1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231
|
;;; simple.el --- basic editing commands for Emacs -*- lexical-binding: t -*-
;; Copyright (C) 1985-1987, 1993-2020 Free Software Foundation, Inc.
;; Maintainer: emacs-devel@gnu.org
;; Keywords: internal
;; Package: emacs
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; A grab-bag of basic Emacs commands not specifically related to some
;; major mode or to file-handling.
;;; Code:
(eval-when-compile (require 'cl-lib))
(declare-function widget-convert "wid-edit" (type &rest args))
(declare-function shell-mode "shell" ())
;;; From compile.el
(defvar compilation-current-error)
(defvar compilation-context-lines)
(defcustom idle-update-delay 0.5
"Idle time delay before updating various things on the screen.
Various Emacs features that update auxiliary information when point moves
wait this many seconds after Emacs becomes idle before doing an update."
:type 'number
:group 'display
:version "22.1")
(defvar amalgamating-undo-limit 20
"The maximum number of changes to possibly amalgamate when undoing changes.
The `undo' command will normally consider \"similar\" changes
(like inserting characters) to be part of the same change. This
is called \"amalgamating\" the changes. This variable says what
the maximum number of changes considered is when amalgamating. A
value of 1 means that nothing is amalgamated.")
(defgroup killing nil
"Killing and yanking commands."
:group 'editing)
(defgroup paren-matching nil
"Highlight (un)matching of parens and expressions."
:group 'matching)
;;; next-error support framework
(defgroup next-error nil
"`next-error' support framework."
:group 'compilation
:version "22.1")
(defface next-error
'((t (:inherit region)))
"Face used to highlight next error locus."
:group 'next-error
:version "22.1")
(defcustom next-error-highlight 0.5
"Highlighting of locations in the selected buffer.
If a number, highlight the locus in `next-error' face for the given time
in seconds, or until the next command is executed.
If t, highlight the locus until the next command is executed, or until
some other locus replaces it.
If nil, don't highlight the locus in the source buffer.
If `fringe-arrow', indicate the locus by the fringe arrow
indefinitely until some other locus replaces it.
See `next-error-highlight-no-select' to customize highlighting
of the locus in non-selected buffers."
:type '(choice (number :tag "Highlight for specified time")
(const :tag "Semipermanent highlighting" t)
(const :tag "No highlighting" nil)
(const :tag "Fringe arrow" fringe-arrow))
:group 'next-error
:version "22.1")
(defcustom next-error-highlight-no-select 0.5
"Highlighting of locations in non-selected source buffers.
Usually non-selected buffers are displayed by `next-error-no-select'.
If number, highlight the locus in `next-error' face for given time in seconds.
If t, highlight the locus indefinitely until some other locus replaces it.
If nil, don't highlight the locus in the source buffer.
If `fringe-arrow', indicate the locus by the fringe arrow
indefinitely until some other locus replaces it.
See `next-error-highlight' to customize highlighting of the locus
in the selected buffer."
:type '(choice (number :tag "Highlight for specified time")
(const :tag "Semipermanent highlighting" t)
(const :tag "No highlighting" nil)
(const :tag "Fringe arrow" fringe-arrow))
:group 'next-error
:version "22.1")
(defcustom next-error-recenter nil
"Display the line in the visited source file recentered as specified.
If non-nil, the value is passed directly to `recenter'."
:type '(choice (integer :tag "Line to recenter to")
(const :tag "Center of window" (4))
(const :tag "No recentering" nil))
:group 'next-error
:version "23.1")
(defcustom next-error-hook nil
"List of hook functions run by `next-error' after visiting source file."
:type 'hook
:group 'next-error)
(defcustom next-error-verbose t
"If non-nil, `next-error' always outputs the current error buffer.
If nil, the message is output only when the error buffer
changes."
:group 'next-error
:type 'boolean
:safe #'booleanp
:version "27.1")
(defvar next-error-highlight-timer nil)
(defvar next-error-overlay-arrow-position nil)
(put 'next-error-overlay-arrow-position 'overlay-arrow-string (purecopy "=>"))
(add-to-list 'overlay-arrow-variable-list 'next-error-overlay-arrow-position)
(defvar next-error-last-buffer nil
"The most recent `next-error' buffer.
A buffer becomes most recent when its compilation, grep, or
similar mode is started, or when it is used with \\[next-error]
or \\[compile-goto-error].")
(defvar next-error-buffer nil
"The buffer-local value of the most recent `next-error' buffer.")
;; next-error-buffer is made buffer-local to keep the reference
;; to the parent buffer used to navigate to the current buffer, so the
;; next call of next-buffer will use the same parent buffer to
;; continue navigation from it.
(make-variable-buffer-local 'next-error-buffer)
(defvar next-error-function nil
"Function to use to find the next error in the current buffer.
The function is called with 2 parameters:
ARG is an integer specifying by how many errors to move.
RESET is a boolean which, if non-nil, says to go back to the beginning
of the errors before moving.
Major modes providing compile-like functionality should set this variable
to indicate to `next-error' that this is a candidate buffer and how
to navigate in it.")
(make-variable-buffer-local 'next-error-function)
(defvar next-error-move-function nil
"Function to use to move to an error locus.
It takes two arguments, a buffer position in the error buffer
and a buffer position in the error locus buffer.
The buffer for the error locus should already be current.
nil means use goto-char using the second argument position.")
(make-variable-buffer-local 'next-error-move-function)
(defsubst next-error-buffer-p (buffer
&optional avoid-current
extra-test-inclusive
extra-test-exclusive)
"Return non-nil if BUFFER is a `next-error' capable buffer.
If AVOID-CURRENT is non-nil, and BUFFER is the current buffer,
return nil.
The function EXTRA-TEST-INCLUSIVE, if non-nil, is called if
BUFFER would not normally qualify. If it returns non-nil, BUFFER
is considered `next-error' capable, anyway, and the function
returns non-nil.
The function EXTRA-TEST-EXCLUSIVE, if non-nil, is called if the
buffer would normally qualify. If it returns nil, BUFFER is
rejected, and the function returns nil."
(and (buffer-name buffer) ;First make sure it's live.
(not (and avoid-current (eq buffer (current-buffer))))
(with-current-buffer buffer
(if next-error-function ; This is the normal test.
;; Optionally reject some buffers.
(if extra-test-exclusive
(funcall extra-test-exclusive)
t)
;; Optionally accept some other buffers.
(and extra-test-inclusive
(funcall extra-test-inclusive))))))
(defcustom next-error-find-buffer-function #'next-error-buffer-unnavigated-current
"Function called to find a `next-error' capable buffer.
This functions takes the same three arguments as the function
`next-error-find-buffer', and should return the buffer to be
used by the subsequent invocation of the command `next-error'
and `previous-error'.
If the function returns nil, `next-error-find-buffer' will
try to use the buffer it used previously, and failing that
all other buffers."
:type '(choice (const :tag "No default" ignore)
(const :tag "Single next-error capable buffer on selected frame"
next-error-buffer-on-selected-frame)
(const :tag "Current buffer if next-error capable and outside navigation"
next-error-buffer-unnavigated-current)
(function :tag "Other function"))
:group 'next-error
:version "27.1")
(defcustom next-error-found-function #'ignore
"Function called when a next locus is found and displayed.
Function is called with two arguments: a FROM-BUFFER buffer
from which next-error navigated, and a target buffer TO-BUFFER."
:type '(choice (const :tag "No default" ignore)
(function :tag "Other function"))
:group 'next-error
:version "27.1")
(defun next-error-buffer-on-selected-frame (&optional _avoid-current
extra-test-inclusive
extra-test-exclusive)
"Return a single visible next-error buffer on the selected frame."
(let ((window-buffers
(delete-dups
(delq nil (mapcar (lambda (w)
(if (next-error-buffer-p
(window-buffer w)
t
extra-test-inclusive extra-test-exclusive)
(window-buffer w)))
(window-list))))))
(if (eq (length window-buffers) 1)
(car window-buffers))))
(defun next-error-buffer-unnavigated-current (&optional avoid-current
extra-test-inclusive
extra-test-exclusive)
"Try the current buffer when outside navigation.
But return nil if we navigated to the current buffer by the means
of `next-error' command. Othewise, return it if it's next-error
capable."
;; Check that next-error-buffer has no buffer-local value
;; (i.e. we never navigated to the current buffer from another),
;; and the current buffer is a `next-error' capable buffer.
(if (and (not (local-variable-p 'next-error-buffer))
(next-error-buffer-p (current-buffer) avoid-current
extra-test-inclusive extra-test-exclusive))
(current-buffer)))
(defun next-error-find-buffer (&optional avoid-current
extra-test-inclusive
extra-test-exclusive)
"Return a `next-error' capable buffer.
If AVOID-CURRENT is non-nil, treat the current buffer
as an absolute last resort only.
The function EXTRA-TEST-INCLUSIVE, if non-nil, is called in each buffer
that normally would not qualify. If it returns t, the buffer
in question is treated as usable.
The function EXTRA-TEST-EXCLUSIVE, if non-nil, is called in each buffer
that would normally be considered usable. If it returns nil,
that buffer is rejected."
(or
;; 1. If a customizable function returns a buffer, use it.
(funcall next-error-find-buffer-function avoid-current
extra-test-inclusive
extra-test-exclusive)
;; 2. If next-error-last-buffer is an acceptable buffer, use that.
(if (and next-error-last-buffer
(next-error-buffer-p next-error-last-buffer avoid-current
extra-test-inclusive extra-test-exclusive))
next-error-last-buffer)
;; 3. If the current buffer is acceptable, choose it.
(if (next-error-buffer-p (current-buffer) avoid-current
extra-test-inclusive extra-test-exclusive)
(current-buffer))
;; 4. Look for any acceptable buffer.
(let ((buffers (buffer-list)))
(while (and buffers
(not (next-error-buffer-p
(car buffers) avoid-current
extra-test-inclusive extra-test-exclusive)))
(setq buffers (cdr buffers)))
(car buffers))
;; 5. Use the current buffer as a last resort if it qualifies,
;; even despite AVOID-CURRENT.
(and avoid-current
(next-error-buffer-p (current-buffer) nil
extra-test-inclusive extra-test-exclusive)
(progn
(message "This is the only buffer with error message locations")
(current-buffer)))
;; 6. Give up.
(error "No buffers contain error message locations")))
(defun next-error (&optional arg reset)
"Visit next `next-error' message and corresponding source code.
If all the error messages parsed so far have been processed already,
the message buffer is checked for new ones.
A prefix ARG specifies how many error messages to move;
negative means move back to previous error messages.
Just \\[universal-argument] as a prefix means reparse the error message buffer
and start at the first error.
The RESET argument specifies that we should restart from the beginning.
\\[next-error] normally uses the most recently started
compilation, grep, or occur buffer. It can also operate on any
buffer with output from the \\[compile], \\[grep] commands, or,
more generally, on any buffer in Compilation mode or with
Compilation Minor mode enabled, or any buffer in which
`next-error-function' is bound to an appropriate function.
To specify use of a particular buffer for error messages, type
\\[next-error] in that buffer. You can also use the command
`next-error-select-buffer' to select the buffer to use for the subsequent
invocation of `next-error'.
Once \\[next-error] has chosen the buffer for error messages, it
runs `next-error-hook' with `run-hooks', and stays with that buffer
until you use it in some other buffer that uses Compilation mode
or Compilation Minor mode.
To control which errors are matched, customize the variable
`compilation-error-regexp-alist'."
(interactive "P")
(if (consp arg) (setq reset t arg nil))
(let ((buffer (next-error-find-buffer)))
(when buffer
;; We know here that next-error-function is a valid symbol we can funcall
(with-current-buffer buffer
(funcall next-error-function (prefix-numeric-value arg) reset)
(let ((prev next-error-last-buffer))
(next-error-found buffer (current-buffer))
(when (or next-error-verbose
(not (eq prev next-error-last-buffer)))
(message "%s locus from %s"
(cond (reset "First")
((eq (prefix-numeric-value arg) 0) "Current")
((< (prefix-numeric-value arg) 0) "Previous")
(t "Next"))
next-error-last-buffer)))))))
(defun next-error-internal ()
"Visit the source code corresponding to the `next-error' message at point."
(let ((buffer (current-buffer)))
;; We know here that next-error-function is a valid symbol we can funcall
(funcall next-error-function 0 nil)
(let ((prev next-error-last-buffer))
(next-error-found buffer (current-buffer))
(when (or next-error-verbose
(not (eq prev next-error-last-buffer)))
(message "Current locus from %s" next-error-last-buffer)))))
(defun next-error-found (&optional from-buffer to-buffer)
"Function to call when the next locus is found and displayed.
FROM-BUFFER is a buffer from which next-error navigated,
and TO-BUFFER is a target buffer."
(setq next-error-last-buffer (or from-buffer (current-buffer)))
(when to-buffer
(with-current-buffer to-buffer
(setq next-error-buffer from-buffer)))
(when next-error-recenter
(recenter next-error-recenter))
(funcall next-error-found-function from-buffer to-buffer)
(run-hooks 'next-error-hook))
(defun next-error-select-buffer (buffer)
"Select a `next-error' capable BUFFER and set it as the last used.
This means that the selected buffer becomes the source of locations
for the subsequent invocation of `next-error' or `previous-error'.
Interactively, this command allows selection only among buffers
where `next-error-function' is bound to an appropriate function."
(interactive
(list (get-buffer
(read-buffer "Select next-error buffer: " nil nil
(lambda (b) (next-error-buffer-p (cdr b)))))))
(setq next-error-last-buffer buffer))
(defalias 'goto-next-locus 'next-error)
(defalias 'next-match 'next-error)
(defun previous-error (&optional n)
"Visit previous `next-error' message and corresponding source code.
Prefix arg N says how many error messages to move backwards (or
forwards, if negative).
This operates on the output from the \\[compile] and \\[grep] commands.
See `next-error' for the details."
(interactive "p")
(next-error (- (or n 1))))
(defun first-error (&optional n)
"Restart at the first error.
Visit corresponding source code.
With prefix arg N, visit the source code of the Nth error.
This operates on the output from the \\[compile] command, for instance."
(interactive "p")
(next-error n t))
(defun next-error-no-select (&optional n)
"Move point to the next error in the `next-error' buffer and highlight match.
Prefix arg N says how many error messages to move forwards (or
backwards, if negative).
Finds and highlights the source line like \\[next-error], but does not
select the source buffer."
(interactive "p")
(save-selected-window
(let ((next-error-highlight next-error-highlight-no-select)
(display-buffer-overriding-action
'(nil (inhibit-same-window . t))))
(next-error n))))
(defun previous-error-no-select (&optional n)
"Move point to the previous error in the `next-error' buffer and highlight match.
Prefix arg N says how many error messages to move backwards (or
forwards, if negative).
Finds and highlights the source line like \\[previous-error], but does not
select the source buffer."
(interactive "p")
(next-error-no-select (- (or n 1))))
;; Internal variable for `next-error-follow-mode-post-command-hook'.
(defvar next-error-follow-last-line nil)
(define-minor-mode next-error-follow-minor-mode
"Minor mode for compilation, occur and diff modes.
When turned on, cursor motion in the compilation, grep, occur or diff
buffer causes automatic display of the corresponding source code location."
:group 'next-error :init-value nil :lighter " Fol"
(if (not next-error-follow-minor-mode)
(remove-hook 'post-command-hook 'next-error-follow-mode-post-command-hook t)
(add-hook 'post-command-hook 'next-error-follow-mode-post-command-hook nil t)
(make-local-variable 'next-error-follow-last-line)))
;; Used as a `post-command-hook' by `next-error-follow-mode'
;; for the *Compilation* *grep* and *Occur* buffers.
(defun next-error-follow-mode-post-command-hook ()
(unless (equal next-error-follow-last-line (line-number-at-pos))
(setq next-error-follow-last-line (line-number-at-pos))
(condition-case nil
(let ((compilation-context-lines nil))
(setq compilation-current-error (point))
(next-error-no-select 0))
(error t))))
;;;
(defun fundamental-mode ()
"Major mode not specialized for anything in particular.
Other major modes are defined by comparison with this one."
(interactive)
(kill-all-local-variables)
(run-mode-hooks))
;; Special major modes to view specially formatted data rather than files.
(defvar special-mode-map
(let ((map (make-sparse-keymap)))
(suppress-keymap map)
(define-key map "q" 'quit-window)
(define-key map " " 'scroll-up-command)
(define-key map [?\S-\ ] 'scroll-down-command)
(define-key map "\C-?" 'scroll-down-command)
(define-key map "?" 'describe-mode)
(define-key map "h" 'describe-mode)
(define-key map ">" 'end-of-buffer)
(define-key map "<" 'beginning-of-buffer)
(define-key map "g" 'revert-buffer)
map))
(put 'special-mode 'mode-class 'special)
(define-derived-mode special-mode nil "Special"
"Parent major mode from which special major modes should inherit.
A special major mode is intended to view specially formatted data
rather than files. These modes usually use read-only buffers."
(setq buffer-read-only t))
;; Making and deleting lines.
(defvar self-insert-uses-region-functions nil
"Special hook to tell if `self-insert-command' will use the region.
It must be called via `run-hook-with-args-until-success' with no arguments.
If any function on this hook returns a non-nil value, `delete-selection-mode'
will act on that value (see `delete-selection-helper') and will
usually delete the region. If all the functions on this hook return
nil, it is an indiction that `self-insert-command' needs the region
untouched by `delete-selection-mode' and will itself do whatever is
appropriate with the region.
Any function on `post-self-insert-hook' that acts on the region should
add a function to this hook so that `delete-selection-mode' could
refrain from deleting the region before the `post-self-insert-hook'
functions are called.
This hook is run by `delete-selection-uses-region-p', which see.")
(defvar hard-newline (propertize "\n" 'hard t 'rear-nonsticky '(hard))
"Propertized string representing a hard newline character.")
(defun newline (&optional arg interactive)
"Insert a newline, and move to left margin of the new line if it's blank.
With prefix argument ARG, insert that many newlines.
If `electric-indent-mode' is enabled, this indents the final new line
that it adds, and reindents the preceding line. To just insert
a newline, use \\[electric-indent-just-newline].
If `auto-fill-mode' is enabled, this may cause automatic line
breaking of the preceding line. A non-nil ARG inhibits this.
If `use-hard-newlines' is enabled, the newline is marked with the
text-property `hard'.
A non-nil INTERACTIVE argument means to run the `post-self-insert-hook'."
(interactive "*P\np")
(barf-if-buffer-read-only)
;; Call self-insert so that auto-fill, abbrev expansion etc. happen.
;; Set last-command-event to tell self-insert what to insert.
(let* ((was-page-start (and (bolp) (looking-at page-delimiter)))
(beforepos (point))
(last-command-event ?\n)
;; Don't auto-fill if we have a prefix argument.
(auto-fill-function (if arg nil auto-fill-function))
(arg (prefix-numeric-value arg))
(postproc
;; Do the rest in post-self-insert-hook, because we want to do it
;; *before* other functions on that hook.
(lambda ()
;; Mark the newline(s) `hard'.
(if use-hard-newlines
(set-hard-newline-properties
(- (point) arg) (point)))
;; If the newline leaves the previous line blank, and we
;; have a left margin, delete that from the blank line.
(save-excursion
(goto-char beforepos)
(beginning-of-line)
(and (looking-at "[ \t]$")
(> (current-left-margin) 0)
(delete-region (point)
(line-end-position))))
;; Indent the line after the newline, except in one case:
;; when we added the newline at the beginning of a line that
;; starts a page.
(or was-page-start
(move-to-left-margin nil t)))))
(if (not interactive)
;; FIXME: For non-interactive uses, many calls actually
;; just want (insert "\n"), so maybe we should do just
;; that, so as to avoid the risk of filling or running
;; abbrevs unexpectedly.
(let ((post-self-insert-hook (list postproc)))
(self-insert-command arg))
(unwind-protect
(progn
(add-hook 'post-self-insert-hook postproc nil t)
(self-insert-command arg))
;; We first used let-binding to protect the hook, but that
;; was naive since add-hook affects the symbol-default
;; value of the variable, whereas the let-binding might
;; protect only the buffer-local value.
(remove-hook 'post-self-insert-hook postproc t))))
nil)
(defun set-hard-newline-properties (from to)
(let ((sticky (get-text-property from 'rear-nonsticky)))
(put-text-property from to 'hard 't)
;; If rear-nonsticky is not "t", add 'hard to rear-nonsticky list
(if (and (listp sticky) (not (memq 'hard sticky)))
(put-text-property from (point) 'rear-nonsticky
(cons 'hard sticky)))))
(defun open-line (n)
"Insert a newline and leave point before it.
