlib scalapack source:

        .. code-block:: fortran

            INDXL2G = NPROCS*NB*((INDXLOC-1)/NB) + MOD(INDXLOC-1,NB) +
                      MOD(NPROCS+IPROC-ISRCPROC, NPROCS)*NB + 1
        """
        # adapt to python 0-based indexing
        return nprocs*nb*(indxloc//nb) + indxloc%nb + \
            ((nprocs+iproc-isrcproc)%nprocs)*nb

    @staticmethod
    def indxg2p(indxglob, nb, iproc, isrcproc, nprocs):
        """compute process coordinate for global index

        original netlib scalapack source:

        .. code-block:: fortran

            INDXG2P = MOD( ISRCPROC + (INDXGLOB - 1) / NB, NPROCS )
        """
        # adapt to python 0-based indexing
        return (isrcproc + indxglob // nb) % nprocs

    @staticmethod
    def numroc(n, nb, iproc, isrcproc, nprocs):
        """Get local dimensions of distributed block-cyclic matrix.

        Programmed after scalapack source (tools/numroc.f on netlib).
        """
        mydist = (nprocs + iproc - isrcproc) % nprocs
        nblocks = n // nb
        result = (nblocks // nprocs) * nb
        extrablks = nblocks % nprocs
        if mydist < extrablks:
            result += nb
        elif mydist == extrablks:
            result += n % nb
        return int(result)

    def _initialized_elpa(function):
        # wrapper to ensure one-time initialization of Elpa object
        @wraps(function)
        def wrapped_function(self):
            if self.elpa is None:
                self.elpa = Elpa.from_distributed_matrix(self)
            return function(self)
        return wrapped_function

    @_initialized_elpa
    def compute_eigenvectors(self):
        """Compute eigenvalues and eigenvectors

        The eigenvectors are stored in columns.
        This function returns a dictionary with entries 'eigenvalues' and
        'eigenvectors'.

        After computing the eigenvectors, the original content of the matrix is
        lost.
        """
        eigenvectors = DistributedMatrix.like(self)
        eigenvalues = np.zeros(self.na, dtype=np.float64)
        # call ELPA
        self.elpa.eigenvectors(self.data, eigenvalues, eigenvectors.data)
        return {'eigenvalues': eigenvalues, 'eigenvectors': eigenvectors}

    @_initialized_elpa
    def compute_eigenvalues(self):
        """Compute only the eigenvalues.

        This function returns the eigenvalues as an array.

        After computing the eigenvalues, the original content of the matrix is
        lost.
        """
        eigenvalues = np.zeros(self.na, dtype=np.float64)
        # call ELPA
        self.elpa.eigenvalues(self.data, eigenvalues)
        return eigenvalues

    def set_data_from_global_matrix(self, matrix):
        """Set local part of the global matrix"""
        for local_row in range(self.na_rows):
            for local_col in range(self.na_cols):
                global_row, global_col = self.get_global_index(local_row,
                                                               local_col)
                self.data[local_row, local_col] = matrix[global_row,
                                                         global_col]

    def dot(self, vector):
        """Compute dot product of matrix with vector.

        This blocked implementation is much faster than the naive
        implementation.
        """
        if len(vector.shape) > 1 or vector.shape[0] != self.na:
            raise ValueError("Error: shape of vector {} incompatible to "
                             "matrix of size {:d}x{:d}.".format(
                                 vector.shape, self.na, self.na))
        from mpi4py import MPI
        summation = np.zeros_like(vector)
        # loop only over blocks here
        for local_row in range(0, self.na_rows, self.nblk):
            for local_col in range(0, self.na_cols, self.nblk):
                # do not go beyond the end of the matrix
                row_block_size = min(local_row + self.nblk,
                                     self.na_rows) - local_row
                col_block_size = min(local_col + self.nblk,
                                     self.na_cols) - local_col
                global_row, global_col = self.get_global_index(local_row,
                                                               local_col)
                # use numpy for faster dot product of local block
                summation[global_row:global_row+row_block_size] += \
                    np.dot(self.data[local_row:local_row + row_block_size,
                                     local_col:local_col + col_block_size],
                           vector[global_col:global_col+col_block_size])
        result = np.zeros_like(vector)
        self.processor_layout.comm.Allreduce(summation, result, op=MPI.SUM)
        return result

    def _dot_naive(self, vector):
        """Compute naive dot product of matrix with vector.

