1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
"""wrapper.pyx -- python wrapper for ELPA
This file contains the cython part of the wrapper.
"""
cimport numpy as np
import numpy as np
import sys
if 'mpi4py.MPI' in sys.modules.keys():
raise NotImplementedError('Please load the pyelpa module before mpi4py, '
'otherwise there will be MPI problems.')
# import the function definitions from the ELPA header
cdef import from "<elpa/elpa.h>":
cdef struct elpa_struct:
pass
ctypedef elpa_struct *elpa_t
int elpa_init(int api_version)
void elpa_uninit(int *error)
elpa_t elpa_allocate(int *error)
void elpa_deallocate(elpa_t handle, int *error)
int elpa_setup(elpa_t handle)
void elpa_set_integer(elpa_t handle, const char *name, int value, int *error)
void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error)
void elpa_set_double(elpa_t handle, const char *name, double value, int *error)
void elpa_get_double(elpa_t handle, const char *name, double *value, int *error)
void elpa_eigenvectors_a_h_a_d(elpa_t handle, double *a, double *ev, double *q, int *error)
void elpa_eigenvectors_a_h_a_f(elpa_t handle, float *a, float *ev, float *q, int *error)
void elpa_eigenvectors_a_h_a_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error)
void elpa_eigenvectors_a_h_a_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error)
void elpa_eigenvalues_a_h_a_d(elpa_t handle, double *a, double *ev, int *error)
void elpa_eigenvalues_a_h_a_f(elpa_t handle, float *a, float *ev, int *error)
void elpa_eigenvalues_a_h_a_dc(elpa_t handle, double complex *a, double *ev, int *error)
void elpa_eigenvalues_a_h_a_fc(elpa_t handle, float complex *a, float *ev, int *error)
int ELPA_OK
int ELPA_SOLVER_2STAGE
cdef class Elpa:
"""Wrapper for ELPA C interface.
Provides routines for initialization, deinitialization, setting and getting
properties and for calling the eigenvectors and eigenvalues routines.
The routines eigenvectors and eigenvalues select the right ELPA routine to
call depending on the argument type.
"""
cdef elpa_t handle
def __init__(self):
"""Run initialization and allocation of handle"""
if elpa_init(20171201) != ELPA_OK:
raise RuntimeError("ELPA API version not supported")
cdef int error
handle = elpa_allocate(&error)
self.handle = handle
def set_integer(self, description, int value):
"""Wraps elpa_set_integer"""
cdef int error
if isinstance(description, unicode):
# encode to ascii for passing to C
description = (<unicode>description).encode('ascii')
cdef const char* c_string = description
elpa_set_integer(<elpa_t>self.handle, description, value, &error)
def get_integer(self, description):
"""Wraps elpa_get_integer"""
cdef int error
if isinstance(description, unicode):
# encode to ascii for passing to C
description = (<unicode>description).encode('ascii')
cdef const char* c_string = description
cdef int tmp
elpa_get_integer(<elpa_t>self.handle, c_string, &tmp, &error)
return tmp
def set_double(self, description, double value):
"""Wraps elpa_set_double"""
cdef int error
if isinstance(description, unicode):
# encode to ascii for passing to C
description = (<unicode>description).encode('ascii')
cdef const char* c_string = description
elpa_set_double(<elpa_t>self.handle, description, value, &error)
def get_double(self, description):
"""Wraps elpa_get_double"""
cdef int error
if isinstance(description, unicode):
# encode to ascii for passing to C
description = (<unicode>description).encode('ascii')
cdef const char* c_string = description
cdef double tmp
elpa_get_double(<elpa_t>self.handle, c_string, &tmp, &error)
return tmp
def setup(self):
"""call setup function"""
elpa_setup(<elpa_t>self.handle)
def __del__(self):
"""Deallocation of handle and deinitialization"""
cdef int error
elpa_deallocate(<elpa_t>self.handle, &error)
elpa_uninit(&error)
def eigenvectors_d(self,
np.ndarray[np.float64_t, ndim=2] a,
np.ndarray[np.float64_t, ndim=1] ev,
np.ndarray[np.float64_t, ndim=2] q):
cdef int error
elpa_eigenvectors_a_h_a_d(<elpa_t>self.handle, <np.float64_t *>a.data,
<np.float64_t *>ev.data, <np.float64_t *>q.data,
<int*>&error)
if error != ELPA_OK:
raise RuntimeError("ELPA returned error value {:d}.".format(error))
def eigenvectors_f(self,
np.ndarray[np.float32_t, ndim=2] a,
np.ndarray[np.float32_t, ndim=1] ev,
np.ndarray[np.float32_t, ndim=2] q):
cdef int error
elpa_eigenvectors_a_h_a_f(<elpa_t>self.handle, <np.float32_t *>a.data,
<np.float32_t *>ev.data, <np.float32_t *>q.data,
<int*>&error)
if error != ELPA_OK:
raise RuntimeError("ELPA returned error value {:d}.".format(error))
def eigenvectors_dc(self,
np.ndarray[np.complex128_t, ndim=2] a,
np.ndarray[np.float64_t, ndim=1] ev,
np.ndarray[np.complex128_t, ndim=2] q):
cdef int error
elpa_eigenvectors_a_h_a_dc(<elpa_t>self.handle, <np.complex128_t *>a.data,
<np.float64_t *>ev.data, <np.complex128_t *>q.data,
<int*>&error)
if error != ELPA_OK:
raise RuntimeError("ELPA returned error value {:d}.".format(error))
def eigenvectors_fc(self,
np.ndarray[np.complex64_t, ndim=2] a,
np.ndarray[np.float32_t, ndim=1] ev,
np.ndarray[np.complex64_t, ndim=2] q):
cdef int error
elpa_eigenvectors_a_h_a_fc(<elpa_t>self.handle, <np.complex64_t *>a.data,
<np.float32_t *>ev.data, <np.complex64_t *>q.data,
<int*>&error)
if error != ELPA_OK:
raise RuntimeError("ELPA returned error value {:d}.".format(error))
def eigenvectors(self, a, ev, q):
"""Compute eigenvalues and eigenvectors.