If there is a fill prefix and/or a `left-margin', insert them on
the new line if the line would have been blank.
With arg N, insert N newlines."
(interactive "*p")
(let* ((do-fill-prefix (and fill-prefix (bolp)))
(do-left-margin (and (bolp) (> (current-left-margin) 0)))
(loc (point-marker))
;; Don't expand an abbrev before point.
(abbrev-mode nil))
(newline n)
(goto-char loc)
(while (> n 0)
(cond ((bolp)
(if do-left-margin (indent-to (current-left-margin)))
(if do-fill-prefix (insert-and-inherit fill-prefix))))
(forward-line 1)
(setq n (1- n)))
(goto-char loc)
;; Necessary in case a margin or prefix was inserted.
(end-of-line)))
(defun split-line (&optional arg)
"Split current line, moving portion beyond point vertically down.
If the current line starts with `fill-prefix', insert it on the new
line as well. With prefix ARG, don't insert `fill-prefix' on new line.
When called from Lisp code, ARG may be a prefix string to copy."
(interactive "*P")
(skip-chars-forward " \t")
(let* ((col (current-column))
(pos (point))
;; What prefix should we check for (nil means don't).
(prefix (cond ((stringp arg) arg)
(arg nil)
(t fill-prefix)))
;; Does this line start with it?
(have-prfx (and prefix
(save-excursion
(beginning-of-line)
(looking-at (regexp-quote prefix))))))
(newline 1)
(if have-prfx (insert-and-inherit prefix))
(indent-to col 0)
(goto-char pos)))
(defun delete-indentation (&optional arg beg end)
"Join this line to previous and fix up whitespace at join.
If there is a fill prefix, delete it from the beginning of this
line.
With prefix ARG, join the current line to the following line.
When BEG and END are non-nil, join all lines in the region they
define. Interactively, BEG and END are, respectively, the start
and end of the region if it is active, else nil. (The region is
ignored if prefix ARG is given.)"
(interactive
(progn (barf-if-buffer-read-only)
(cons current-prefix-arg
(and (use-region-p)
(list (region-beginning) (region-end))))))
;; Consistently deactivate mark even when no text is changed.
(setq deactivate-mark t)
(if (and beg (not arg))
;; Region is active. Go to END, but only if region spans
;; multiple lines.
(and (goto-char beg)
(> end (line-end-position))
(goto-char end))
;; Region is inactive. Set a loop sentinel
;; (subtracting 1 in order to compare less than BOB).
(setq beg (1- (line-beginning-position (and arg 2))))
(when arg (forward-line)))
(let ((prefix (and (> (length fill-prefix) 0)
(regexp-quote fill-prefix))))
(while (and (> (line-beginning-position) beg)
(forward-line 0)
(= (preceding-char) ?\n))
(delete-char -1)
;; If the appended line started with the fill prefix,
;; delete the prefix.
(if (and prefix (looking-at prefix))
(replace-match "" t t))
(fixup-whitespace))))
(defalias 'join-line #'delete-indentation) ; easier to find
(defun delete-blank-lines ()
"On blank line, delete all surrounding blank lines, leaving just one.
On isolated blank line, delete that one.
On nonblank line, delete any immediately following blank lines."
(interactive "*")
(let (thisblank singleblank)
(save-excursion
(beginning-of-line)
(setq thisblank (looking-at "[ \t]*$"))
;; Set singleblank if there is just one blank line here.
(setq singleblank
(and thisblank
(not (looking-at "[ \t]*\n[ \t]*$"))
(or (bobp)
(progn (forward-line -1)
(not (looking-at "[ \t]*$")))))))
;; Delete preceding blank lines, and this one too if it's the only one.
(if thisblank
(progn
(beginning-of-line)
(if singleblank (forward-line 1))
(delete-region (point)
(if (re-search-backward "[^ \t\n]" nil t)
(progn (forward-line 1) (point))
(point-min)))))
;; Delete following blank lines, unless the current line is blank
;; and there are no following blank lines.
(if (not (and thisblank singleblank))
(save-excursion
(end-of-line)
(forward-line 1)
(delete-region (point)
(if (re-search-forward "[^ \t\n]" nil t)
(progn (beginning-of-line) (point))
(point-max)))))
;; Handle the special case where point is followed by newline and eob.
;; Delete the line, leaving point at eob.
(if (looking-at "^[ \t]*\n\\'")
(delete-region (point) (point-max)))))
(defcustom delete-trailing-lines t
"If non-nil, \\[delete-trailing-whitespace] deletes trailing lines.
Trailing lines are deleted only if `delete-trailing-whitespace'
is called on the entire buffer (rather than an active region)."
:type 'boolean
:group 'editing
:version "24.3")
(defun region-modifiable-p (start end)
"Return non-nil if the region contains no read-only text."
(and (not (get-text-property start 'read-only))
(eq end (next-single-property-change start 'read-only nil end))))
(defun delete-trailing-whitespace (&optional start end)
"Delete trailing whitespace between START and END.
If called interactively, START and END are the start/end of the
region if the mark is active, or of the buffer's accessible
portion if the mark is inactive.
This command deletes whitespace characters after the last
non-whitespace character in each line between START and END. It
does not consider formfeed characters to be whitespace.
If this command acts on the entire buffer (i.e. if called
interactively with the mark inactive, or called from Lisp with
END nil), it also deletes all trailing lines at the end of the
buffer if the variable `delete-trailing-lines' is non-nil."
(interactive (progn
(barf-if-buffer-read-only)
(if (use-region-p)
(list (region-beginning) (region-end))
(list nil nil))))
(save-match-data
(save-excursion
(let ((end-marker (and end (copy-marker end))))
(goto-char (or start (point-min)))
(with-syntax-table (make-syntax-table (syntax-table))
;; Don't delete formfeeds, even if they are considered whitespace.
(modify-syntax-entry ?\f "_")
(while (re-search-forward "\\s-$" end-marker t)
(skip-syntax-backward "-" (line-beginning-position))
(let ((b (point)) (e (match-end 0)))
(if (region-modifiable-p b e)
(delete-region b e)
(goto-char e)))))
(if end
(set-marker end-marker nil)
;; Delete trailing empty lines.
(and delete-trailing-lines
;; Really the end of buffer.
(= (goto-char (point-max)) (1+ (buffer-size)))
(<= (skip-chars-backward "\n") -2)
(region-modifiable-p (1+ (point)) (point-max))
(delete-region (1+ (point)) (point-max)))))))
;; Return nil for the benefit of `write-file-functions'.
nil)
(defun newline-and-indent (&optional arg)
"Insert a newline, then indent according to major mode.
Indentation is done using the value of `indent-line-function'.
In programming language modes, this is the same as TAB.
In some text modes, where TAB inserts a tab, this command indents to the
column specified by the function `current-left-margin'.
With ARG, perform this action that many times."
(interactive "*p")
(delete-horizontal-space t)
(unless arg
(setq arg 1))
(dotimes (_ arg)
(newline nil t)
(indent-according-to-mode)))
(defun reindent-then-newline-and-indent ()
"Reindent current line, insert newline, then indent the new line.
Indentation of both lines is done according to the current major mode,
which means calling the current value of `indent-line-function'.
In programming language modes, this is the same as TAB.
In some text modes, where TAB inserts a tab, this indents to the
column specified by the function `current-left-margin'."
(interactive "*")
(let ((pos (point)))
;; Be careful to insert the newline before indenting the line.
;; Otherwise, the indentation might be wrong.
(newline)
(save-excursion
(goto-char pos)
;; We are at EOL before the call to indent-according-to-mode, and
;; after it we usually are as well, but not always. We tried to
;; address it with `save-excursion' but that uses a normal marker
;; whereas we need `move after insertion', so we do the save/restore
;; by hand.
(setq pos (copy-marker pos t))
(indent-according-to-mode)
(goto-char pos)
;; Remove the trailing white-space after indentation because
;; indentation may introduce the whitespace.
(delete-horizontal-space t))
(indent-according-to-mode)))
(defcustom read-quoted-char-radix 8
"Radix for \\[quoted-insert] and other uses of `read-quoted-char'.
Legitimate radix values are 8, 10 and 16."
:type '(choice (const 8) (const 10) (const 16))
:group 'editing-basics)
(defun read-quoted-char (&optional prompt)
"Like `read-char', but do not allow quitting.
Also, if the first character read is an octal digit,
we read any number of octal digits and return the
specified character code. Any nondigit terminates the sequence.
If the terminator is RET, it is discarded;
any other terminator is used itself as input.
The optional argument PROMPT specifies a string to use to prompt the user.
The variable `read-quoted-char-radix' controls which radix to use
for numeric input."
(let ((message-log-max nil)
(help-events (delq nil (mapcar (lambda (c) (unless (characterp c) c))
help-event-list)))
done (first t) (code 0) char translated)
(while (not done)
(let ((inhibit-quit first)
;; Don't let C-h or other help chars get the help
;; message--only help function keys. See bug#16617.
(help-char nil)
(help-event-list help-events)
(help-form
"Type the special character you want to use,
or the octal character code.
RET terminates the character code and is discarded;
any other non-digit terminates the character code and is then used as input."))
(setq char (read-event (and prompt (format "%s-" prompt)) t))
(if inhibit-quit (setq quit-flag nil)))
;; Translate TAB key into control-I ASCII character, and so on.
;; Note: `read-char' does it using the `ascii-character' property.
;; We tried using read-key instead, but that disables the keystroke
;; echo produced by 'C-q', see bug#24635.
(let ((translation (lookup-key local-function-key-map (vector char))))
(setq translated (if (arrayp translation)
(aref translation 0)
char)))
(if (integerp translated)
(setq translated (char-resolve-modifiers translated)))
(cond ((null translated))
((not (integerp translated))
(setq unread-command-events (list char)
done t))
((/= (logand translated ?\M-\^@) 0)
;; Turn a meta-character into a character with the 0200 bit set.
(setq code (logior (logand translated (lognot ?\M-\^@)) 128)
done t))
((and (<= ?0 translated)
(< translated (+ ?0 (min 10 read-quoted-char-radix))))
(setq code (+ (* code read-quoted-char-radix) (- translated ?0)))
(and prompt (setq prompt (message "%s %c" prompt translated))))
((and (<= ?a (downcase translated))
(< (downcase translated)
(+ ?a -10 (min 36 read-quoted-char-radix))))
(setq code (+ (* code read-quoted-char-radix)
(+ 10 (- (downcase translated) ?a))))
(and prompt (setq prompt (message "%s %c" prompt translated))))
((and (not first) (eq translated ?\C-m))
(setq done t))
((not first)
(setq unread-command-events (list char)
done t))
(t (setq code translated
done t)))
(setq first nil))
code))
(defun quoted-insert (arg)
"Read next input character and insert it.
This is useful for inserting control characters.
With argument, insert ARG copies of the character.
If the first character you type after this command is an octal digit,
you should type a sequence of octal digits that specify a character code.
Any nondigit terminates the sequence. If the terminator is a RET,
it is discarded; any other terminator is used itself as input.
The variable `read-quoted-char-radix' specifies the radix for this feature;
set it to 10 or 16 to use decimal or hex instead of octal.
In overwrite mode, this function inserts the character anyway, and
does not handle octal digits specially. This means that if you use
overwrite as your normal editing mode, you can use this function to
insert characters when necessary.
In binary overwrite mode, this function does overwrite, and octal
digits are interpreted as a character code. This is intended to be
useful for editing binary files."
(interactive "*p")
(let* ((char
;; Avoid "obsolete" warnings for translation-table-for-input.
(with-no-warnings
(let (translation-table-for-input input-method-function)
(if (or (not overwrite-mode)
(eq overwrite-mode 'overwrite-mode-binary))
(read-quoted-char)
(read-char))))))
;; This used to assume character codes 0240 - 0377 stand for
;; characters in some single-byte character set, and converted them
;; to Emacs characters. But in 23.1 this feature is deprecated
;; in favor of inserting the corresponding Unicode characters.
;; (if (and enable-multibyte-characters
;; (>= char ?\240)
;; (<= char ?\377))
;; (setq char (unibyte-char-to-multibyte char)))
(unless (characterp char)
(user-error "%s is not a valid character"
(key-description (vector char))))
(if (> arg 0)
(if (eq overwrite-mode 'overwrite-mode-binary)
(delete-char arg)))
(while (> arg 0)
(insert-and-inherit char)
(setq arg (1- arg)))))
(defun forward-to-indentation (&optional arg)
"Move forward ARG lines and position at first nonblank character."
(interactive "^p")
(forward-line (or arg 1))
(skip-chars-forward " \t"))
(defun backward-to-indentation (&optional arg)
"Move backward ARG lines and position at first nonblank character."
(interactive "^p")
(forward-line (- (or arg 1)))
(skip-chars-forward " \t"))
(defun back-to-indentation ()
"Move point to the first non-whitespace character on this line."
(interactive "^")
(beginning-of-line 1)
(skip-syntax-forward " " (line-end-position))
;; Move back over chars that have whitespace syntax but have the p flag.
(backward-prefix-chars))
(defun fixup-whitespace ()
"Fixup white space between objects around point.
Leave one space or none, according to the context."
(interactive "*")
(save-excursion
(delete-horizontal-space)
(if (or (looking-at "^\\|$\\|\\s)")
(save-excursion (forward-char -1)
(looking-at "$\\|\\s(\\|\\s'")))
nil
(insert ?\s))))
(defun delete-horizontal-space (&optional backward-only)
"Delete all spaces and tabs around point.
If BACKWARD-ONLY is non-nil, delete them only before point."
(interactive "*P")
(let ((orig-pos (point)))
(delete-region
(if backward-only
orig-pos
(progn
(skip-chars-forward " \t")
(constrain-to-field nil orig-pos t)))
(progn
(skip-chars-backward " \t")
(constrain-to-field nil orig-pos)))))
(defun just-one-space (&optional n)
"Delete all spaces and tabs around point, leaving one space (or N spaces).
If N is negative, delete newlines as well, leaving -N spaces.
See also `cycle-spacing'."
(interactive "*p")
(cycle-spacing n nil 'single-shot))
(defvar cycle-spacing--context nil
"Store context used in consecutive calls to `cycle-spacing' command.
The first time `cycle-spacing' runs, it saves in this variable:
its N argument, the original point position, and the original spacing
around point.")
(defun cycle-spacing (&optional n preserve-nl-back mode)
"Manipulate whitespace around point in a smart way.
In interactive use, this function behaves differently in successive
consecutive calls.
The first call in a sequence acts like `just-one-space'.
It deletes all spaces and tabs around point, leaving one space
\(or N spaces). N is the prefix argument. If N is negative,
it deletes newlines as well, leaving -N spaces.
\(If PRESERVE-NL-BACK is non-nil, it does not delete newlines before point.)
The second call in a sequence deletes all spaces.
The third call in a sequence restores the original whitespace (and point).
If MODE is `single-shot', it performs only the first step in the sequence.
If MODE is `fast' and the first step would not result in any change
\(i.e., there are exactly (abs N) spaces around point),
the function goes straight to the second step.
Repeatedly calling the function with different values of N starts a
new sequence each time."
(interactive "*p")
(let ((orig-pos (point))
(skip-characters (if (and n (< n 0)) " \t\n\r" " \t"))
(num (abs (or n 1))))
(skip-chars-backward (if preserve-nl-back " \t" skip-characters))
(constrain-to-field nil orig-pos)
(cond
;; Command run for the first time, single-shot mode or different argument
((or (eq 'single-shot mode)
(not (equal last-command this-command))
(not cycle-spacing--context)
(not (eq (car cycle-spacing--context) n)))
(let* ((start (point))
(num (- num (skip-chars-forward " " (+ num (point)))))
(mid (point))
(end (progn
(skip-chars-forward skip-characters)
(constrain-to-field nil orig-pos t))))
(setq cycle-spacing--context ;; Save for later.
;; Special handling for case where there was no space at all.
(unless (= start end)
(cons n (cons orig-pos (buffer-substring start (point))))))
;; If this run causes no change in buffer content, delete all spaces,
;; otherwise delete all excess spaces.
(delete-region (if (and (eq mode 'fast) (zerop num) (= mid end))
start mid) end)
(insert (make-string num ?\s))))
;; Command run for the second time.
((not (equal orig-pos (point)))
(delete-region (point) orig-pos))
;; Command run for the third time.
(t
(insert (cddr cycle-spacing--context))
(goto-char (cadr cycle-spacing--context))
(setq cycle-spacing--context nil)))))
(defun beginning-of-buffer (&optional arg)
"Move point to the beginning of the buffer.
With numeric arg N, put point N/10 of the way from the beginning.
If the buffer is narrowed, this command uses the beginning of the
accessible part of the buffer.
Push mark at previous position, unless either a \\[universal-argument] prefix
is supplied, or Transient Mark mode is enabled and the mark is active."
(declare (interactive-only "use `(goto-char (point-min))' instead."))
(interactive "^P")
(or (consp arg)
(region-active-p)
(push-mark))
(let ((size (- (point-max) (point-min))))
(goto-char (if (and arg (not (consp arg)))
(+ (point-min) 1
(/ (* size (prefix-numeric-value arg)) 10))
(point-min))))
(if (and arg (not (consp arg))) (forward-line 1)))
(defun end-of-buffer (&optional arg)
"Move point to the end of the buffer.
With numeric arg N, put point N/10 of the way from the end.
If the buffer is narrowed, this command uses the end of the
accessible part of the buffer.
Push mark at previous position, unless either a \\[universal-argument] prefix
is supplied, or Transient Mark mode is enabled and the mark is active."
(declare (interactive-only "use `(goto-char (point-max))' instead."))
(interactive "^P")
(or (consp arg) (region-active-p) (push-mark))
(let ((size (- (point-max) (point-min))))
(goto-char (if (and arg (not (consp arg)))
(- (point-max)
(/ (* size (prefix-numeric-value arg)) 10))
(point-max))))
;; If we went to a place in the middle of the buffer,
;; adjust it to the beginning of a line.
(cond ((and arg (not (consp arg))) (forward-line 1))
((and (eq (current-buffer) (window-buffer))
(> (point) (window-end nil t)))
;; If the end of the buffer is not already on the screen,
;; then scroll specially to put it near, but not at, the bottom.
(overlay-recenter (point))
(recenter -3))))
(defcustom delete-active-region t
"Whether single-char deletion commands delete an active region.
This has an effect only if Transient Mark mode is enabled, and
affects `delete-forward-char' and `delete-backward-char', though
not `delete-char'.
If the value is the symbol `kill', the active region is killed
instead of deleted."
:type '(choice (const :tag "Delete active region" t)
(const :tag "Kill active region" kill)
(const :tag "Do ordinary deletion" nil))
:group 'killing
:version "24.1")
(setq region-extract-function
(lambda (method)
(when (region-beginning)
(cond
((eq method 'bounds)
(list (cons (region-beginning) (region-end))))
((eq method 'delete-only)
(delete-region (region-beginning) (region-end)))
(t
(filter-buffer-substring (region-beginning) (region-end) method))))))
(defvar region-insert-function
(lambda (lines)
(let ((first t))
(while lines
(or first
(insert ?\n))
(insert-for-yank (car lines))
(setq lines (cdr lines)
first nil))))
"Function to insert the region's content.
Called with one argument LINES.
Insert the region as a list of lines.")
(defun delete-backward-char (n &optional killflag)
"Delete the previous N characters (following if N is negative).
If Transient Mark mode is enabled, the mark is active, and N is 1,
delete the text in the region and deactivate the mark instead.
To disable this, set option `delete-active-region' to nil.
Optional second arg KILLFLAG, if non-nil, means to kill (save in
kill ring) instead of delete. If called interactively, a numeric
prefix argument specifies N, and KILLFLAG is also set if a prefix
argument is used.
When killing, the killed text is filtered by
`filter-buffer-substring' before it is saved in the kill ring, so
the actual saved text might be different from what was killed.
In Overwrite mode, single character backward deletion may replace
tabs with spaces so as to back over columns, unless point is at
the end of the line."
(declare (interactive-only delete-char))
(interactive "p\nP")
(unless (integerp n)
(signal 'wrong-type-argument (list 'integerp n)))
(cond ((and (use-region-p)
delete-active-region
(= n 1))
;; If a region is active, kill or delete it.