        Still in here as an example and for testing purposes.
        """
        from mpi4py import MPI
        summation = np.zeros_like(vector)
        for local_row in range(self.na_rows):
            for local_col in range(self.na_cols):
                global_row, global_col = self.get_global_index(local_row,
                                                               local_col)
                summation[global_row] += self.data[local_row, local_col] *\
                    vector[global_col]
        result = np.zeros_like(vector)
        self.processor_layout.comm.Allreduce(summation, result, op=MPI.SUM)
        return result

    def get_column(self, global_col):
        """Return global column"""
        from mpi4py import MPI
        column = np.zeros(self.na, dtype=self.data.dtype)
        temporary = np.zeros_like(column)
        if self.is_local_col(global_col):
            for global_row in range(self.na):
                if not self.is_local_row(global_row):
                    continue
                local_row, local_col = self.get_local_index(global_row,
                                                            global_col)
                temporary[global_row] = self.data[local_row, local_col]
        # this could be done more efficiently with a gather
        self.processor_layout.comm.Allreduce(temporary, column, op=MPI.SUM)
        return column

    def get_row(self, global_row):
        """Return global row"""
        from mpi4py import MPI
        row = np.zeros(self.na, dtype=self.data.dtype)
        temporary = np.zeros_like(row)
        if self.is_local_row(global_row):
            for global_col in range(self.na):
                if not self.is_local_col(global_col):
                    continue
                local_row, local_col = self.get_local_index(global_row,
                                                            global_col)
                temporary[global_col] = self.data[local_row, local_col]
        # this could be done more efficiently with a gather
        self.processor_layout.comm.Allreduce(temporary, row, op=MPI.SUM)
        return row

    def global_indices(self):
        """Return iterator over global indices of matrix.

        Use together with set_data_global_index and get_data_global_index.
        """
        for local_row in range(self.na_rows):
            for local_col in range(self.na_cols):
                yield self.get_global_index(local_row, local_col)

    def set_data_for_global_index(self, global_row, global_col, value):
        """Set value of matrix at global coordinates"""
        if self.is_local_index(global_row, global_col):
            local_row, local_col = self.get_local_index(global_row, global_col)
            self.data[local_row, local_col] = value

    def get_data_for_global_index(self, global_row, global_col):
        """Get value of matrix at global coordinates"""
        if self.is_local_index(global_row, global_col):
            local_row, local_col = self.get_local_index(global_row, global_col)
            return self.data[local_row, local_col]
        else:
            raise ValueError('Index out of bounds: global row {:d}, '
                             'global col {:d}'.format(global_row, global_col))

    def global_block_indices(self):
        """Return iterator over global indices of matrix blocks.

        Use together with set_block_global_index and get_block_global_index
        for more efficient loops.
        """
        for local_row in range(0, self.na_rows, self.nblk):
            for local_col in range(0, self.na_cols, self.nblk):
                # do not go beyond the end of the matrix
                row_block_size = min(local_row + self.nblk,
                                     self.na_rows) - local_row
                col_block_size = min(local_col + self.nblk,
                                     self.na_cols) - local_col
                global_row, global_col = self.get_global_index(local_row,
                                                               local_col)
                yield global_row, global_col, row_block_size, col_block_size

    def set_block_for_global_index(self, global_row, global_col,
                                   row_block_size, col_block_size, value):
        """Set value of block of matrix at global coordinates"""
        if self.is_local_index(global_row, global_col):
            local_row, local_col = self.get_local_index(global_row, global_col)
            if value.shape != (row_block_size, col_block_size):
                raise ValueError("value has the wrong shape. "
                                 "Expected: {}, found: {}."
                                 .format((row_block_size, col_block_size),
                                         value.shape)
                                 )
            self.data[local_row:local_row+row_block_size,
                      local_col:local_col+col_block_size] = value

    def get_block_for_global_index(self, global_row, global_col,
                                   row_block_size, col_block_size):
        """Get value of block of matrix at global coordinates"""
        if self.is_local_index(global_row, global_col):
            local_row, local_col = self.get_local_index(global_row, global_col)
            if local_row+row_block_size > self.na_rows or \
                    local_col+col_block_size > self.na_cols:
                raise ValueError("Block size wrong: exceeds dimensions of"
                                 " matrix.")
            return self.data[local_row:local_row+row_block_size,
                             local_col:local_col+col_block_size]
        else:
            raise ValueError('Index out of bounds: global row {:d}, '
                             'global col {:d}'.format(global_row, global_col))