The data type of a is tested and the corresponding ELPA routine called
Args:
a (DistributedMatrix): problem matrix
ev (numpy.ndarray): array of size a.na to store eigenvalues
q (DistributedMatrix): store eigenvectors
"""
if a.dtype == np.float64:
self.eigenvectors_d(a, ev, q)
elif a.dtype == np.float32:
self.eigenvectors_f(a, ev, q)
elif a.dtype == np.complex128:
self.eigenvectors_dc(a, ev, q)
elif a.dtype == np.complex64:
self.eigenvectors_fc(a, ev, q)
else:
raise TypeError("Type not known.")
def eigenvalues_d(self,
np.ndarray[np.float64_t, ndim=2] a,
np.ndarray[np.float64_t, ndim=1] ev):
cdef int error
elpa_eigenvalues_a_h_a_d(<elpa_t>self.handle, <np.float64_t *>a.data,
<np.float64_t *>ev.data, <int*>&error)
if error != ELPA_OK:
raise RuntimeError("ELPA returned error value {:d}.".format(error))
def eigenvalues_f(self,
np.ndarray[np.float32_t, ndim=2] a,
np.ndarray[np.float32_t, ndim=1] ev):
cdef int error
elpa_eigenvalues_a_h_a_f(<elpa_t>self.handle, <np.float32_t *>a.data,
<np.float32_t *>ev.data, <int*>&error)
if error != ELPA_OK:
raise RuntimeError("ELPA returned error value {:d}.".format(error))
def eigenvalues_dc(self,
np.ndarray[np.complex128_t, ndim=2] a,
np.ndarray[np.float64_t, ndim=1] ev):
cdef int error
elpa_eigenvalues_a_h_a_dc(<elpa_t>self.handle, <np.complex128_t *>a.data,
<np.float64_t *>ev.data, <int*>&error)
if error != ELPA_OK:
raise RuntimeError("ELPA returned error value {:d}.".format(error))
def eigenvalues_fc(self,
np.ndarray[np.complex64_t, ndim=2] a,
np.ndarray[np.float32_t, ndim=1] ev):
cdef int error
elpa_eigenvalues_a_h_a_fc(<elpa_t>self.handle, <np.complex64_t *>a.data,
<np.float32_t *>ev.data, <int*>&error)
if error != ELPA_OK:
raise RuntimeError("ELPA returned error value {:d}.".format(error))
def eigenvalues(self, a, ev):
"""Compute eigenvalues.
The data type of a is tested and the corresponding ELPA routine called
Args:
a (DistributedMatrix): problem matrix
ev (numpy.ndarray): array of size a.na to store eigenvalues
"""
if a.dtype == np.float64:
self.eigenvalues_d(a, ev)
elif a.dtype == np.float32:
self.eigenvalues_f(a, ev)
elif a.dtype == np.complex128:
self.eigenvalues_dc(a, ev)
elif a.dtype == np.complex64:
self.eigenvalues_fc(a, ev)
else:
raise TypeError("Type not known.")
@classmethod
def from_distributed_matrix(cls, a):
"""Initialize ELPA with values from a distributed matrix
Args:
a (DistributedMatrix): matrix to get values from
"""
self = cls()
# Set parameters the matrix and it's MPI distribution
self.set_integer("mpi_comm_parent", <int>a.processor_layout.comm_f)
self.set_integer("na", <int>a.na)
self.set_integer("nev", <int>a.nev)
self.set_integer("local_nrows", <int>a.na_rows)
self.set_integer("local_ncols", <int>a.na_cols)
self.set_integer("nblk", <int>a.nblk)
self.set_integer("process_row", <int>a.processor_layout.my_prow)
self.set_integer("process_col", <int>a.processor_layout.my_pcol)
# Setup
self.setup()
# if desired, set tunable run-time options
self.set_integer("solver", ELPA_SOLVER_2STAGE)
return self
|