(if (eq delete-active-region 'kill)
(kill-region (region-beginning) (region-end) 'region)
(funcall region-extract-function 'delete-only)))
;; In Overwrite mode, maybe untabify while deleting
((null (or (null overwrite-mode)
(<= n 0)
(memq (char-before) '(?\t ?\n))
(eobp)
(eq (char-after) ?\n)))
(let ((ocol (current-column)))
(delete-char (- n) killflag)
(save-excursion
(insert-char ?\s (- ocol (current-column)) nil))))
;; Otherwise, do simple deletion.
(t (delete-char (- n) killflag))))
(defun delete-forward-char (n &optional killflag)
"Delete the following N characters (previous if N is negative).
If Transient Mark mode is enabled, the mark is active, and N is 1,
delete the text in the region and deactivate the mark instead.
To disable this, set variable `delete-active-region' to nil.
Optional second arg KILLFLAG non-nil means to kill (save in kill
ring) instead of delete. If called interactively, a numeric
prefix argument specifies N, and KILLFLAG is also set if a prefix
argument is used.
When killing, the killed text is filtered by
`filter-buffer-substring' before it is saved in the kill ring, so
the actual saved text might be different from what was killed."
(declare (interactive-only delete-char))
(interactive "p\nP")
(unless (integerp n)
(signal 'wrong-type-argument (list 'integerp n)))
(cond ((and (use-region-p)
delete-active-region
(= n 1))
;; If a region is active, kill or delete it.
(if (eq delete-active-region 'kill)
(kill-region (region-beginning) (region-end) 'region)
(funcall region-extract-function 'delete-only)))
;; Otherwise, do simple deletion.
(t (delete-char n killflag))))
(defun mark-whole-buffer ()
"Put point at beginning and mark at end of buffer.
Also push mark at point before pushing mark at end of buffer.
If narrowing is in effect, uses only the accessible part of the buffer.
You probably should not use this function in Lisp programs;
it is usually a mistake for a Lisp function to use any subroutine
that uses or sets the mark."
(declare (interactive-only t))
(interactive)
(push-mark)
(push-mark (point-max) nil t)
;; This is really `point-min' in most cases, but if we're in the
;; minibuffer, this is at the end of the prompt.
(goto-char (minibuffer-prompt-end)))
;; Counting lines, one way or another.
(defun goto-line (line &optional buffer)
"Go to LINE, counting from line 1 at beginning of buffer.
If called interactively, a numeric prefix argument specifies
LINE; without a numeric prefix argument, read LINE from the
minibuffer.
If optional argument BUFFER is non-nil, switch to that buffer and
move to line LINE there. If called interactively with \\[universal-argument]
as argument, BUFFER is the most recently selected other buffer.
Prior to moving point, this function sets the mark (without
activating it), unless Transient Mark mode is enabled and the
mark is already active.
This function is usually the wrong thing to use in a Lisp program.
What you probably want instead is something like:
(goto-char (point-min))
(forward-line (1- N))
If at all possible, an even better solution is to use char counts
rather than line counts."
(declare (interactive-only forward-line))
(interactive
(if (and current-prefix-arg (not (consp current-prefix-arg)))
(list (prefix-numeric-value current-prefix-arg))
;; Look for a default, a number in the buffer at point.
(let* ((default
(save-excursion
(skip-chars-backward "0-9")
(if (looking-at "[0-9]")
(string-to-number
(buffer-substring-no-properties
(point)
(progn (skip-chars-forward "0-9")
(point)))))))
;; Decide if we're switching buffers.
(buffer
(if (consp current-prefix-arg)
(other-buffer (current-buffer) t)))
(buffer-prompt
(if buffer
(concat " in " (buffer-name buffer))
"")))
;; Read the argument, offering that number (if any) as default.
(list (read-number (format "Goto line%s: " buffer-prompt)
(list default (line-number-at-pos)))
buffer))))
;; Switch to the desired buffer, one way or another.
(if buffer
(let ((window (get-buffer-window buffer)))
(if window (select-window window)
(switch-to-buffer-other-window buffer))))
;; Leave mark at previous position
(or (region-active-p) (push-mark))
;; Move to the specified line number in that buffer.
(save-restriction
(widen)
(goto-char (point-min))
(if (eq selective-display t)
(re-search-forward "[\n\C-m]" nil 'end (1- line))
(forward-line (1- line)))))
(defun count-words-region (start end &optional arg)
"Count the number of words in the region.
If called interactively, print a message reporting the number of
lines, words, and characters in the region (whether or not the
region is active); with prefix ARG, report for the entire buffer
rather than the region.
If called from Lisp, return the number of words between positions
START and END."
(interactive (if current-prefix-arg
(list nil nil current-prefix-arg)
(list (region-beginning) (region-end) nil)))
(cond ((not (called-interactively-p 'any))
(count-words start end))
(arg
(count-words--buffer-message))
(t
(count-words--message "Region" start end))))
(defun count-words (start end)
"Count words between START and END.
If called interactively, START and END are normally the start and
end of the buffer; but if the region is active, START and END are
the start and end of the region. Print a message reporting the
number of lines, words, and chars.
If called from Lisp, return the number of words between START and
END, without printing any message."
(interactive (list nil nil))
(cond ((not (called-interactively-p 'any))
(let ((words 0))
(save-excursion
(save-restriction
(narrow-to-region start end)
(goto-char (point-min))
(while (forward-word-strictly 1)
(setq words (1+ words)))))
words))
((use-region-p)
(call-interactively 'count-words-region))
(t
(count-words--buffer-message))))
(defun count-words--buffer-message ()
(count-words--message
(if (buffer-narrowed-p) "Narrowed part of buffer" "Buffer")
(point-min) (point-max)))
(defun count-words--message (str start end)
(let ((lines (count-lines start end))
(words (count-words start end))
(chars (- end start)))
(message "%s has %d line%s, %d word%s, and %d character%s."
str
lines (if (= lines 1) "" "s")
words (if (= words 1) "" "s")
chars (if (= chars 1) "" "s"))))
(define-obsolete-function-alias 'count-lines-region 'count-words-region "24.1")
(defun what-line ()
"Print the current buffer line number and narrowed line number of point."
(interactive)
(let ((start (point-min))
(n (line-number-at-pos)))
(if (= start 1)
(message "Line %d" n)
(save-excursion
(save-restriction
(widen)
(message "line %d (narrowed line %d)"
(+ n (line-number-at-pos start) -1) n))))))
(defun count-lines (start end)
"Return number of lines between START and END.
This is usually the number of newlines between them,
but can be one more if START is not equal to END
and the greater of them is not at the start of a line."
(save-excursion
(save-restriction
(narrow-to-region start end)
(goto-char (point-min))
(if (eq selective-display t)
(save-match-data
(let ((done 0))
(while (re-search-forward "[\n\C-m]" nil t 40)
(setq done (+ 40 done)))
(while (re-search-forward "[\n\C-m]" nil t 1)
(setq done (+ 1 done)))
(goto-char (point-max))
(if (and (/= start end)
(not (bolp)))
(1+ done)
done)))
(- (buffer-size) (forward-line (buffer-size)))))))
(defun line-number-at-pos (&optional pos absolute)
"Return buffer line number at position POS.
If POS is nil, use current buffer location.
If ABSOLUTE is nil, the default, counting starts
at (point-min), so the value refers to the contents of the
accessible portion of the (potentially narrowed) buffer. If
ABSOLUTE is non-nil, ignore any narrowing and return the
absolute line number."
(save-restriction
(when absolute
(widen))
(let ((opoint (or pos (point))) start)
(save-excursion
(goto-char (point-min))
(setq start (point))
(goto-char opoint)
(forward-line 0)
(1+ (count-lines start (point)))))))
(defcustom what-cursor-show-names nil
"Whether to show character names in `what-cursor-position'."
:type 'boolean
:version "27.1"
:group 'editing-basics)
(defun what-cursor-position (&optional detail)
"Print info on cursor position (on screen and within buffer).
Also describe the character after point, and give its character
code in octal, decimal and hex. If `what-cursor-show-names' is
non-nil, additionally show the name of the character.
For a non-ASCII multibyte character, also give its encoding in the
buffer's selected coding system if the coding system encodes the
character safely. If the character is encoded into one byte, that
code is shown in hex. If the character is encoded into more than one
byte, just \"...\" is shown.
In addition, with prefix argument, show details about that character
in *Help* buffer. See also the command `describe-char'."
(interactive "P")
(let* ((char (following-char))
(char-name (and what-cursor-show-names
(or (get-char-code-property char 'name)
(get-char-code-property char 'old-name))))
(char-name-fmt (if char-name
(format ", %s" char-name)
""))
(bidi-fixer
;; If the character is one of LRE, LRO, RLE, RLO, it will
;; start a directional embedding, which could completely
;; disrupt the rest of the line (e.g., RLO will display the
;; rest of the line right-to-left). So we put an invisible
;; PDF character after these characters, to end the
;; embedding, which eliminates any effects on the rest of
;; the line. For RLE and RLO we also append an invisible
;; LRM, to avoid reordering the following numerical
;; characters. For LRI/RLI/FSI we append a PDI.
(cond ((memq char '(?\x202a ?\x202d))
(propertize (string ?\x202c) 'invisible t))
((memq char '(?\x202b ?\x202e))
(propertize (string ?\x202c ?\x200e) 'invisible t))
((memq char '(?\x2066 ?\x2067 ?\x2068))
(propertize (string ?\x2069) 'invisible t))
;; Strong right-to-left characters cause reordering of
;; the following numerical characters which show the
;; codepoint, so append LRM to countermand that.
((memq (get-char-code-property char 'bidi-class) '(R AL))
(propertize (string ?\x200e) 'invisible t))
(t
"")))
(beg (point-min))
(end (point-max))
(pos (point))
(total (buffer-size))
(percent (round (* 100.0 (1- pos)) (max 1 total)))
(hscroll (if (= (window-hscroll) 0)
""
(format " Hscroll=%d" (window-hscroll))))
(col (current-column)))
(if (= pos end)
(if (or (/= beg 1) (/= end (1+ total)))
(message "point=%d of %d (%d%%) <%d-%d> column=%d%s"
pos total percent beg end col hscroll)
(message "point=%d of %d (EOB) column=%d%s"
pos total col hscroll))
(let ((coding buffer-file-coding-system)
encoded encoding-msg display-prop under-display)
(if (or (not coding)
(eq (coding-system-type coding) t))
(setq coding (default-value 'buffer-file-coding-system)))
(if (eq (char-charset char) 'eight-bit)
(setq encoding-msg
(format "(%d, #o%o, #x%x%s, raw-byte)" char char char char-name-fmt))
;; Check if the character is displayed with some `display'
;; text property. In that case, set under-display to the
;; buffer substring covered by that property.
(setq display-prop (get-char-property pos 'display))
(if display-prop
(let ((to (or (next-single-char-property-change pos 'display)
(point-max))))
(if (< to (+ pos 4))
(setq under-display "")
(setq under-display "..."
to (+ pos 4)))
(setq under-display
(concat (buffer-substring-no-properties pos to)
under-display)))
(setq encoded (and (>= char 128) (encode-coding-char char coding))))
(setq encoding-msg
(if display-prop
(if (not (stringp display-prop))
(format "(%d, #o%o, #x%x%s, part of display \"%s\")"
char char char char-name-fmt under-display)
(format "(%d, #o%o, #x%x%s, part of display \"%s\"->\"%s\")"
char char char char-name-fmt under-display display-prop))
(if encoded
(format "(%d, #o%o, #x%x%s, file %s)"
char char char char-name-fmt
(if (> (length encoded) 1)
"..."
(encoded-string-description encoded coding)))
(format "(%d, #o%o, #x%x%s)" char char char char-name-fmt)))))
(if detail
;; We show the detailed information about CHAR.
(describe-char (point)))
(if (or (/= beg 1) (/= end (1+ total)))
(message "Char: %s%s %s point=%d of %d (%d%%) <%d-%d> column=%d%s"
(if (< char 256)
(single-key-description char)
(buffer-substring-no-properties (point) (1+ (point))))
bidi-fixer
encoding-msg pos total percent beg end col hscroll)
(message "Char: %s%s %s point=%d of %d (%d%%) column=%d%s"
(if enable-multibyte-characters
(if (< char 128)
(single-key-description char)
(buffer-substring-no-properties (point) (1+ (point))))
(single-key-description char))
bidi-fixer encoding-msg pos total percent col hscroll))))))
;; Initialize read-expression-map. It is defined at C level.
(defvar read-expression-map
(let ((m (make-sparse-keymap)))
(define-key m "\M-\t" 'completion-at-point)
;; Might as well bind TAB to completion, since inserting a TAB char is
;; much too rarely useful.
(define-key m "\t" 'completion-at-point)
(set-keymap-parent m minibuffer-local-map)
m))
(defun read-minibuffer (prompt &optional initial-contents)
"Return a Lisp object read using the minibuffer, unevaluated.
Prompt with PROMPT. If non-nil, optional second arg INITIAL-CONTENTS
is a string to insert in the minibuffer before reading.
\(INITIAL-CONTENTS can also be a cons of a string and an integer.
Such arguments are used as in `read-from-minibuffer'.)"
;; Used for interactive spec `x'.
(read-from-minibuffer prompt initial-contents minibuffer-local-map
t 'minibuffer-history))
(defun eval-minibuffer (prompt &optional initial-contents)
"Return value of Lisp expression read using the minibuffer.
Prompt with PROMPT. If non-nil, optional second arg INITIAL-CONTENTS
is a string to insert in the minibuffer before reading.
\(INITIAL-CONTENTS can also be a cons of a string and an integer.
Such arguments are used as in `read-from-minibuffer'.)"
;; Used for interactive spec `X'.
(eval (read--expression prompt initial-contents)))
(defvar minibuffer-completing-symbol nil
"Non-nil means completing a Lisp symbol in the minibuffer.")
(make-obsolete-variable 'minibuffer-completing-symbol nil "24.1" 'get)
(defvar minibuffer-default nil
"The current default value or list of default values in the minibuffer.
The functions `read-from-minibuffer' and `completing-read' bind
this variable locally.")
(defcustom eval-expression-print-level 4
"Value for `print-level' while printing value in `eval-expression'.
A value of nil means no limit."
:group 'lisp
:type '(choice (const :tag "No Limit" nil) integer)
:version "21.1")
(defcustom eval-expression-print-length 12
"Value for `print-length' while printing value in `eval-expression'.
A value of nil means no limit."
:group 'lisp
:type '(choice (const :tag "No Limit" nil) integer)
:version "21.1")
(defcustom eval-expression-debug-on-error t
"If non-nil set `debug-on-error' to t in `eval-expression'.
If nil, don't change the value of `debug-on-error'."
:group 'lisp
:type 'boolean
:version "21.1")
(defcustom eval-expression-print-maximum-character 127
"The largest integer that will be displayed as a character.
This affects printing by `eval-expression' (via
`eval-expression-print-format')."
:group 'lisp
:type `(choice (const :tag "ASCII characters" 127)
(const :tag "All characters" ,(max-char))
(integer :tag "Max codepoint to display as character"))
:version "26.1")
(defun eval-expression-print-format (value)
"If VALUE is an integer, return a specially formatted string.
This string will typically look like \" (#o1, #x1, ?\\C-a)\".
If VALUE is not an integer, return nil.
This function is used by commands like `eval-expression' that
display the result of expression evaluation."
(when (integerp value)
(let ((char-string
(and (characterp value)
(<= value eval-expression-print-maximum-character)
(char-displayable-p value)
(prin1-char value))))
(if char-string
(format " (#o%o, #x%x, %s)" value value char-string)
(format " (#o%o, #x%x)" value value)))))
(defvar eval-expression-minibuffer-setup-hook nil
"Hook run by `eval-expression' when entering the minibuffer.")
(defun read--expression (prompt &optional initial-contents)
(let ((minibuffer-completing-symbol t))
(minibuffer-with-setup-hook
(lambda ()
;; FIXME: call emacs-lisp-mode (see also
;; `eldoc--eval-expression-setup')?
(add-hook 'completion-at-point-functions
#'elisp-completion-at-point nil t)
(run-hooks 'eval-expression-minibuffer-setup-hook))
(read-from-minibuffer prompt initial-contents
read-expression-map t
'read-expression-history))))
(defun eval-expression-get-print-arguments (prefix-argument)
"Get arguments for commands that print an expression result.
Returns a list (INSERT-VALUE NO-TRUNCATE CHAR-PRINT-LIMIT)
based on PREFIX-ARG. This function determines the interpretation
of the prefix argument for `eval-expression' and
`eval-last-sexp'."
(let ((num (prefix-numeric-value prefix-argument)))
(list (not (memq prefix-argument '(- nil)))
(= num 0)
(cond ((not (memq prefix-argument '(0 -1 - nil))) nil)
((= num -1) most-positive-fixnum)
(t eval-expression-print-maximum-character)))))
;; We define this, rather than making `eval' interactive,
;; for the sake of completion of names like eval-region, eval-buffer.
(defun eval-expression (exp &optional insert-value no-truncate char-print-limit)
"Evaluate EXP and print value in the echo area.
When called interactively, read an Emacs Lisp expression and
evaluate it. Value is also consed on to front of the variable
`values'. Optional argument INSERT-VALUE non-nil (interactively,
with a non `-' prefix argument) means insert the result into the
current buffer instead of printing it in the echo area.
Normally, this function truncates long output according to the
value of the variables `eval-expression-print-length' and
`eval-expression-print-level'. When NO-TRUNCATE is
non-nil (interactively, with a prefix argument of zero), however,
there is no such truncation.
If the resulting value is an integer, and CHAR-PRINT-LIMIT is
non-nil (interactively, unless given a non-zero prefix argument)
it will be printed in several additional formats (octal,
hexadecimal, and character). The character format is used only
if the value is below CHAR-PRINT-LIMIT (interactively, if the
prefix argument is -1 or the value doesn't exceed
`eval-expression-print-maximum-character').
Runs the hook `eval-expression-minibuffer-setup-hook' on entering the
minibuffer.
If `eval-expression-debug-on-error' is non-nil, which is the default,
this command arranges for all errors to enter the debugger."
(interactive
(cons (read--expression "Eval: ")
(eval-expression-get-print-arguments current-prefix-arg)))
(if (null eval-expression-debug-on-error)
(push (eval (let ((lexical-binding t)) (macroexpand-all exp)) t)
values)
(let ((old-value (make-symbol "t")) new-value)
;; Bind debug-on-error to something unique so that we can
;; detect when evalled code changes it.
(let ((debug-on-error old-value))
(push (eval (let ((lexical-binding t)) (macroexpand-all exp)) t)
values)
(setq new-value debug-on-error))
;; If evalled code has changed the value of debug-on-error,
;; propagate that change to the global binding.
(unless (eq old-value new-value)
(setq debug-on-error new-value))))
(let ((print-length (unless no-truncate eval-expression-print-length))
(print-level (unless no-truncate eval-expression-print-level))
(eval-expression-print-maximum-character char-print-limit)
(deactivate-mark))
(let ((out (if insert-value (current-buffer) t)))
(prog1
(prin1 (car values) out)
(let ((str (and char-print-limit
(eval-expression-print-format (car values)))))
(when str (princ str out)))))))
(defun edit-and-eval-command (prompt command)
"Prompting with PROMPT, let user edit COMMAND and eval result.
COMMAND is a Lisp expression. Let user edit that expression in
the minibuffer, then read and evaluate the result."
(let ((command
(let ((print-level nil)
(minibuffer-history-sexp-flag (1+ (minibuffer-depth))))
(unwind-protect
(read-from-minibuffer prompt
(prin1-to-string command)
read-expression-map t
'command-history)
;; If command was added to command-history as a string,
;; get rid of that. We want only evaluable expressions there.
(when (stringp (car command-history))
(pop command-history))))))
(add-to-history 'command-history command)
(eval command)))
(defun repeat-complex-command (arg)
"Edit and re-evaluate last complex command, or ARGth from last.
A complex command is one that used the minibuffer.
The command is placed in the minibuffer as a Lisp form for editing.
The result is executed, repeating the command as changed.
If the command has been changed or is not the most recent previous
command it is added to the front of the command history.
You can use the minibuffer history commands \
\\<minibuffer-local-map>\\[next-history-element] and \\[previous-history-element]
to get different commands to edit and resubmit."
(interactive "p")
(let ((elt (nth (1- arg) command-history))
newcmd)
(if elt
(progn
(setq newcmd
(let ((print-level nil)
(minibuffer-history-position arg)
(minibuffer-history-sexp-flag (1+ (minibuffer-depth))))
(unwind-protect
(read-from-minibuffer
"Redo: " (prin1-to-string elt) read-expression-map t
(cons 'command-history arg))
;; If command was added to command-history as a
;; string, get rid of that. We want only
;; evaluable expressions there.
(when (stringp (car command-history))
(pop command-history)))))
(add-to-history 'command-history newcmd)
(apply #'funcall-interactively
(car newcmd)
(mapcar (lambda (e) (eval e t)) (cdr newcmd))))
(if command-history
(error "Argument %d is beyond length of command history" arg)
(error "There are no previous complex commands to repeat")))))
(defvar extended-command-history nil)
(defvar execute-extended-command--last-typed nil)
(defun read-extended-command ()
"Read command name to invoke in `execute-extended-command'."
(minibuffer-with-setup-hook
(lambda ()
(add-hook 'post-self-insert-hook
(lambda ()
(setq execute-extended-command--last-typed
(minibuffer-contents)))
nil 'local)
(set (make-local-variable 'minibuffer-default-add-function)
(lambda ()
;; Get a command name at point in the original buffer
;; to propose it after M-n.
(with-current-buffer (window-buffer (minibuffer-selected-window))
(and (commandp (function-called-at-point))
(format "%S" (function-called-at-point)))))))
;; Read a string, completing from and restricting to the set of
;; all defined commands. Don't provide any initial input.
;; Save the command read on the extended-command history list.
(completing-read
(concat (cond
((eq current-prefix-arg '-) "- ")
((and (consp current-prefix-arg)
(eq (car current-prefix-arg) 4)) "C-u ")
((and (consp current-prefix-arg)
(integerp (car current-prefix-arg)))
(format "%d " (car current-prefix-arg)))
((integerp current-prefix-arg)
(format "%d " current-prefix-arg)))
;; This isn't strictly correct if `execute-extended-command'
;; is bound to anything else (e.g. [menu]).
;; It could use (key-description (this-single-command-keys)),
;; but actually a prompt other than "M-x" would be confusing,
;; because "M-x" is a well-known prompt to read a command
;; and it serves as a shorthand for "Extended command: ".
"M-x ")
(lambda (string pred action)
(let ((pred
(if (memq action '(nil t))
;; Exclude obsolete commands from completions.
(lambda (sym)
(and (funcall pred sym)
(or (equal string (symbol-name sym))
(not (get sym 'byte-obsolete-info)))))
pred)))
(complete-with-action action obarray string pred)))
#'commandp t nil 'extended-command-history)))
(defcustom suggest-key-bindings t
"Non-nil means show the equivalent key-binding when M-x command has one.
The value can be a length of time to show the message for.
If the value is non-nil and not a number, we wait 2 seconds.
Also see `extended-command-suggest-shorter'."
:group 'keyboard
:type '(choice (const :tag "off" nil)
(integer :tag "time" 2)
(other :tag "on")))
(defcustom extended-command-suggest-shorter t
"If non-nil, show a shorter M-x invocation when there is one.
Also see `suggest-key-bindings'."
:group 'keyboard
:type 'boolean
:version "26.1")
(defun execute-extended-command--shorter-1 (name length)
(cond
((zerop length) (list ""))
((equal name "") nil)
(t
(nconc (mapcar (lambda (s) (concat (substring name 0 1) s))
(execute-extended-command--shorter-1
(substring name 1) (1- length)))
(when (string-match "\\`\\(-\\)?[^-]*" name)
(execute-extended-command--shorter-1
(substring name (match-end 0)) length))))))
(defun execute-extended-command--shorter (name typed)
(let ((candidates '())
(max (length typed))
(len 1)
binding)
(while (and (not binding)
(progn
(unless candidates
(setq len (1+ len))
(setq candidates (execute-extended-command--shorter-1
name len)))
;; Don't show the help message if the binding isn't
;; significantly shorter than the M-x command the user typed.
(< len (- max 5))))
(input-pending-p) ;Dummy call to trigger input-processing, bug#23002.
(let ((candidate (pop candidates)))
(when (equal name
(car-safe (completion-try-completion
candidate obarray 'commandp len)))
(setq binding candidate))))
binding))
(defun execute-extended-command (prefixarg &optional command-name typed)
;; Based on Fexecute_extended_command in keyboard.c of Emacs.
;; Aaron S. Hawley <aaron.s.hawley(at)gmail.com> 2009-08-24
"Read a command name, then read the arguments and call the command.
To pass a prefix argument to the command you are
invoking, give a prefix argument to `execute-extended-command'."
(declare (interactive-only command-execute))
;; FIXME: Remember the actual text typed by the user before completion,
;; so that we don't later on suggest the same shortening.
(interactive
(let ((execute-extended-command--last-typed nil))
(list current-prefix-arg
(read-extended-command)
execute-extended-command--last-typed)))
;; Emacs<24 calling-convention was with a single `prefixarg' argument.
(unless command-name
(let ((current-prefix-arg prefixarg) ; for prompt
(execute-extended-command--last-typed nil))
(setq command-name (read-extended-command))
(setq typed execute-extended-command--last-typed)))
(let* ((function (and (stringp command-name) (intern-soft command-name)))
(binding (and suggest-key-bindings
(not executing-kbd-macro)
(where-is-internal function overriding-local-map t))))
(unless (commandp function)
(error "`%s' is not a valid command name" command-name))
;; Some features, such as novice.el, rely on this-command-keys
;; including M-x COMMAND-NAME RET.
(set--this-command-keys (concat "\M-x" (symbol-name function) "\r"))
(setq this-command function)
;; Normally `real-this-command' should never be changed, but here we really
;; want to pretend that M-x <cmd> RET is nothing more than a "key
;; binding" for <cmd>, so the command the user really wanted to run is
;; `function' and not `execute-extended-command'. The difference is
;; visible in cases such as M-x <cmd> RET and then C-x z (bug#11506).
(setq real-this-command function)
(let ((prefix-arg prefixarg))
(command-execute function 'record))
;; If enabled, show which key runs this command.
;; But first wait, and skip the message if there is input.
(let* ((waited
;; If this command displayed something in the echo area;
;; wait a few seconds, then display our suggestion message.
;; FIXME: Wait *after* running post-command-hook!
;; FIXME: If execute-extended-command--shorter were
;; faster, we could compute the result here first too.
(when (and suggest-key-bindings
(or binding
(and extended-command-suggest-shorter typed)))
(sit-for (cond
((zerop (length (current-message))) 0)
((numberp suggest-key-bindings) suggest-key-bindings)
(t 2))))))
(when (and waited (not (consp unread-command-events)))
(unless (or (not extended-command-suggest-shorter)
binding executing-kbd-macro (not (symbolp function))
(<= (length (symbol-name function)) 2))
;; There's no binding for CMD. Let's try and find the shortest
;; string to use in M-x.
;; FIXME: Can be slow. Cache it maybe?
(while-no-input
(setq binding (execute-extended-command--shorter
(symbol-name function) typed))))
(when binding
(with-temp-message
(format-message "You can run the command `%s' with %s"
function
(if (stringp binding)
(concat "M-x " binding " RET")
(key-description binding)))
(sit-for (if (numberp suggest-key-bindings)
suggest-key-bindings
2))))))))
(defun command-execute (cmd &optional record-flag keys special)
;; BEWARE: Called directly from the C code.
"Execute CMD as an editor command.
CMD must be a symbol that satisfies the `commandp' predicate.
Optional second arg RECORD-FLAG non-nil
means unconditionally put this command in the variable `command-history'.
Otherwise, that is done only if an arg is read using the minibuffer.
The argument KEYS specifies the value to use instead of (this-command-keys)
when reading the arguments; if it is nil, (this-command-keys) is used.
The argument SPECIAL, if non-nil, means that this command is executing
a special event, so ignore the prefix argument and don't clear it."
(setq debug-on-next-call nil)
(let ((prefixarg (unless special
;; FIXME: This should probably be done around
;; pre-command-hook rather than here!
(prog1 prefix-arg
(setq current-prefix-arg prefix-arg)
(setq prefix-arg nil)
(when current-prefix-arg
(prefix-command-update))))))
(if (and (symbolp cmd)
(get cmd 'disabled)
disabled-command-function)
;; FIXME: Weird calling convention!
(run-hooks 'disabled-command-function)
(let ((final cmd))
(while
(progn
(setq final (indirect-function final))
(if (autoloadp final)
(setq final (autoload-do-load final cmd)))))
(cond
((arrayp final)
;; If requested, place the macro in the command history. For
;; other sorts of commands, call-interactively takes care of this.
(when record-flag
(add-to-history
'command-history `(execute-kbd-macro ,final ,prefixarg) nil t))
(execute-kbd-macro final prefixarg))
(t
;; Pass `cmd' rather than `final', for the backtrace's sake.
(prog1 (call-interactively cmd record-flag keys)
(when (and (symbolp cmd)
(get cmd 'byte-obsolete-info)
(not (get cmd 'command-execute-obsolete-warned)))
(put cmd 'command-execute-obsolete-warned t)
(message "%s" (macroexp--obsolete-warning
cmd (get cmd 'byte-obsolete-info) "command"))))))))))
(defvar minibuffer-history nil
"Default minibuffer history list.
This is used for all minibuffer input
except when an alternate history list is specified.
Maximum length of the history list is determined by the value
of `history-length', which see.")
(defvar minibuffer-history-sexp-flag nil
"Control whether history list elements are expressions or strings.
If the value of this variable equals current minibuffer depth,
they are expressions; otherwise they are strings.
\(That convention is designed to do the right thing for
recursive uses of the minibuffer.)")
(setq minibuffer-history-variable 'minibuffer-history)
(setq minibuffer-history-position nil) ;; Defvar is in C code.
(defvar minibuffer-history-search-history nil)
(defvar minibuffer-text-before-history nil
"Text that was in this minibuffer before any history commands.
This is nil if there have not yet been any history commands
in this use of the minibuffer.")
(add-hook 'minibuffer-setup-hook 'minibuffer-history-initialize)
(defun minibuffer-history-initialize ()
(setq minibuffer-text-before-history nil))
(defun minibuffer-avoid-prompt (_new _old)
"A point-motion hook for the minibuffer, that moves point out of the prompt."
(declare (obsolete cursor-intangible-mode "25.1"))
(constrain-to-field nil (point-max)))
(defcustom minibuffer-history-case-insensitive-variables nil
"Minibuffer history variables for which matching should ignore case.
If a history variable is a member of this list, then the
\\[previous-matching-history-element] and \\[next-matching-history-element]\
commands ignore case when searching it, regardless of `case-fold-search'."
:type '(repeat variable)
:group 'minibuffer)
(defun previous-matching-history-element (regexp n)
"Find the previous history element that matches REGEXP.
\(Previous history elements refer to earlier actions.)
With prefix argument N, search for Nth previous match.
If N is negative, find the next or Nth next match.
Normally, history elements are matched case-insensitively if
`case-fold-search' is non-nil, but an uppercase letter in REGEXP
makes the search case-sensitive.
See also `minibuffer-history-case-insensitive-variables'."
(interactive
(let* ((enable-recursive-minibuffers t)
(regexp (read-from-minibuffer
(format "Previous element matching regexp%s: "
(if minibuffer-history-search-history
(format " (default %s)"
(car minibuffer-history-search-history))
""))
nil minibuffer-local-map nil
'minibuffer-history-search-history
(car minibuffer-history-search-history))))
;; Use the last regexp specified, by default, if input is empty.
(list (if (string= regexp "")
(if minibuffer-history-search-history
(car minibuffer-history-search-history)
(user-error "No previous history search regexp"))
regexp)
(prefix-numeric-value current-prefix-arg))))
(unless (zerop n)
(if (and (zerop minibuffer-history-position)
(null minibuffer-text-before-history))
(setq minibuffer-text-before-history
(minibuffer-contents-no-properties)))
(let ((history (minibuffer-history-value))
(case-fold-search
(if (isearch-no-upper-case-p regexp t) ; assume isearch.el is dumped
;; On some systems, ignore case for file names.
(if (memq minibuffer-history-variable
minibuffer-history-case-insensitive-variables)
t
;; Respect the user's setting for case-fold-search:
case-fold-search)
nil))
prevpos
match-string
match-offset
(pos minibuffer-history-position))
(while (/= n 0)
(setq prevpos pos)
(setq pos (min (max 1 (+ pos (if (< n 0) -1 1))) (length history)))
(when (= pos prevpos)
(user-error (if (= pos 1)
"No later matching history item"
"No earlier matching history item")))
(setq match-string
(if (eq minibuffer-history-sexp-flag (minibuffer-depth))
(let ((print-level nil))
(prin1-to-string (nth (1- pos) history)))
(nth (1- pos) history)))
(setq match-offset
(if (< n 0)
(and (string-match regexp match-string)
(match-end 0))
(and (string-match (concat ".*\\(" regexp "\\)") match-string)
(match-beginning 1))))
(when match-offset
(setq n (+ n (if (< n 0) 1 -1)))))
(setq minibuffer-history-position pos)
(goto-char (point-max))
(delete-minibuffer-contents)
(insert match-string)
(goto-char (+ (minibuffer-prompt-end) match-offset))))
(if (memq (car (car command-history)) '(previous-matching-history-element
next-matching-history-element))
(setq command-history (cdr command-history))))
(defun next-matching-history-element (regexp n)
"Find the next history element that matches REGEXP.
\(The next history element refers to a more recent action.)
With prefix argument N, search for Nth next match.
If N is negative, find the previous or Nth previous match.
Normally, history elements are matched case-insensitively if
`case-fold-search' is non-nil, but an uppercase letter in REGEXP
makes the search case-sensitive."
(interactive
(let* ((enable-recursive-minibuffers t)
(regexp (read-from-minibuffer "Next element matching (regexp): "
nil
minibuffer-local-map
nil
'minibuffer-history-search-history
(car minibuffer-history-search-history))))
;; Use the last regexp specified, by default, if input is empty.
(list (if (string= regexp "")
(if minibuffer-history-search-history
(car minibuffer-history-search-history)
(user-error "No previous history search regexp"))
regexp)
(prefix-numeric-value current-prefix-arg))))
(previous-matching-history-element regexp (- n)))
(defvar minibuffer-temporary-goal-position nil)
(defvar minibuffer-default-add-function 'minibuffer-default-add-completions
"Function run by `goto-history-element' before consuming default values.
This is useful to dynamically add more elements to the list of default values
when `goto-history-element' reaches the end of this list.
Before calling this function `goto-history-element' sets the variable
`minibuffer-default-add-done' to t, so it will call this function only
once. In special cases, when this function needs to be called more
than once, it can set `minibuffer-default-add-done' to nil explicitly,
overriding the setting of this variable to t in `goto-history-element'.")
(defvar minibuffer-default-add-done nil
"When nil, add more elements to the end of the list of default values.
The value nil causes `goto-history-element' to add more elements to
the list of defaults when it reaches the end of this list. It does
this by calling a function defined by `minibuffer-default-add-function'.")
(make-variable-buffer-local 'minibuffer-default-add-done)
(defun minibuffer-default-add-completions ()
"Return a list of all completions without the default value.
This function is used to add all elements of the completion table to
the end of the list of defaults just after the default value."
(let ((def minibuffer-default)
(all (all-completions ""
minibuffer-completion-table
minibuffer-completion-predicate)))
(if (listp def)
(append def all)
(cons def (delete def all)))))
(defun minibuffer-history-value ()
"Return the value of the minibuffer input history list.
If `minibuffer-history-variable' points to a buffer-local variable and
the minibuffer is active, return the buffer-local value for the buffer
that was current when the minibuffer was activated."
(buffer-local-value minibuffer-history-variable
(window-buffer (minibuffer-selected-window))))
(defun goto-history-element (nabs)
"Puts element of the minibuffer history in the minibuffer.
The argument NABS specifies the absolute history position in
descending order, where 0 means the current element and a
positive number N means the Nth previous element. NABS being a
negative number -N means the Nth entry of \"future history.\""
(interactive "p")
(when (and (not minibuffer-default-add-done)
(functionp minibuffer-default-add-function)
(< nabs (- (if (listp minibuffer-default)
(length minibuffer-default)
1))))
(setq minibuffer-default-add-done t
minibuffer-default (funcall minibuffer-default-add-function)))
(let ((minimum (if minibuffer-default
(- (if (listp minibuffer-default)
(length minibuffer-default)
1))
0))
elt minibuffer-returned-to-present)
(if (and (zerop minibuffer-history-position)
(null minibuffer-text-before-history))
(setq minibuffer-text-before-history
(minibuffer-contents-no-properties)))
(if (< nabs minimum)
(user-error (if minibuffer-default
"End of defaults; no next item"
"End of history; no default available")))
(if (> nabs (if (listp (minibuffer-history-value))
(length (minibuffer-history-value))
0))
(user-error "Beginning of history; no preceding item"))
(unless (memq last-command '(next-history-element
previous-history-element))
(let ((prompt-end (minibuffer-prompt-end)))
(set (make-local-variable 'minibuffer-temporary-goal-position)
(cond ((<= (point) prompt-end) prompt-end)
((eobp) nil)
(t (point))))))
(goto-char (point-max))
(delete-minibuffer-contents)
(setq minibuffer-history-position nabs)
(cond ((< nabs 0)
(setq elt (if (listp minibuffer-default)
(nth (1- (abs nabs)) minibuffer-default)
minibuffer-default)))
((= nabs 0)
(setq elt (or minibuffer-text-before-history ""))
(setq minibuffer-returned-to-present t)
(setq minibuffer-text-before-history nil))
(t (setq elt (nth (1- minibuffer-history-position)
(minibuffer-history-value)))))
(insert
(if (and (eq minibuffer-history-sexp-flag (minibuffer-depth))
(not minibuffer-returned-to-present))
(let ((print-level nil))
(prin1-to-string elt))
elt))
(goto-char (or minibuffer-temporary-goal-position (point-max)))))
(defun next-history-element (n)
"Puts next element of the minibuffer history in the minibuffer.
With argument N, it uses the Nth following element. The position
in the history can go beyond the current position and invoke \"future
history.\""
(interactive "p")
(or (zerop n)
(goto-history-element (- minibuffer-history-position n))))
(defun previous-history-element (n)
"Puts previous element of the minibuffer history in the minibuffer.
With argument N, it uses the Nth previous element."
(interactive "p")
(or (zerop n)
(goto-history-element (+ minibuffer-history-position n))))
(defun next-line-or-history-element (&optional arg)
"Move cursor vertically down ARG lines, or to the next history element.
When point moves over the bottom line of multi-line minibuffer, puts ARGth
next element of the minibuffer history in the minibuffer."
(interactive "^p")
(or arg (setq arg 1))
(let* ((old-point (point))
;; Don't add newlines if they have the mode enabled globally.
(next-line-add-newlines nil)
;; Remember the original goal column of possibly multi-line input
;; excluding the length of the prompt on the first line.
(prompt-end (minibuffer-prompt-end))
(old-column (unless (and (eolp) (> (point) prompt-end))
(if (= (line-number-at-pos) 1)
(max (- (current-column)
(save-excursion
(goto-char (1- prompt-end))
(current-column)))
0)
(current-column)))))
(condition-case nil
(with-no-warnings
(next-line arg))
(end-of-buffer
;; Restore old position since `line-move-visual' moves point to
;; the end of the line when it fails to go to the next line.
(goto-char old-point)
(next-history-element arg)
;; Reset `temporary-goal-column' because a correct value is not
;; calculated when `next-line' above fails by bumping against
;; the bottom of the minibuffer (bug#22544).
(setq temporary-goal-column 0)
;; Restore the original goal column on the last line
;; of possibly multi-line input.
(goto-char (point-max))
(when old-column
(if (= (line-number-at-pos) 1)
(move-to-column (+ old-column
(save-excursion
(goto-char (1- (minibuffer-prompt-end)))
(current-column))))
(move-to-column old-column)))))))
(defun previous-line-or-history-element (&optional arg)
"Move cursor vertically up ARG lines, or to the previous history element.
When point moves over the top line of multi-line minibuffer, puts ARGth
previous element of the minibuffer history in the minibuffer."
(interactive "^p")
(or arg (setq arg 1))
(let* ((old-point (point))
;; Remember the original goal column of possibly multi-line input
;; excluding the length of the prompt on the first line.
(prompt-end (minibuffer-prompt-end))
(old-column (unless (and (eolp) (> (point) prompt-end))
(if (= (line-number-at-pos) 1)
(max (- (current-column)
(save-excursion
(goto-char (1- prompt-end))
(current-column)))
0)
(current-column)))))
(condition-case nil
(with-no-warnings
(previous-line arg))
(beginning-of-buffer
;; Restore old position since `line-move-visual' moves point to
;; the beginning of the line when it fails to go to the previous line.
(goto-char old-point)
(previous-history-element arg)
;; Reset `temporary-goal-column' because a correct value is not
;; calculated when `previous-line' above fails by bumping against
;; the top of the minibuffer (bug#22544).
(setq temporary-goal-column 0)
;; Restore the original goal column on the first line
;; of possibly multi-line input.
(goto-char (minibuffer-prompt-end))
(if old-column
(if (= (line-number-at-pos) 1)
(move-to-column (+ old-column
(save-excursion
(goto-char (1- (minibuffer-prompt-end)))
(current-column))))
(move-to-column old-column))
;; Put the cursor at the end of the visual line instead of the
;; logical line, so the next `previous-line-or-history-element'
;; would move to the previous history element, not to a possible upper
;; visual line from the end of logical line in `line-move-visual' mode.
(end-of-visual-line)
;; Since `end-of-visual-line' puts the cursor at the beginning
;; of the next visual line, move it one char back to the end
;; of the first visual line (bug#22544).
(unless (eolp) (backward-char 1)))))))
(defun next-complete-history-element (n)
"Get next history element that completes the minibuffer before the point.
The contents of the minibuffer after the point are deleted and replaced
by the new completion."
(interactive "p")
(let ((point-at-start (point)))
(next-matching-history-element
(concat
"^" (regexp-quote (buffer-substring (minibuffer-prompt-end) (point))))
n)
;; next-matching-history-element always puts us at (point-min).
;; Move to the position we were at before changing the buffer contents.
;; This is still sensible, because the text before point has not changed.
(goto-char point-at-start)))
(defun previous-complete-history-element (n)
"\
Get previous history element that completes the minibuffer before the point.
The contents of the minibuffer after the point are deleted and replaced
by the new completion."
(interactive "p")
(next-complete-history-element (- n)))
;; For compatibility with the old subr of the same name.
(defun minibuffer-prompt-width ()
"Return the display width of the minibuffer prompt.
Return 0 if current buffer is not a minibuffer."
;; Return the width of everything before the field at the end of
;; the buffer; this should be 0 for normal buffers.
(1- (minibuffer-prompt-end)))
;; isearch minibuffer history
(add-hook 'minibuffer-setup-hook 'minibuffer-history-isearch-setup)
(defvar minibuffer-history-isearch-message-overlay)
(make-variable-buffer-local 'minibuffer-history-isearch-message-overlay)
(defun minibuffer-history-isearch-setup ()
"Set up a minibuffer for using isearch to search the minibuffer history.
Intended to be added to `minibuffer-setup-hook'."
(set (make-local-variable 'isearch-search-fun-function)
'minibuffer-history-isearch-search)
(set (make-local-variable 'isearch-message-function)
'minibuffer-history-isearch-message)
(set (make-local-variable 'isearch-wrap-function)
'minibuffer-history-isearch-wrap)
(set (make-local-variable 'isearch-push-state-function)
'minibuffer-history-isearch-push-state)
(add-hook 'isearch-mode-end-hook 'minibuffer-history-isearch-end nil t))
(defun minibuffer-history-isearch-end ()
"Clean up the minibuffer after terminating isearch in the minibuffer."
(if minibuffer-history-isearch-message-overlay
(delete-overlay minibuffer-history-isearch-message-overlay)))
(defun minibuffer-history-isearch-search ()
"Return the proper search function, for isearch in minibuffer history."
(lambda (string bound noerror)
(let ((search-fun
;; Use standard functions to search within minibuffer text
(isearch-search-fun-default))
found)
;; Avoid lazy-highlighting matches in the minibuffer prompt when
;; searching forward. Lazy-highlight calls this lambda with the
;; bound arg, so skip the minibuffer prompt.
(if (and bound isearch-forward (< (point) (minibuffer-prompt-end)))
(goto-char (minibuffer-prompt-end)))
(or
;; 1. First try searching in the initial minibuffer text
(funcall search-fun string
(if isearch-forward bound (minibuffer-prompt-end))
noerror)
;; 2. If the above search fails, start putting next/prev history
;; elements in the minibuffer successively, and search the string
;; in them. Do this only when bound is nil (i.e. not while
;; lazy-highlighting search strings in the current minibuffer text).
(unless bound
(condition-case nil
(progn
(while (not found)
(cond (isearch-forward
(next-history-element 1)
(goto-char (minibuffer-prompt-end)))
(t
(previous-history-element 1)
(goto-char (point-max))))
(setq isearch-barrier (point) isearch-opoint (point))
;; After putting the next/prev history element, search
;; the string in them again, until next-history-element
;; or previous-history-element raises an error at the
;; beginning/end of history.
(setq found (funcall search-fun string
(unless isearch-forward
;; For backward search, don't search
;; in the minibuffer prompt
(minibuffer-prompt-end))
noerror)))
;; Return point of the new search result
(point))
;; Return nil when next(prev)-history-element fails
(error nil)))))))
(defun minibuffer-history-isearch-message (&optional c-q-hack ellipsis)
"Display the minibuffer history search prompt.
If there are no search errors, this function displays an overlay with
the isearch prompt which replaces the original minibuffer prompt.
Otherwise, it displays the standard isearch message returned from
the function `isearch-message'."
(if (not (and (minibufferp) isearch-success (not isearch-error)))
;; Use standard function `isearch-message' when not in the minibuffer,
;; or search fails, or has an error (like incomplete regexp).
;; This function overwrites minibuffer text with isearch message,
;; so it's possible to see what is wrong in the search string.
(isearch-message c-q-hack ellipsis)
;; Otherwise, put the overlay with the standard isearch prompt over
;; the initial minibuffer prompt.
(if (overlayp minibuffer-history-isearch-message-overlay)
(move-overlay minibuffer-history-isearch-message-overlay
(point-min) (minibuffer-prompt-end))
(setq minibuffer-history-isearch-message-overlay
(make-overlay (point-min) (minibuffer-prompt-end)))
(overlay-put minibuffer-history-isearch-message-overlay 'evaporate t))
(overlay-put minibuffer-history-isearch-message-overlay
'display (isearch-message-prefix c-q-hack ellipsis))
;; And clear any previous isearch message.
(message "")))
(defun minibuffer-history-isearch-wrap ()
"Wrap the minibuffer history search when search fails.
Move point to the first history element for a forward search,
or to the last history element for a backward search."
;; When `minibuffer-history-isearch-search' fails on reaching the
;; beginning/end of the history, wrap the search to the first/last
;; minibuffer history element.
(if isearch-forward
(goto-history-element (length (minibuffer-history-value)))
(goto-history-element 0))
(setq isearch-success t)
(goto-char (if isearch-forward (minibuffer-prompt-end) (point-max))))
(defun minibuffer-history-isearch-push-state ()
"Save a function restoring the state of minibuffer history search.
Save `minibuffer-history-position' to the additional state parameter
in the search status stack."
(let ((pos minibuffer-history-position))
(lambda (cmd)
(minibuffer-history-isearch-pop-state cmd pos))))
(defun minibuffer-history-isearch-pop-state (_cmd hist-pos)
"Restore the minibuffer history search state.
Go to the history element by the absolute history position HIST-POS."
(goto-history-element hist-pos))
(add-hook 'minibuffer-setup-hook 'minibuffer-error-initialize)
(defun minibuffer-error-initialize ()
"Set up minibuffer error processing."
(setq-local command-error-function 'minibuffer-error-function))
(defun minibuffer-error-function (data context caller)
"Display error messages in the active minibuffer.
The same as `command-error-default-function' but display error messages
at the end of the minibuffer using `minibuffer-message' to not obscure
the minibuffer contents."
(discard-input)
(ding)
(let ((string (error-message-string data)))
;; If we know from where the error was signaled, show it in
;; *Messages*.
(let ((inhibit-message t))
(message "%s%s" (if caller (format "%s: " caller) "") string))
;; Display an error message at the end of the minibuffer.
(minibuffer-message (apply #'propertize (format " [%s%s]" context string)
minibuffer-prompt-properties))))
;Put this on C-x u, so we can force that rather than C-_ into startup msg
(define-obsolete-function-alias 'advertised-undo 'undo "23.2")
(defconst undo-equiv-table (make-hash-table :test 'eq :weakness t)
"Table mapping redo records to the corresponding undo one.
A redo record for undo-in-region maps to t.
A redo record for ordinary undo maps to the following (earlier) undo.")
(defvar undo-in-region nil
"Non-nil if `pending-undo-list' is not just a tail of `buffer-undo-list'.")
(defvar undo-no-redo nil
"If t, `undo' doesn't go through redo entries.")
(defvar pending-undo-list nil
"Within a run of consecutive undo commands, list remaining to be undone.
If t, we undid all the way to the end of it.")
(defun undo (&optional arg)
"Undo some previous changes.
Repeat this command to undo more changes.
A numeric ARG serves as a repeat count.
In Transient Mark mode when the mark is active, undo changes only within
the current region. Similarly, when not in Transient Mark mode, just \\[universal-argument]
as an argument limits undo to changes within the current region."
(interactive "*P")
;; Make last-command indicate for the next command that this was an undo.
;; That way, another undo will undo more.
;; If we get to the end of the undo history and get an error,
;; another undo command will find the undo history empty
;; and will get another error. To begin undoing the undos,
;; you must type some other command.
(let* ((modified (buffer-modified-p))
;; For an indirect buffer, look in the base buffer for the
;; auto-save data.
(base-buffer (or (buffer-base-buffer) (current-buffer)))
(recent-save (with-current-buffer base-buffer
(recent-auto-save-p)))
;; Allow certain commands to inhibit an immediately following
;; undo-in-region.
(inhibit-region (and (symbolp last-command)
(get last-command 'undo-inhibit-region)))
message)
;; If we get an error in undo-start,
;; the next command should not be a "consecutive undo".
;; So set `this-command' to something other than `undo'.
(setq this-command 'undo-start)
(unless (and (eq last-command 'undo)
(or (eq pending-undo-list t)
;; If something (a timer or filter?) changed the buffer
;; since the previous command, don't continue the undo seq.
(let ((list buffer-undo-list))
(while (eq (car list) nil)
(setq list (cdr list)))
;; If the last undo record made was made by undo
;; it shows nothing else happened in between.
(gethash list undo-equiv-table))))
(setq undo-in-region
(and (or (region-active-p) (and arg (not (numberp arg))))
(not inhibit-region)))
(if undo-in-region
(undo-start (region-beginning) (region-end))
(undo-start))
;; get rid of initial undo boundary
(undo-more 1))
;; If we got this far, the next command should be a consecutive undo.
(setq this-command 'undo)
;; Check to see whether we're hitting a redo record, and if
;; so, ask the user whether she wants to skip the redo/undo pair.
(let ((equiv (gethash pending-undo-list undo-equiv-table)))
(or (eq (selected-window) (minibuffer-window))
(setq message (format "%s%s"
(if (or undo-no-redo (not equiv))
"Undo" "Redo")
(if undo-in-region " in region" ""))))
(when (and (consp equiv) undo-no-redo)
;; The equiv entry might point to another redo record if we have done
;; undo-redo-undo-redo-... so skip to the very last equiv.
(while (let ((next (gethash equiv undo-equiv-table)))
(if next (setq equiv next))))
(setq pending-undo-list equiv)))
(undo-more
(if (numberp arg)
(prefix-numeric-value arg)
1))
;; Record the fact that the just-generated undo records come from an
;; undo operation--that is, they are redo records.
;; In the ordinary case (not within a region), map the redo
;; record to the following undos.
;; I don't know how to do that in the undo-in-region case.
(let ((list buffer-undo-list))
;; Strip any leading undo boundaries there might be, like we do
;; above when checking.
(while (eq (car list) nil)
(setq list (cdr list)))
(puthash list
;; Prevent identity mapping. This can happen if
;; consecutive nils are erroneously in undo list.
(if (or undo-in-region (eq list pending-undo-list))
t
pending-undo-list)
undo-equiv-table))
;; Don't specify a position in the undo record for the undo command.
;; Instead, undoing this should move point to where the change is.
(let ((tail buffer-undo-list)
(prev nil))
(while (car tail)
(when (integerp (car tail))
(let ((pos (car tail)))
(if prev
(setcdr prev (cdr tail))
(setq buffer-undo-list (cdr tail)))
(setq tail (cdr tail))
(while (car tail)
(if (eq pos (car tail))
(if prev
(setcdr prev (cdr tail))
(setq buffer-undo-list (cdr tail)))
(setq prev tail))
(setq tail (cdr tail)))
(setq tail nil)))
(setq prev tail tail (cdr tail))))
;; Record what the current undo list says,
;; so the next command can tell if the buffer was modified in between.
(and modified (not (buffer-modified-p))
(with-current-buffer base-buffer
(delete-auto-save-file-if-necessary recent-save)))
;; Display a message announcing success.
(if message
(message "%s" message))))
(defun buffer-disable-undo (&optional buffer)
"Make BUFFER stop keeping undo information.
No argument or nil as argument means do this for the current buffer."
(interactive)
(with-current-buffer (if buffer (get-buffer buffer) (current-buffer))
(setq buffer-undo-list t)))
(defun undo-only (&optional arg)
"Undo some previous changes.
Repeat this command to undo more changes.
A numeric ARG serves as a repeat count.
Contrary to `undo', this will not redo a previous undo."
(interactive "*p")
(let ((undo-no-redo t)) (undo arg)))
(defvar undo-in-progress nil
"Non-nil while performing an undo.
Some change-hooks test this variable to do something different.")
(defun undo-more (n)
"Undo back N undo-boundaries beyond what was already undone recently.
Call `undo-start' to get ready to undo recent changes,
then call `undo-more' one or more times to undo them."
(or (listp pending-undo-list)
(user-error (concat "No further undo information"
(and undo-in-region " for region"))))
(let ((undo-in-progress t))
;; Note: The following, while pulling elements off
;; `pending-undo-list' will call primitive change functions which
;; will push more elements onto `buffer-undo-list'.
(setq pending-undo-list (primitive-undo n pending-undo-list))
(if (null pending-undo-list)
(setq pending-undo-list t))))
(defun primitive-undo (n list)
"Undo N records from the front of the list LIST.
Return what remains of the list."
;; This is a good feature, but would make undo-start
;; unable to do what is expected.
;;(when (null (car (list)))
;; ;; If the head of the list is a boundary, it is the boundary
;; ;; preceding this command. Get rid of it and don't count it.
;; (setq list (cdr list))))
(let ((arg n)
;; In a writable buffer, enable undoing read-only text that is
;; so because of text properties.
(inhibit-read-only t)
;; Don't let `intangible' properties interfere with undo.
(inhibit-point-motion-hooks t)
;; We use oldlist only to check for EQ. ++kfs
(oldlist buffer-undo-list)
(did-apply nil)
(next nil))
(while (> arg 0)
(while (setq next (pop list)) ;Exit inner loop at undo boundary.
;; Handle an integer by setting point to that value.
(pcase next
((pred integerp) (goto-char next))
;; Element (t . TIME) records previous modtime.
;; Preserve any flag of NONEXISTENT_MODTIME_NSECS or
;; UNKNOWN_MODTIME_NSECS.
(`(t . ,time)
;; If this records an obsolete save
;; (not matching the actual disk file)
;; then don't mark unmodified.
(when (or (equal time (visited-file-modtime))
(and (consp time)
(equal (list (car time) (cdr time))
(visited-file-modtime))))
(when (fboundp 'unlock-buffer)
(unlock-buffer))
(set-buffer-modified-p nil)))
;; Element (nil PROP VAL BEG . END) is property change.
(`(nil . ,(or `(,prop ,val ,beg . ,end) pcase--dontcare))
(when (or (> (point-min) beg) (< (point-max) end))
(error "Changes to be undone are outside visible portion of buffer"))
(put-text-property beg end prop val))
;; Element (BEG . END) means range was inserted.
(`(,(and beg (pred integerp)) . ,(and end (pred integerp)))
;; (and `(,beg . ,end) `(,(pred integerp) . ,(pred integerp)))
;; Ideally: `(,(pred integerp beg) . ,(pred integerp end))
(when (or (> (point-min) beg) (< (point-max) end))
(error "Changes to be undone are outside visible portion of buffer"))
;; Set point first thing, so that undoing this undo
;; does not send point back to where it is now.
(goto-char beg)
(delete-region beg end))
;; Element (apply FUN . ARGS) means call FUN to undo.
(`(apply . ,fun-args)
(let ((currbuff (current-buffer)))
(if (integerp (car fun-args))
;; Long format: (apply DELTA START END FUN . ARGS).
(pcase-let* ((`(,delta ,start ,end ,fun . ,args) fun-args)
(start-mark (copy-marker start nil))
(end-mark (copy-marker end t)))
(when (or (> (point-min) start) (< (point-max) end))
(error "Changes to be undone are outside visible portion of buffer"))
(apply fun args) ;; Use `save-current-buffer'?
;; Check that the function did what the entry
;; said it would do.
(unless (and (= start start-mark)
(= (+ delta end) end-mark))
(error "Changes to be undone by function different from announced"))
(set-marker start-mark nil)
(set-marker end-mark nil))
(apply fun-args))
(unless (eq currbuff (current-buffer))
(error "Undo function switched buffer"))
(setq did-apply t)))
;; Element (STRING . POS) means STRING was deleted.
(`(,(and string (pred stringp)) . ,(and pos (pred integerp)))
(let ((valid-marker-adjustments nil)
(apos (abs pos)))
(when (or (< apos (point-min)) (> apos (point-max)))
(error "Changes to be undone are outside visible portion of buffer"))
;; Check that marker adjustments which were recorded
;; with the (STRING . POS) record are still valid, ie
;; the markers haven't moved. We check their validity
;; before reinserting the string so as we don't need to
;; mind marker insertion-type.
(while (and (markerp (car-safe (car list)))
(integerp (cdr-safe (car list))))
(let* ((marker-adj (pop list))
(m (car marker-adj)))
(and (eq (marker-buffer m) (current-buffer))
(= apos m)
(push marker-adj valid-marker-adjustments))))
;; Insert string and adjust point
(if (< pos 0)
(progn
(goto-char (- pos))
(insert string))
(goto-char pos)
(insert string)
(goto-char pos))
;; Adjust the valid marker adjustments
(dolist (adj valid-marker-adjustments)
;; Insert might have invalidated some of the markers
;; via modification hooks. Update only the currently
;; valid ones (bug#25599).
(if (marker-buffer (car adj))
(set-marker (car adj)
(- (car adj) (cdr adj)))))))
;; (MARKER . OFFSET) means a marker MARKER was adjusted by OFFSET.
(`(,(and marker (pred markerp)) . ,(and offset (pred integerp)))
(warn "Encountered %S entry in undo list with no matching (TEXT . POS) entry"
next)
;; Even though these elements are not expected in the undo
;; list, adjust them to be conservative for the 24.4
;; release. (Bug#16818)
(when (marker-buffer marker)
(set-marker marker
(- marker offset)
(marker-buffer marker))))
(_ (error "Unrecognized entry in undo list %S" next))))
(setq arg (1- arg)))
;; Make sure an apply entry produces at least one undo entry,
;; so the test in `undo' for continuing an undo series
;; will work right.
(if (and did-apply
(eq oldlist buffer-undo-list))
(setq buffer-undo-list
(cons (list 'apply 'cdr nil) buffer-undo-list))))
list)
;; Deep copy of a list
(defun undo-copy-list (list)
"Make a copy of undo list LIST."
(mapcar 'undo-copy-list-1 list))
(defun undo-copy-list-1 (elt)
(if (consp elt)
(cons (car elt) (undo-copy-list-1 (cdr elt)))
elt))
(defun undo-start (&optional beg end)
"Set `pending-undo-list' to the front of the undo list.
The next call to `undo-more' will undo the most recently made change.
If BEG and END are specified, then undo only elements
that apply to text between BEG and END are used; other undo elements
are ignored. If BEG and END are nil, all undo elements are used."
(if (eq buffer-undo-list t)
(user-error "No undo information in this buffer"))
(setq pending-undo-list
(if (and beg end (not (= beg end)))
(undo-make-selective-list (min beg end) (max beg end))
buffer-undo-list)))
;; The positions given in elements of the undo list are the positions
;; as of the time that element was recorded to undo history. In
;; general, subsequent buffer edits render those positions invalid in
;; the current buffer, unless adjusted according to the intervening
;; undo elements.
;;
;; Undo in region is a use case that requires adjustments to undo
;; elements. It must adjust positions of elements in the region based
;; on newer elements not in the region so as they may be correctly
;; applied in the current buffer. undo-make-selective-list
;; accomplishes this with its undo-deltas list of adjustments. An
;; example undo history from oldest to newest:
;;
;; buf pos:
;; 123456789 buffer-undo-list undo-deltas
;; --------- ---------------- -----------
;; aaa (1 . 4) (1 . -3)
;; aaba (3 . 4) N/A (in region)
;; ccaaba (1 . 3) (1 . -2)
;; ccaabaddd (7 . 10) (7 . -3)
;; ccaabdd ("ad" . 6) (6 . 2)
;; ccaabaddd (6 . 8) (6 . -2)
;; | |<-- region: "caab", from 2 to 6
;;
;; When the user starts a run of undos in region,
;; undo-make-selective-list is called to create the full list of in
;; region elements. Each element is adjusted forward chronologically
;; through undo-deltas to determine if it is in the region.
;;
;; In the above example, the insertion of "b" is (3 . 4) in the
;; buffer-undo-list. The undo-delta (1 . -2) causes (3 . 4) to become
;; (5 . 6). The next three undo-deltas cause no adjustment, so (5
;; . 6) is assessed as in the region and placed in the selective list.
;; Notably, the end of region itself adjusts from "2 to 6" to "2 to 5"
;; due to the selected element. The "b" insertion is the only element
;; fully in the region, so in this example undo-make-selective-list
;; returns (nil (5 . 6)).
;;
;; The adjustment of the (7 . 10) insertion of "ddd" shows an edge
;; case. It is adjusted through the undo-deltas: ((6 . 2) (6 . -2)).
;; Normally an undo-delta of (6 . 2) would cause positions after 6 to
;; adjust by 2. However, they shouldn't adjust to less than 6, so (7
;; . 10) adjusts to (6 . 8) due to the first undo delta.
;;
;; More interesting is how to adjust the "ddd" insertion due to the
;; next undo-delta: (6 . -2), corresponding to reinsertion of "ad".
;; If the reinsertion was a manual retyping of "ad", then the total
;; adjustment should be (7 . 10) -> (6 . 8) -> (8 . 10). However, if
;; the reinsertion was due to undo, one might expect the first "d"
;; character would again be a part of the "ddd" text, meaning its
;; total adjustment would be (7 . 10) -> (6 . 8) -> (7 . 10).
;;
;; undo-make-selective-list assumes in this situation that "ad" was a
;; new edit, even if it was inserted because of an undo.
;; Consequently, if the user undos in region "8 to 10" of the
;; "ccaabaddd" buffer, they could be surprised that it becomes
;; "ccaabad", as though the first "d" became detached from the
;; original "ddd" insertion. This quirk is a FIXME.
(defun undo-make-selective-list (start end)
"Return a list of undo elements for the region START to END.
The elements come from `buffer-undo-list', but we keep only the
elements inside this region, and discard those outside this
region. The elements' positions are adjusted so as the returned
list can be applied to the current buffer."
(let ((ulist buffer-undo-list)
;; A list of position adjusted undo elements in the region.
(selective-list (list nil))
;; A list of undo-deltas for out of region undo elements.
undo-deltas
undo-elt)
(while ulist
(when undo-no-redo
(while (gethash ulist undo-equiv-table)
(setq ulist (gethash ulist undo-equiv-table))))
(setq undo-elt (car ulist))
(cond
((null undo-elt)
;; Don't put two nils together in the list
(when (car selective-list)
(push nil selective-list)))
((and (consp undo-elt) (eq (car undo-elt) t))
;; This is a "was unmodified" element. Keep it
;; if we have kept everything thus far.
(when (not undo-deltas)
(push undo-elt selective-list)))
;; Skip over marker adjustments, instead relying
;; on finding them after (TEXT . POS) elements
((markerp (car-safe undo-elt))
nil)
(t
(let ((adjusted-undo-elt (undo-adjust-elt undo-elt
undo-deltas)))
(if (undo-elt-in-region adjusted-undo-elt start end)
(progn
(setq end (+ end (cdr (undo-delta adjusted-undo-elt))))
(push adjusted-undo-elt selective-list)
;; Keep (MARKER . ADJUSTMENT) if their (TEXT . POS) was
;; kept. primitive-undo may discard them later.
(when (and (stringp (car-safe adjusted-undo-elt))
(integerp (cdr-safe adjusted-undo-elt)))
(let ((list-i (cdr ulist)))
(while (markerp (car-safe (car list-i)))
(push (pop list-i) selective-list)))))
(let ((delta (undo-delta undo-elt)))
(when (/= 0 (cdr delta))
(push delta undo-deltas)))))))
(pop ulist))
(nreverse selective-list)))
(defun undo-elt-in-region (undo-elt start end)
"Determine whether UNDO-ELT falls inside the region START ... END.
If it crosses the edge, we return nil.
Generally this function is not useful for determining
whether (MARKER . ADJUSTMENT) undo elements are in the region,
because markers can be arbitrarily relocated. Instead, pass the
marker adjustment's corresponding (TEXT . POS) element."
(cond ((integerp undo-elt)
(and (>= undo-elt start)
(<= undo-elt end)))
((eq undo-elt nil)
t)
((atom undo-elt)
nil)
((stringp (car undo-elt))
;; (TEXT . POSITION)
(and (>= (abs (cdr undo-elt)) start)
(<= (abs (cdr undo-elt)) end)))
((and (consp undo-elt) (markerp (car undo-elt)))
;; (MARKER . ADJUSTMENT)
(<= start (car undo-elt) end))
((null (car undo-elt))
;; (nil PROPERTY VALUE BEG . END)
(let ((tail (nthcdr 3 undo-elt)))
(and (>= (car tail) start)
(<= (cdr tail) end))))
((integerp (car undo-elt))
;; (BEGIN . END)
(and (>= (car undo-elt) start)
(<= (cdr undo-elt) end)))))
(defun undo-elt-crosses-region (undo-elt start end)
"Test whether UNDO-ELT crosses one edge of that region START ... END.
This assumes we have already decided that UNDO-ELT
is not *inside* the region START...END."
(declare (obsolete nil "25.1"))
(cond ((atom undo-elt) nil)
((null (car undo-elt))
;; (nil PROPERTY VALUE BEG . END)
(let ((tail (nthcdr 3 undo-elt)))
(and (< (car tail) end)
(> (cdr tail) start))))
((integerp (car undo-elt))
;; (BEGIN . END)
(and (< (car undo-elt) end)
(> (cdr undo-elt) start)))))
(defun undo-adjust-elt (elt deltas)
"Return adjustment of undo element ELT by the undo DELTAS
list."
(pcase elt
;; POSITION
((pred integerp)
(undo-adjust-pos elt deltas))
;; (BEG . END)
(`(,(and beg (pred integerp)) . ,(and end (pred integerp)))
(undo-adjust-beg-end beg end deltas))
;; (TEXT . POSITION)
(`(,(and text (pred stringp)) . ,(and pos (pred integerp)))
(cons text (* (if (< pos 0) -1 1)
(undo-adjust-pos (abs pos) deltas))))
;; (nil PROPERTY VALUE BEG . END)
(`(nil . ,(or `(,prop ,val ,beg . ,end) pcase--dontcare))
`(nil ,prop ,val . ,(undo-adjust-beg-end beg end deltas)))
;; (apply DELTA START END FUN . ARGS)
;; FIXME
;; All others return same elt
(_ elt)))
;; (BEG . END) can adjust to the same positions, commonly when an
;; insertion was undone and they are out of region, for example:
;;
;; buf pos:
;; 123456789 buffer-undo-list undo-deltas
;; --------- ---------------- -----------
;; [...]
;; abbaa (2 . 4) (2 . -2)
;; aaa ("bb" . 2) (2 . 2)
;; [...]
;;
;; "bb" insertion (2 . 4) adjusts to (2 . 2) because of the subsequent
;; undo. Further adjustments to such an element should be the same as
;; for (TEXT . POSITION) elements. The options are:
;;
;; 1: POSITION adjusts using <= (use-< nil), resulting in behavior
;; analogous to marker insertion-type t.
;;
;; 2: POSITION adjusts using <, resulting in behavior analogous to
;; marker insertion-type nil.
;;
;; There was no strong reason to prefer one or the other, except that
;; the first is more consistent with prior undo in region behavior.
(defun undo-adjust-beg-end (beg end deltas)
"Return cons of adjustments to BEG and END by the undo DELTAS
list."
(let ((adj-beg (undo-adjust-pos beg deltas)))
;; Note: option 2 above would be like (cons (min ...) adj-end)
(cons adj-beg
(max adj-beg (undo-adjust-pos end deltas t)))))
(defun undo-adjust-pos (pos deltas &optional use-<)
"Return adjustment of POS by the undo DELTAS list, comparing
with < or <= based on USE-<."
(dolist (d deltas pos)
(when (if use-<
(< (car d) pos)
(<= (car d) pos))
(setq pos
;; Don't allow pos to become less than the undo-delta
;; position. This edge case is described in the overview
;; comments.
(max (car d) (- pos (cdr d)))))))
;; Return the first affected buffer position and the delta for an undo element
;; delta is defined as the change in subsequent buffer positions if we *did*
;; the undo.
(defun undo-delta (undo-elt)
(if (consp undo-elt)
(cond ((stringp (car undo-elt))
;; (TEXT . POSITION)
(cons (abs (cdr undo-elt)) (length (car undo-elt))))
((integerp (car undo-elt))
;; (BEGIN . END)
(cons (car undo-elt) (- (car undo-elt) (cdr undo-elt))))
(t
'(0 . 0)))
'(0 . 0)))
;;; Default undo-boundary addition
;;
;; This section adds a new undo-boundary at either after a command is
;; called or in some cases on a timer called after a change is made in
;; any buffer.
(defvar-local undo-auto--last-boundary-cause nil
"Describe the cause of the last undo-boundary.
If `explicit', the last boundary was caused by an explicit call to
`undo-boundary', that is one not called by the code in this
section.
If it is equal to `timer', then the last boundary was inserted
by `undo-auto--boundary-timer'.
If it is equal to `command', then the last boundary was inserted
automatically after a command, that is by the code defined in
this section.
If it is equal to a list, then the last boundary was inserted by
an amalgamating command. The car of the list is the number of
times an amalgamating command has been called, and the cdr are the
buffers that were changed during the last command.")
(defvar undo-auto-current-boundary-timer nil
"Current timer which will run `undo-auto--boundary-timer' or nil.
If set to non-nil, this will effectively disable the timer.")
(defvar undo-auto--this-command-amalgamating nil
"Non-nil if `this-command' should be amalgamated.
This variable is set to nil by `undo-auto--boundaries' and is set
by `undo-auto-amalgamate'." )
(defun undo-auto--needs-boundary-p ()
"Return non-nil if `buffer-undo-list' needs a boundary at the start."
(car-safe buffer-undo-list))
(defun undo-auto--last-boundary-amalgamating-number ()
"Return the number of amalgamating last commands or nil.
Amalgamating commands are, by default, either
`self-insert-command' and `delete-char', but can be any command
that calls `undo-auto-amalgamate'."
(car-safe undo-auto--last-boundary-cause))
(defun undo-auto--ensure-boundary (cause)
"Add an `undo-boundary' to the current buffer if needed.
REASON describes the reason that the boundary is being added; see
`undo-auto--last-boundary-cause' for more information."
(when (and
(undo-auto--needs-boundary-p))
(let ((last-amalgamating
(undo-auto--last-boundary-amalgamating-number)))
(undo-boundary)
(setq undo-auto--last-boundary-cause
(if (eq 'amalgamate cause)
(cons
(if last-amalgamating (1+ last-amalgamating) 0)
undo-auto--undoably-changed-buffers)
cause)))))
(defun undo-auto--boundaries (cause)
"Check recently changed buffers and add a boundary if necessary.
REASON describes the reason that the boundary is being added; see
`undo-last-boundary' for more information."
;; (Bug #23785) All commands should ensure that there is an undo
;; boundary whether they have changed the current buffer or not.
(when (eq cause 'command)
(add-to-list 'undo-auto--undoably-changed-buffers (current-buffer)))
(dolist (b undo-auto--undoably-changed-buffers)
(when (buffer-live-p b)
(with-current-buffer b
(undo-auto--ensure-boundary cause))))
(setq undo-auto--undoably-changed-buffers nil))
(defun undo-auto--boundary-timer ()
"Timer function run by `undo-auto-current-boundary-timer'."
(setq undo-auto-current-boundary-timer nil)
(undo-auto--boundaries 'timer))
(defun undo-auto--boundary-ensure-timer ()
"Ensure that the `undo-auto-current-boundary-timer' is set."
(unless undo-auto-current-boundary-timer
(setq undo-auto-current-boundary-timer
(run-at-time 10 nil #'undo-auto--boundary-timer))))
(defvar undo-auto--undoably-changed-buffers nil
"List of buffers that have changed recently.
This list is maintained by `undo-auto--undoable-change' and
`undo-auto--boundaries' and can be affected by changes to their
default values.")
(defun undo-auto--add-boundary ()
"Add an `undo-boundary' in appropriate buffers."
(undo-auto--boundaries
(let ((amal undo-auto--this-command-amalgamating))
(setq undo-auto--this-command-amalgamating nil)
(if amal
'amalgamate
'command))))
(defun undo-auto-amalgamate ()
"Amalgamate undo if necessary.
This function can be called before an amalgamating command. It
removes the previous `undo-boundary' if a series of such calls
have been made. By default `self-insert-command' and
`delete-char' are the only amalgamating commands, although this
function could be called by any command wishing to have this
behavior."
(let ((last-amalgamating-count
(undo-auto--last-boundary-amalgamating-number)))
(setq undo-auto--this-command-amalgamating t)
(when last-amalgamating-count
(if (and (< last-amalgamating-count amalgamating-undo-limit)
(eq this-command last-command))
;; Amalgamate all buffers that have changed.
;; This may be needed for example if some *-change-functions
;; reflected these changes in some other buffer.
(dolist (b (cdr undo-auto--last-boundary-cause))
(when (buffer-live-p b)
(with-current-buffer
b
(when (and (consp buffer-undo-list)
;; `car-safe' doesn't work because
;; `buffer-undo-list' need not be a list!
(null (car buffer-undo-list)))
;; The head of `buffer-undo-list' is nil.
(setq buffer-undo-list
(cdr buffer-undo-list))))))
(setq undo-auto--last-boundary-cause 0)))))
(defun undo-auto--undoable-change ()
"Called after every undoable buffer change."
(unless (memq (current-buffer) undo-auto--undoably-changed-buffers)
(let ((bufs undo-auto--undoably-changed-buffers))
;; Drop dead buffers from the list, to avoid memory leak in
;; (while t (with-temp-buffer (setq buffer-undo-list nil) (insert "a")))
(while bufs
(let ((next (cdr bufs)))
(if (or (buffer-live-p (car bufs)) (null next))
(setq bufs next)
(setcar bufs (car next))
(setcdr bufs (cdr next))))))
(push (current-buffer) undo-auto--undoably-changed-buffers))
(undo-auto--boundary-ensure-timer))
;; End auto-boundary section
(defun undo-amalgamate-change-group (handle)
"Amalgamate changes in change-group since HANDLE.
Remove all undo boundaries between the state of HANDLE and now.
HANDLE is as returned by `prepare-change-group'."
(dolist (elt handle)
(with-current-buffer (car elt)
(setq elt (cdr elt))
(when (consp buffer-undo-list)
(let ((old-car (car-safe elt))
(old-cdr (cdr-safe elt)))
(unwind-protect
(progn
;; Temporarily truncate the undo log at ELT.
(when (consp elt)
(setcar elt t) (setcdr elt nil))
(when
(or (null elt) ;The undo-log was empty.
;; `elt' is still in the log: normal case.
(eq elt (last buffer-undo-list))
;; `elt' is not in the log any more, but that's because
;; the log is "all new", so we should remove all
;; boundaries from it.
(not (eq (last buffer-undo-list) (last old-cdr))))
(cl-callf (lambda (x) (delq nil x))
(if (car buffer-undo-list)
buffer-undo-list
;; Preserve the undo-boundaries at either ends of the
;; change-groups.
(cdr buffer-undo-list)))))
;; Reset the modified cons cell ELT to its original content.
(when (consp elt)
(setcar elt old-car)
(setcdr elt old-cdr))))))))
(defcustom undo-ask-before-discard nil
"If non-nil ask about discarding undo info for the current command.
Normally, Emacs discards the undo info for the current command if
it exceeds `undo-outer-limit'. But if you set this option
non-nil, it asks in the echo area whether to discard the info.
If you answer no, there is a slight risk that Emacs might crash, so
do it only if you really want to undo the command.
This option is mainly intended for debugging. You have to be
careful if you use it for other purposes. Garbage collection is
inhibited while the question is asked, meaning that Emacs might
leak memory. So you should make sure that you do not wait
excessively long before answering the question."
:type 'boolean
:group 'undo
:version "22.1")
(defvar undo-extra-outer-limit nil
"If non-nil, an extra level of size that's ok in an undo item.
We don't ask the user about truncating the undo list until the
current item gets bigger than this amount.
This variable matters only if `undo-ask-before-discard' is non-nil.")
(make-variable-buffer-local 'undo-extra-outer-limit)
;; When the first undo batch in an undo list is longer than
;; undo-outer-limit, this function gets called to warn the user that
;; the undo info for the current command was discarded. Garbage
;; collection is inhibited around the call, so it had better not do a
;; lot of consing.
(setq undo-outer-limit-function 'undo-outer-limit-truncate)
(defun undo-outer-limit-truncate (size)
(if undo-ask-before-discard
(when (or (null undo-extra-outer-limit)
(> size undo-extra-outer-limit))
;; Don't ask the question again unless it gets even bigger.
;; This applies, in particular, if the user quits from the question.
;; Such a quit quits out of GC, but something else will call GC
;; again momentarily. It will call this function again,
;; but we don't want to ask the question again.
(setq undo-extra-outer-limit (+ size 50000))
(if (let (use-dialog-box track-mouse executing-kbd-macro )
(yes-or-no-p (format-message
"Buffer `%s' undo info is %d bytes long; discard it? "
(buffer-name) size)))
(progn (setq buffer-undo-list nil)
(setq undo-extra-outer-limit nil)
t)
nil))
(display-warning '(undo discard-info)
(concat
(format-message
"Buffer `%s' undo info was %d bytes long.\n"
(buffer-name) size)
"The undo info was discarded because it exceeded \
`undo-outer-limit'.
This is normal if you executed a command that made a huge change
to the buffer. In that case, to prevent similar problems in the
future, set `undo-outer-limit' to a value that is large enough to
cover the maximum size of normal changes you expect a single
command to make, but not so large that it might exceed the
maximum memory allotted to Emacs.
If you did not execute any such command, the situation is
probably due to a bug and you should report it.
You can disable the popping up of this buffer by adding the entry
\(undo discard-info) to the user option `warning-suppress-types',
which is defined in the `warnings' library.\n")
:warning)
(setq buffer-undo-list nil)
t))
(defvar shell-command-history nil
"History list for some commands that read shell commands.
Maximum length of the history list is determined by the value
of `history-length', which see.")
(defvar shell-command-switch (purecopy "-c")
"Switch used to have the shell execute its command line argument.")
(defvar shell-command-default-error-buffer nil
"Buffer name for `shell-command' and `shell-command-on-region' error output.
This buffer is used when `shell-command' or `shell-command-on-region'
is run interactively. A value of nil means that output to stderr and
stdout will be intermixed in the output stream.")
(declare-function mailcap-file-default-commands "mailcap" (files))
(declare-function dired-get-filename "dired" (&optional localp no-error-if-not-filep))
(defun minibuffer-default-add-shell-commands ()
"Return a list of all commands associated with the current file.
This function is used to add all related commands retrieved by `mailcap'
to the end of the list of defaults just after the default value."
(interactive)
(let* ((filename (if (listp minibuffer-default)
(car minibuffer-default)
minibuffer-default))
(commands (and filename (require 'mailcap nil t)
(mailcap-file-default-commands (list filename)))))
(setq commands (mapcar (lambda (command)
(concat command " " filename))
commands))
(if (listp minibuffer-default)
(append minibuffer-default commands)
(cons minibuffer-default commands))))
(declare-function shell-completion-vars "shell" ())
(defvar minibuffer-local-shell-command-map
(let ((map (make-sparse-keymap)))
(set-keymap-parent map minibuffer-local-map)
(define-key map "\t" 'completion-at-point)
map)
"Keymap used for completing shell commands in minibuffer.")
(defun read-shell-command (prompt &optional initial-contents hist &rest args)
"Read a shell command from the minibuffer.
The arguments are the same as the ones of `read-from-minibuffer',
except READ and KEYMAP are missing and HIST defaults
to `shell-command-history'."
(require 'shell)
(minibuffer-with-setup-hook
(lambda ()
(shell-completion-vars)
(set (make-local-variable 'minibuffer-default-add-function)
'minibuffer-default-add-shell-commands))
(apply #'read-from-minibuffer prompt initial-contents
minibuffer-local-shell-command-map
nil
(or hist 'shell-command-history)
args)))
(defcustom async-shell-command-buffer 'confirm-new-buffer
"What to do when the output buffer is used by another shell command.
This option specifies how to resolve the conflict where a new command
wants to direct its output to the buffer `*Async Shell Command*',
but this buffer is already taken by another running shell command.
The value `confirm-kill-process' is used to ask for confirmation before
killing the already running process and running a new process
in the same buffer, `confirm-new-buffer' for confirmation before running
the command in a new buffer with a name other than the default buffer name,
`new-buffer' for doing the same without confirmation,
`confirm-rename-buffer' for confirmation before renaming the existing
output buffer and running a new command in the default buffer,
`rename-buffer' for doing the same without confirmation."
:type '(choice (const :tag "Confirm killing of running command"
confirm-kill-process)
(const :tag "Confirm creation of a new buffer"
confirm-new-buffer)
(const :tag "Create a new buffer"
new-buffer)
(const :tag "Confirm renaming of existing buffer"
confirm-rename-buffer)
(const :tag "Rename the existing buffer"
rename-buffer))
:group 'shell
:version "24.3")
(defcustom async-shell-command-display-buffer t
"Whether to display the command buffer immediately.
If t, display the buffer immediately; if nil, wait until there
is output."
:type '(choice (const :tag "Display buffer immediately"
t)
(const :tag "Display buffer on output"
nil))
:group 'shell
:version "26.1")
(defcustom async-shell-command-width nil
"Number of display columns available for asynchronous shell command output.
If nil, use the shell default number (usually 80 columns).
If a positive integer, tell the shell to use that number of columns for
command output."
:type '(choice (const :tag "Use system limit" nil)
(integer :tag "Fixed width" :value 80))
:group 'shell
:version "27.1")
(defcustom shell-command-prompt-show-cwd nil
"If non-nil, show current directory when prompting for a shell command.
This affects `shell-command' and `async-shell-command'."
:type 'boolean
:group 'shell
:version "27.1")
(defcustom shell-command-dont-erase-buffer nil
"Whether to erase the output buffer before executing shell command.
A nil value erases the output buffer before execution of the
shell command, except when the output buffer is the current one.
The value `erase' ensures the output buffer is erased before
execution of the shell command even if it is the current buffer.
Other non-nil values prevent the output buffer from being erased; they
also reposition point in the shell output buffer after execution of the
shell command, except when the output buffer is the current buffer.
The value `beg-last-out' sets point at the beginning of the last
output, `end-last-out' sets point at the end of the last output,
and `save-point' restores the buffer position as it was before the
shell command."
:type '(choice
(const :tag "Erase output buffer if not the current one" nil)
(const :tag "Always erase output buffer" erase)
(const :tag "Set point to beginning of last output" beg-last-out)
(const :tag "Set point to end of last output" end-last-out)
(const :tag "Save point" save-point))
:group 'shell
:version "27.1")
(defvar shell-command-saved-pos nil
"Record of point positions in output buffers after command completion.
The value is an alist whose elements are of the form (BUFFER . POS),
where BUFFER is the output buffer, and POS is the point position
in BUFFER once the command finishes.
This variable is used when `shell-command-dont-erase-buffer' is non-nil.")
(defun shell-command-save-pos-or-erase (&optional output-to-current-buffer)
"Store a buffer position or erase the buffer.
Optional argument OUTPUT-TO-CURRENT-BUFFER, if non-nil, means that the output
of the shell command goes to the caller current buffer.
See `shell-command-dont-erase-buffer'."
(let ((sym shell-command-dont-erase-buffer)
pos)
(setq buffer-read-only nil)
;; Setting buffer-read-only to nil doesn't suffice
;; if some text has a non-nil read-only property,
;; which comint sometimes adds for prompts.
(setq pos
(cond ((eq sym 'save-point)
(if (not output-to-current-buffer)
(point)))
((eq sym 'beg-last-out)
(if (not output-to-current-buffer)
(point-max)))
((or (eq sym 'erase)
(and (null sym) (not output-to-current-buffer)))
(let ((inhibit-read-only t))
(erase-buffer) nil))))
(when pos
(goto-char (point-max))
(push (cons (current-buffer) pos)
shell-command-saved-pos))))
(defun shell-command-set-point-after-cmd (&optional buffer)
"Set point in BUFFER after command complete.
BUFFER is the output buffer of the command; if nil, then defaults
to the current BUFFER.
Set point to the `cdr' of the element in `shell-command-saved-pos'
whose `car' is BUFFER."
(when shell-command-dont-erase-buffer
(let* ((sym shell-command-dont-erase-buffer)
(buf (or buffer (current-buffer)))
(pos (alist-get buf shell-command-saved-pos)))
(setq shell-command-saved-pos
(assq-delete-all buf shell-command-saved-pos))
(when (buffer-live-p buf)
(let ((win (car (get-buffer-window-list buf)))
(pmax (with-current-buffer buf (point-max))))
;; The first time we run a command in a freshly created buffer
;; we have not saved positions yet; advance to `point-max', so that
;; successive commands know where to start.
(unless (and pos (memq sym '(save-point beg-last-out end-last-out)))
(setq pos pmax))
;; Set point in the window displaying buf, if any; otherwise
;; display buf temporary in selected frame and set the point.
(if win
(set-window-point win pos)
(when pos
(with-current-buffer buf (goto-char pos)))
(save-window-excursion
(let ((win (display-buffer
buf
'(nil (inhibit-switch-frame . t)))))
(set-window-point win pos)))))))))
(defun async-shell-command (command &optional output-buffer error-buffer)
"Execute string COMMAND asynchronously in background.
Like `shell-command', but adds `&' at the end of COMMAND
to execute it asynchronously.
The output appears in the buffer `*Async Shell Command*'.
That buffer is in shell mode.
You can configure `async-shell-command-buffer' to specify what to do
when the `*Async Shell Command*' buffer is already taken by another
running shell command. To run COMMAND without displaying the output
in a window you can configure `display-buffer-alist' to use the action
`display-buffer-no-window' for the buffer `*Async Shell Command*'.
In Elisp, you will often be better served by calling `start-process'
directly, since it offers more control and does not impose the use of
a shell (with its need to quote arguments)."
(interactive
(list
(read-shell-command (if shell-command-prompt-show-cwd
(format-message "Async shell command in `%s': "
(abbreviate-file-name
default-directory))
"Async shell command: ")
nil nil
(let ((filename
(cond
(buffer-file-name)
((eq major-mode 'dired-mode)
(dired-get-filename nil t)))))
(and filename (file-relative-name filename))))
current-prefix-arg
shell-command-default-error-buffer))
(unless (string-match "&[ \t]*\\'" command)
(setq command (concat command " &")))
(shell-command command output-buffer error-buffer))
(declare-function comint-output-filter "comint" (process string))
(defun shell-command (command &optional output-buffer error-buffer)
"Execute string COMMAND in inferior shell; display output, if any.
With prefix argument, insert the COMMAND's output at point.
Interactively, prompt for COMMAND in the minibuffer.
If `shell-command-prompt-show-cwd' is non-nil, show the current
directory in the prompt.
If COMMAND ends in `&', execute it asynchronously.
The output appears in the buffer `*Async Shell Command*'.
That buffer is in shell mode. You can also use
`async-shell-command' that automatically adds `&'.
Otherwise, COMMAND is executed synchronously. The output appears in
the buffer `*Shell Command Output*'. If the output is short enough to
display in the echo area (which is determined by the variables
`resize-mini-windows' and `max-mini-window-height'), it is shown
there, but it is nonetheless available in buffer `*Shell Command
Output*' even though that buffer is not automatically displayed.
To specify a coding system for converting non-ASCII characters
in the shell command output, use \\[universal-coding-system-argument] \
before this command.
Noninteractive callers can specify coding systems by binding
`coding-system-for-read' and `coding-system-for-write'.
The optional second argument OUTPUT-BUFFER, if non-nil,
says to put the output in some other buffer.
If OUTPUT-BUFFER is a buffer or buffer name, erase that buffer
and insert the output there; a non-nil value of
`shell-command-dont-erase-buffer' prevents the buffer from being
erased. If OUTPUT-BUFFER is not a buffer and not nil (which happens
interactively when the prefix argument is given), insert the
output in current buffer after point leaving mark after it. This
cannot be done asynchronously.
The user option `shell-command-dont-erase-buffer', which see, controls
whether the output buffer is erased and where to put point after
the shell command.
If the command terminates without error, but generates output,
and you did not specify \"insert it in the current buffer\",
the output can be displayed in the echo area or in its buffer.
If the output is short enough to display in the echo area
\(determined by the variable `max-mini-window-height' if
`resize-mini-windows' is non-nil), it is shown there.
Otherwise, the buffer containing the output is displayed.
If there is output and an error, and you did not specify \"insert it
in the current buffer\", a message about the error goes at the end
of the output.
If the optional third argument ERROR-BUFFER is non-nil, it is a buffer
or buffer name to which to direct the command's standard error output.
If it is nil, error output is mingled with regular output.
In an interactive call, the variable `shell-command-default-error-buffer'
specifies the value of ERROR-BUFFER.
In Elisp, you will often be better served by calling `call-process' or
`start-process' directly, since they offer more control and do not
impose the use of a shell (with its need to quote arguments)."
(interactive
(list
(read-shell-command (if shell-command-prompt-show-cwd
(format-message "Shell command in `%s': "
(abbreviate-file-name
default-directory))
"Shell command: ")
nil nil
(let ((filename
(cond
(buffer-file-name)
((eq major-mode 'dired-mode)
(dired-get-filename nil t)))))
(and filename (file-relative-name filename))))
current-prefix-arg
shell-command-default-error-buffer))
;; Look for a handler in case default-directory is a remote file name.
(let ((handler
(find-file-name-handler (directory-file-name default-directory)
'shell-command)))
(if handler
(funcall handler 'shell-command command output-buffer error-buffer)
(if (and output-buffer
(not (string-match "[ \t]*&[ \t]*\\'" command))
(or (eq output-buffer (current-buffer))
(and (stringp output-buffer) (eq (get-buffer output-buffer) (current-buffer)))
(not (or (bufferp output-buffer) (stringp output-buffer))))) ; Bug#39067
;; Synchronous command with output in current buffer.
(let ((error-file
(and error-buffer
(make-temp-file
(expand-file-name "scor"
(or small-temporary-file-directory
temporary-file-directory))))))
(barf-if-buffer-read-only)
(push-mark nil t)
(shell-command-save-pos-or-erase 'output-to-current-buffer)
;; We do not use -f for csh; we will not support broken use of
;; .cshrcs. Even the BSD csh manual says to use
;; "if ($?prompt) exit" before things that are not useful
;; non-interactively. Besides, if someone wants their other
;; aliases for shell commands then they can still have them.
(call-process-shell-command command nil (if error-file
(list t error-file)
t))
(when (and error-file (file-exists-p error-file))
(when (< 0 (file-attribute-size (file-attributes error-file)))
(with-current-buffer (get-buffer-create error-buffer)
(let ((pos-from-end (- (point-max) (point))))
(or (bobp)
(insert "\f\n"))
;; Do no formatting while reading error file,
;; because that can run a shell command, and we
;; don't want that to cause an infinite recursion.
(format-insert-file error-file nil)
;; Put point after the inserted errors.
(goto-char (- (point-max) pos-from-end)))
(display-buffer (current-buffer))))
(delete-file error-file))
;; This is like exchange-point-and-mark, but doesn't
;; activate the mark. It is cleaner to avoid activation,
;; even though the command loop would deactivate the mark
;; because we inserted text.
(goto-char (prog1 (mark t)
(set-marker (mark-marker) (point)
(current-buffer)))))
;; Output goes in a separate buffer.
;; Preserve the match data in case called from a program.
;; FIXME: It'd be ridiculous for an Elisp function to call
;; shell-command and assume that it won't mess the match-data!
(save-match-data
(if (string-match "[ \t]*&[ \t]*\\'" command)
;; Command ending with ampersand means asynchronous.
(let* ((buffer (get-buffer-create
(or output-buffer "*Async Shell Command*")))
(bname (buffer-name buffer))
(proc (get-buffer-process buffer))
(directory default-directory))
;; Remove the ampersand.
(setq command (substring command 0 (match-beginning 0)))
;; Ask the user what to do with already running process.
(when proc
(cond
((eq async-shell-command-buffer 'confirm-kill-process)
;; If will kill a process, query first.
(if (yes-or-no-p "A command is running in the default buffer. Kill it? ")
(kill-process proc)
(user-error "Shell command in progress")))
((eq async-shell-command-buffer 'confirm-new-buffer)
;; If will create a new buffer, query first.
(if (yes-or-no-p "A command is running in the default buffer. Use a new buffer? ")
(setq buffer (generate-new-buffer bname))
(user-error "Shell command in progress")))
((eq async-shell-command-buffer 'new-buffer)
;; It will create a new buffer.
(setq buffer (generate-new-buffer bname)))
((eq async-shell-command-buffer 'confirm-rename-buffer)
;; If will rename the buffer, query first.
(if (yes-or-no-p "A command is running in the default buffer. Rename it? ")
(progn
(with-current-buffer buffer
(rename-uniquely))
(setq buffer (get-buffer-create bname)))
(user-error "Shell command in progress")))
((eq async-shell-command-buffer 'rename-buffer)
;; It will rename the buffer.
(with-current-buffer buffer
(rename-uniquely))
(setq buffer (get-buffer-create bname)))))
(with-current-buffer buffer
(shell-command-save-pos-or-erase)
(setq default-directory directory)
(let ((process-environment
(if (natnump async-shell-command-width)
(cons (format "COLUMNS=%d" async-shell-command-width)
process-environment)
process-environment)))
(setq proc
(start-process-shell-command "Shell" buffer command)))
(setq mode-line-process '(":%s"))
(require 'shell) (shell-mode)
(set-process-sentinel proc #'shell-command-sentinel)
;; Use the comint filter for proper handling of
;; carriage motion (see comint-inhibit-carriage-motion).
(set-process-filter proc #'comint-output-filter)
(if async-shell-command-display-buffer
;; Display buffer immediately.
(display-buffer buffer '(nil (allow-no-window . t)))
;; Defer displaying buffer until first process output.
;; Use disposable named advice so that the buffer is
;; displayed at most once per process lifetime.
(let ((nonce (make-symbol "nonce")))
(add-function :before (process-filter proc)
(lambda (proc _string)
(let ((buf (process-buffer proc)))
(when (buffer-live-p buf)
(remove-function (process-filter proc)
nonce)
(display-buffer buf))))
`((name . ,nonce)))))))
;; Otherwise, command is executed synchronously.
(shell-command-on-region (point) (point) command
output-buffer nil error-buffer)))))))
(defun display-message-or-buffer (message &optional buffer-name action frame)
"Display MESSAGE in the echo area if possible, otherwise in a pop-up buffer.
MESSAGE may be either a string or a buffer.
A pop-up buffer is displayed using `display-buffer' if MESSAGE is too long
for maximum height of the echo area, as defined by `max-mini-window-height'
if `resize-mini-windows' is non-nil.
Returns either the string shown in the echo area, or when a pop-up
buffer is used, the window used to display it.
If MESSAGE is a string, then the optional argument BUFFER-NAME is the
name of the buffer used to display it in the case where a pop-up buffer
is used, defaulting to `*Message*'. In the case where MESSAGE is a
string and it is displayed in the echo area, it is not specified whether
the contents are inserted into the buffer anyway.
Optional arguments ACTION and FRAME are as for `display-buffer',
and are used only if a pop-up buffer is displayed."
(cond ((and (stringp message) (not (string-match "\n" message)))
;; Trivial case where we can use the echo area
(message "%s" message))
((and (stringp message)
(= (string-match "\n" message) (1- (length message))))
;; Trivial case where we can just remove single trailing newline
(message "%s" (substring message 0 (1- (length message)))))
(t
;; General case
(with-current-buffer
(if (bufferp message)
message
(get-buffer-create (or buffer-name "*Message*")))
(unless (bufferp message)
(erase-buffer)
(insert message))
(let ((lines
(if (= (buffer-size) 0)
0
(count-screen-lines nil nil nil (minibuffer-window)))))
(cond ((= lines 0))
((and (or (<= lines 1)
(<= lines
(if resize-mini-windows
(cond ((floatp max-mini-window-height)
(* (frame-height)
max-mini-window-height))
((integerp max-mini-window-height)
max-mini-window-height)
(t
1))
1)))
;; Don't use the echo area if the output buffer is
;; already displayed in the selected frame.
(not (get-buffer-window (current-buffer))))
;; Echo area
(goto-char (point-max))
(when (bolp)
(backward-char 1))
(message "%s" (buffer-substring (point-min) (point))))
(t
;; Buffer
(goto-char (point-min))
(display-buffer (current-buffer) action frame))))))))
;; We have a sentinel to prevent insertion of a termination message
;; in the buffer itself, and to set the point in the buffer when
;; `shell-command-dont-erase-buffer' is non-nil.
(defun shell-command-sentinel (process signal)
(when (memq (process-status process) '(exit signal))
(shell-command-set-point-after-cmd (process-buffer process))
(message "%s: %s."
(car (cdr (cdr (process-command process))))
(substring signal 0 -1))))
(defun shell-command-on-region (start end command
&optional output-buffer replace
error-buffer display-error-buffer
region-noncontiguous-p)
"Execute string COMMAND in inferior shell with region as input.
Normally display output (if any) in temp buffer `*Shell Command Output*';
Prefix arg means replace the region with it. Return the exit code of
COMMAND.
To specify a coding system for converting non-ASCII characters
in the input and output to the shell command, use \\[universal-coding-system-argument]
before this command. By default, the input (from the current buffer)
is encoded using coding-system specified by `process-coding-system-alist',
falling back to `default-process-coding-system' if no match for COMMAND
is found in `process-coding-system-alist'.
Noninteractive callers can specify coding systems by binding
`coding-system-for-read' and `coding-system-for-write'.
If the command generates output, the output may be displayed
in the echo area or in a buffer.
If the output is short enough to display in the echo area
\(determined by the variable `max-mini-window-height' if
`resize-mini-windows' is non-nil), it is shown there.
Otherwise it is displayed in the buffer `*Shell Command Output*'.
The output is available in that buffer in both cases.
If there is output and an error, a message about the error
appears at the end of the output.
Optional fourth arg OUTPUT-BUFFER specifies where to put the
command's output. If the value is a buffer or buffer name,
erase that buffer and insert the output there; a non-nil value of
`shell-command-dont-erase-buffer' prevent to erase the buffer.
If the value is nil, use the buffer `*Shell Command Output*'.
Any other non-nil value means to insert the output in the
current buffer after START.
Optional fifth arg REPLACE, if non-nil, means to insert the
output in place of text from START to END, putting point and mark
around it.
Optional sixth arg ERROR-BUFFER, if non-nil, specifies a buffer
or buffer name to which to direct the command's standard error
output. If nil, error output is mingled with regular output.
When called interactively, `shell-command-default-error-buffer'
is used for ERROR-BUFFER.
Optional seventh arg DISPLAY-ERROR-BUFFER, if non-nil, means to
display the error buffer if there were any errors. When called
interactively, this is t.
Non-nil REGION-NONCONTIGUOUS-P means that the region is composed of
noncontiguous pieces. The most common example of this is a
rectangular region, where the pieces are separated by newline
characters."
(interactive (let (string)
(unless (mark)
(user-error "The mark is not set now, so there is no region"))
;; Do this before calling region-beginning
;; and region-end, in case subprocess output
;; relocates them while we are in the minibuffer.
(setq string (read-shell-command "Shell command on region: "))
;; call-interactively recognizes region-beginning and
;; region-end specially, leaving them in the history.
(list (region-beginning) (region-end)
string
current-prefix-arg
current-prefix-arg
shell-command-default-error-buffer
t
(region-noncontiguous-p))))
(let ((error-file
(if error-buffer
(make-temp-file
(expand-file-name "scor"
(or small-temporary-file-directory
temporary-file-directory)))
nil))
exit-status)
;; Unless a single contiguous chunk is selected, operate on multiple chunks.
(if region-noncontiguous-p
(let ((input (concat (funcall region-extract-function 'delete) "\n"))
output)
(with-temp-buffer
(insert input)
(call-process-region (point-min) (point-max)
shell-file-name t t
nil shell-command-switch
command)
(setq output (split-string (buffer-string) "\n")))
(goto-char start)
(funcall region-insert-function output))
(if (or replace
(and output-buffer
(not (or (bufferp output-buffer) (stringp output-buffer)))))
;; Replace specified region with output from command.
(let ((swap (and replace (< start end))))
;; Don't muck with mark unless REPLACE says we should.
(goto-char start)
(and replace (push-mark (point) 'nomsg))
(setq exit-status
(call-shell-region start end command replace
(if error-file
(list t error-file)
t)))
;; It is rude to delete a buffer that the command is not using.
;; (let ((shell-buffer (get-buffer "*Shell Command Output*")))
;; (and shell-buffer (not (eq shell-buffer (current-buffer)))
;; (kill-buffer shell-buffer)))
;; Don't muck with mark unless REPLACE says we should.
(and replace swap (exchange-point-and-mark)))
;; No prefix argument: put the output in a temp buffer,
;; replacing its entire contents.
(let ((buffer (get-buffer-create
(or output-buffer "*Shell Command Output*"))))
(set-buffer-major-mode buffer) ; Enable globalized modes (bug#38111)
(unwind-protect
(if (and (eq buffer (current-buffer))
(or (memq shell-command-dont-erase-buffer '(nil erase))
(and (not (eq buffer (get-buffer "*Shell Command Output*")))
(not (region-active-p)))))
;; If the input is the same buffer as the output,
;; delete everything but the specified region,
;; then replace that region with the output.
(progn (setq buffer-read-only nil)
(delete-region (max start end) (point-max))
(delete-region (point-min) (min start end))
(setq exit-status
(call-process-region (point-min) (point-max)
shell-file-name t
(if error-file
(list t error-file)
t)
nil shell-command-switch
command)))
;; Clear the output buffer, then run the command with
;; output there.
(let ((directory default-directory))
(with-current-buffer buffer
(if (not output-buffer)
(setq default-directory directory))
(shell-command-save-pos-or-erase)))
(setq exit-status
(call-shell-region start end command nil
(if error-file
(list buffer error-file)
buffer))))
;; Report the output.
(with-current-buffer buffer
(setq mode-line-process
(cond ((null exit-status)
" - Error")
((stringp exit-status)
(format " - Signal [%s]" exit-status))
((not (equal 0 exit-status))
(format " - Exit [%d]" exit-status)))))
(if (with-current-buffer buffer (> (point-max) (point-min)))
;; There's some output, display it
(progn
(display-message-or-buffer buffer)
(shell-command-set-point-after-cmd buffer))
;; No output; error?
(let ((output
(if (and error-file
(< 0 (file-attribute-size
(file-attributes error-file))))
(format "some error output%s"
(if shell-command-default-error-buffer
(format " to the \"%s\" buffer"
shell-command-default-error-buffer)
""))
"no output")))
(cond ((null exit-status)
(message "(Shell command failed with error)"))
((equal 0 exit-status)
(message "(Shell command succeeded with %s)"
output))
((stringp exit-status)
(message "(Shell command killed by signal %s)"
exit-status))
(t
(message "(Shell command failed with code %d and %s)"
exit-status output))))
;; Don't kill: there might be useful info in the undo-log.
;; (kill-buffer buffer)
)))))
(when (and error-file (file-exists-p error-file))
(if (< 0 (file-attribute-size (file-attributes error-file)))
(with-current-buffer (get-buffer-create error-buffer)
(goto-char (point-max))
;; Insert a separator if there's already text here.
(unless (bobp)
(insert "\f\n"))
;; Do no formatting while reading error file,
;; because that can run a shell command, and we
;; don't want that to cause an infinite recursion.
(format-insert-file error-file nil)
(and display-error-buffer
(display-buffer (current-buffer)))))
(delete-file error-file))
exit-status))
(defun shell-command-to-string (command)
"Execute shell command COMMAND and return its output as a string."
(with-output-to-string
(with-current-buffer
standard-output
(shell-command command t))))
(defun process-file (program &optional infile buffer display &rest args)
"Process files synchronously in a separate process that runs PROGRAM.
Similar to `call-process', but may invoke a file name handler based on
`default-directory'. The current working directory of the
subprocess is `default-directory'.
If PROGRAM is a remote file name, it should be processed
by `file-local-name' before passing it to this function.
Handle file names in INFILE and BUFFER normally; this differs
from `call-process', which does not support file name handlers
for INFILE and BUFFER. However, pass ARGS to the process
verbatim without file name handling, as `call-process' does.
Some file name handlers might not support all variants. For
example, they might treat DISPLAY as nil regardless of the actual
value passed."
(let ((fh (find-file-name-handler default-directory 'process-file))
lc stderr-file)
(unwind-protect
(if fh (apply fh 'process-file program infile buffer display args)
(when infile (setq lc (file-local-copy infile)))
(setq stderr-file (when (and (consp buffer) (stringp (cadr buffer)))
(make-temp-file "emacs")))
(prog1
(apply 'call-process program
(or lc infile)
(if stderr-file (list (car buffer) stderr-file) buffer)
display args)
(when stderr-file (copy-file stderr-file (cadr buffer) t))))
(when stderr-file (delete-file stderr-file))
(when lc (delete-file lc)))))
(defvar process-file-side-effects t
"Whether a call of `process-file' changes remote files.
By default, this variable is always set to t, meaning that a
call of `process-file' could potentially change any file on a
remote host. When set to nil, a file name handler could optimize
its behavior with respect to remote file attribute caching.
You should only ever change this variable with a let-binding;
never with `setq'.")
(defun start-file-process (name buffer program &rest program-args)
"Start a program in a subprocess. Return the process object for it.
Similar to `start-process', but may invoke a file name handler based on
`default-directory'. See Info node `(elisp)Magic File Names'.
This handler ought to run PROGRAM, perhaps on the local host,
perhaps on a remote host that corresponds to `default-directory'.
In the latter case, the local part of `default-directory', the one
produced from it by `file-local-name', becomes the working directory
of the process on the remote host.
PROGRAM and PROGRAM-ARGS might be file names. They are not
objects of file name handler invocation, so they need to be obtained
by calling `file-local-name', in case they are remote file names.
File name handlers might not support pty association, if PROGRAM is nil."
(let ((fh (find-file-name-handler default-directory 'start-file-process)))
(if fh (apply fh 'start-file-process name buffer program program-args)
(apply 'start-process name buffer program program-args))))
;;;; Process menu
(defvar tabulated-list-format)
(defvar tabulated-list-entries)
(defvar tabulated-list-sort-key)
(declare-function tabulated-list-init-header "tabulated-list" ())
(declare-function tabulated-list-print "tabulated-list"
(&optional remember-pos update))
(defvar process-menu-query-only nil)
(defvar process-menu-mode-map
(let ((map (make-sparse-keymap)))
(define-key map [?d] 'process-menu-delete-process)
map))
(define-derived-mode process-menu-mode tabulated-list-mode "Process Menu"
"Major mode for listing the processes called by Emacs."
(setq tabulated-list-format [("Process" 15 t)
("PID" 7 t)
("Status" 7 t)
;; 25 is the length of the long standard buffer
;; name "*Async Shell Command*<10>" (bug#30016)
("Buffer" 25 t)
("TTY" 12 t)
("Thread" 12 t)
("Command" 0 t)])
(make-local-variable 'process-menu-query-only)
(setq tabulated-list-sort-key (cons "Process" nil))
(add-hook 'tabulated-list-revert-hook 'list-processes--refresh nil t))
(defun process-menu-delete-process ()
"Kill process at point in a `list-processes' buffer."
(interactive)
(let ((pos (point)))
(delete-process (tabulated-list-get-id))
(revert-buffer)
(goto-char (min pos (point-max)))
(if (eobp)
(forward-line -1)
(beginning-of-line))))
(defun list-processes--refresh ()
"Recompute the list of processes for the Process List buffer.
Also, delete any process that is exited or signaled."
(setq tabulated-list-entries nil)
(dolist (p (process-list))
(cond ((memq (process-status p) '(exit signal closed))
(delete-process p))
((or (not process-menu-query-only)
(process-query-on-exit-flag p))
(let* ((buf (process-buffer p))
(type (process-type p))
(pid (if (process-id p) (format "%d" (process-id p)) "--"))
(name (process-name p))
(status (symbol-name (process-status p)))
(buf-label (if (buffer-live-p buf)
`(,(buffer-name buf)
face link
help-echo ,(format-message
"Visit buffer `%s'"
(buffer-name buf))
follow-link t
process-buffer ,buf
action process-menu-visit-buffer)
"--"))
(tty (or (process-tty-name p) "--"))
(thread
(cond
((or
(null (process-thread p))
(not (fboundp 'thread-name))) "--")
((eq (process-thread p) main-thread) "Main")
((thread-name (process-thread p)))
(t "--")))
(cmd
(if (memq type '(network serial))
(let ((contact (process-contact p t t)))
(if (eq type 'network)
(format "(%s %s)"
(if (plist-get contact :type)
"datagram"
"network")
(if (plist-get contact :server)
(format
"server on %s"
(if (plist-get contact :host)
(format "%s:%s"
(plist-get contact :host)
(plist-get
contact :service))
(plist-get contact :local)))
(format "connection to %s:%s"
(plist-get contact :host)
(plist-get contact :service))))
(format "(serial port %s%s)"
(or (plist-get contact :port) "?")
(let ((speed (plist-get contact :speed)))
(if speed
(format " at %s b/s" speed)
"")))))
(mapconcat 'identity (process-command p) " "))))
(push (list p (vector name pid status buf-label tty thread cmd))
tabulated-list-entries)))))
(tabulated-list-init-header))
(defun process-menu-visit-buffer (button)
(display-buffer (button-get button 'process-buffer)))
(defun list-processes (&optional query-only buffer)
"Display a list of all processes that are Emacs sub-processes.
If optional argument QUERY-ONLY is non-nil, only processes with
the query-on-exit flag set are listed.
Any process listed as exited or signaled is actually eliminated
after the listing is made.
Optional argument BUFFER specifies a buffer to use, instead of
\"*Process List*\".
The return value is always nil.
This function lists only processes that were launched by Emacs. To
see other processes running on the system, use `list-system-processes'."
(interactive)
(or (fboundp 'process-list)
(error "Asynchronous subprocesses are not supported on this system"))
(unless (bufferp buffer)
(setq buffer (get-buffer-create "*Process List*")))
(with-current-buffer buffer
(process-menu-mode)
(setq process-menu-query-only query-only)
(list-processes--refresh)
(tabulated-list-print))
(display-buffer buffer)
nil)
;;;; Prefix commands
(setq prefix-command--needs-update nil)
(setq prefix-command--last-echo nil)
(defun internal-echo-keystrokes-prefix ()
;; BEWARE: Called directly from C code.
;; If the return value is non-nil, it means we are in the middle of
;; a command with prefix, such as a command invoked with prefix-arg.
(if (not prefix-command--needs-update)
prefix-command--last-echo
(setq prefix-command--last-echo
(let ((strs nil))
(run-hook-wrapped 'prefix-command-echo-keystrokes-functions
(lambda (fun) (push (funcall fun) strs)))
(setq strs (delq nil strs))
(when strs (mapconcat #'identity strs " "))))))
(defvar prefix-command-echo-keystrokes-functions nil
"Abnormal hook that constructs the description of the current prefix state.
Each function is called with no argument, should return a string or nil.")
(defun prefix-command-update ()
"Update state of prefix commands.
Call it whenever you change the \"prefix command state\"."
(setq prefix-command--needs-update t))
(defvar prefix-command-preserve-state-hook nil
"Normal hook run when a command needs to preserve the prefix.")
(defun prefix-command-preserve-state ()
"Pass the current prefix command state to the next command.
Should be called by all prefix commands.
Runs `prefix-command-preserve-state-hook'."
(run-hooks 'prefix-command-preserve-state-hook)
;; If the current command is a prefix command, we don't want the next (real)
;; command to have `last-command' set to, say, `universal-argument'.
(setq this-command last-command)
(setq real-this-command real-last-command)
(prefix-command-update))
(defun reset-this-command-lengths ()
(declare (obsolete prefix-command-preserve-state "25.1"))
nil)
;;;;; The main prefix command.
;; FIXME: Declaration of `prefix-arg' should be moved here!?
(add-hook 'prefix-command-echo-keystrokes-functions
#'universal-argument--description)
(defun universal-argument--description ()
(when prefix-arg
(concat "C-u"
(pcase prefix-arg
('(-) " -")
(`(,(and (pred integerp) n))
(let ((str ""))
(while (and (> n 4) (= (mod n 4) 0))
(setq str (concat str " C-u"))
(setq n (/ n 4)))
(if (= n 4) str (format " %s" prefix-arg))))
(_ (format " %s" prefix-arg))))))
(add-hook 'prefix-command-preserve-state-hook
#'universal-argument--preserve)
(defun universal-argument--preserve ()
(setq prefix-arg current-prefix-arg))
(defvar universal-argument-map
(let ((map (make-sparse-keymap))
(universal-argument-minus
;; For backward compatibility, minus with no modifiers is an ordinary
;; command if digits have already been entered.
`(menu-item "" negative-argument
:filter ,(lambda (cmd)
(if (integerp prefix-arg) nil cmd)))))
(define-key map [switch-frame]
(lambda (e) (interactive "e")
(handle-switch-frame e) (universal-argument--mode)))
(define-key map [?\C-u] 'universal-argument-more)
(define-key map [?-] universal-argument-minus)
(define-key map [?0] 'digit-argument)
(define-key map [?1] 'digit-argument)
(define-key map [?2] 'digit-argument)
(define-key map [?3] 'digit-argument)
(define-key map [?4] 'digit-argument)
(define-key map [?5] 'digit-argument)
(define-key map [?6] 'digit-argument)
(define-key map [?7] 'digit-argument)
(define-key map [?8] 'digit-argument)
(define-key map [?9] 'digit-argument)
(define-key map [kp-0] 'digit-argument)
(define-key map [kp-1] 'digit-argument)
(define-key map [kp-2] 'digit-argument)
(define-key map [kp-3] 'digit-argument)
(define-key map [kp-4] 'digit-argument)
(define-key map [kp-5] 'digit-argument)
(define-key map [kp-6] 'digit-argument)
(define-key map [kp-7] 'digit-argument)
(define-key map [kp-8] 'digit-argument)
(define-key map [kp-9] 'digit-argument)
(define-key map [kp-subtract] universal-argument-minus)
map)
"Keymap used while processing \\[universal-argument].")
(defun universal-argument--mode ()
(prefix-command-update)
(set-transient-map universal-argument-map nil))
(defun universal-argument ()
"Begin a numeric argument for the following command.
Digits or minus sign following \\[universal-argument] make up the numeric argument.
\\[universal-argument] following the digits or minus sign ends the argument.
\\[universal-argument] without digits or minus sign provides 4 as argument.
Repeating \\[universal-argument] without digits or minus sign
multiplies the argument by 4 each time.
For some commands, just \\[universal-argument] by itself serves as a flag
that is different in effect from any particular numeric argument.
These commands include \\[set-mark-command] and \\[start-kbd-macro]."
(interactive)
(prefix-command-preserve-state)
(setq prefix-arg (list 4))
(universal-argument--mode))
(defun universal-argument-more (arg)
;; A subsequent C-u means to multiply the factor by 4 if we've typed
;; nothing but C-u's; otherwise it means to terminate the prefix arg.
(interactive "P")
(prefix-command-preserve-state)
(setq prefix-arg (if (consp arg)
(list (* 4 (car arg)))
(if (eq arg '-)
(list -4)
arg)))
(when (consp prefix-arg) (universal-argument--mode)))
(defun negative-argument (arg)
"Begin a negative numeric argument for the next command.
\\[universal-argument] following digits or minus sign ends the argument."
(interactive "P")
(prefix-command-preserve-state)
(setq prefix-arg (cond ((integerp arg) (- arg))
((eq arg '-) nil)
(t '-)))
(universal-argument--mode))
(defun digit-argument (arg)
"Part of the numeric argument for the next command.
\\[universal-argument] following digits or minus sign ends the argument."
(interactive "P")
(prefix-command-preserve-state)
(let* ((char (if (integerp last-command-event)
last-command-event
(get last-command-event 'ascii-character)))
(digit (- (logand char ?\177) ?0)))
(setq prefix-arg (cond ((integerp arg)
(+ (* arg 10)
(if (< arg 0) (- digit) digit)))
((eq arg '-)
;; Treat -0 as just -, so that -01 will work.
(if (zerop digit) '- (- digit)))
(t
digit))))
(universal-argument--mode))
(defvar filter-buffer-substring-functions nil
"This variable is a wrapper hook around `buffer-substring--filter'.
\(See `with-wrapper-hook' for details about wrapper hooks.)")
(make-obsolete-variable 'filter-buffer-substring-functions
'filter-buffer-substring-function "24.4")
(defvar filter-buffer-substring-function #'buffer-substring--filter
"Function to perform the filtering in `filter-buffer-substring'.
The function is called with the same 3 arguments (BEG END DELETE)
that `filter-buffer-substring' received. It should return the
buffer substring between BEG and END, after filtering. If DELETE is
non-nil, it should delete the text between BEG and END from the buffer.")
(defvar buffer-substring-filters nil
"List of filter functions for `buffer-substring--filter'.
Each function must accept a single argument, a string, and return a string.
The buffer substring is passed to the first function in the list,
and the return value of each function is passed to the next.
As a special convention, point is set to the start of the buffer text
being operated on (i.e., the first argument of `buffer-substring--filter')
before these functions are called.")
(make-obsolete-variable 'buffer-substring-filters
'filter-buffer-substring-function "24.1")
(defun filter-buffer-substring (beg end &optional delete)
"Return the buffer substring between BEG and END, after filtering.
If DELETE is non-nil, delete the text between BEG and END from the buffer.
This calls the function that `filter-buffer-substring-function' specifies
\(passing the same three arguments that it received) to do the work,
and returns whatever it does. The default function does no filtering,
unless a hook has been set.
Use `filter-buffer-substring' instead of `buffer-substring',
`buffer-substring-no-properties', or `delete-and-extract-region' when
you want to allow filtering to take place. For example, major or minor
modes can use `filter-buffer-substring-function' to exclude text properties
that are special to a buffer, and should not be copied into other buffers."
(funcall filter-buffer-substring-function beg end delete))
(defun buffer-substring--filter (beg end &optional delete)
"Default function to use for `filter-buffer-substring-function'.
Its arguments and return value are as specified for `filter-buffer-substring'.
Also respects the obsolete wrapper hook `filter-buffer-substring-functions'
\(see `with-wrapper-hook' for details about wrapper hooks),
and the abnormal hook `buffer-substring-filters'.
No filtering is done unless a hook says to."
(subr--with-wrapper-hook-no-warnings
filter-buffer-substring-functions (beg end delete)
(cond
((or delete buffer-substring-filters)
(save-excursion
(goto-char beg)
(let ((string (if delete (delete-and-extract-region beg end)
(buffer-substring beg end))))
(dolist (filter buffer-substring-filters)
(setq string (funcall filter string)))
string)))
(t
(buffer-substring beg end)))))
;;;; Window system cut and paste hooks.
(defvar interprogram-cut-function #'gui-select-text
"Function to call to make a killed region available to other programs.
Most window systems provide a facility for cutting and pasting
text between different programs, such as the clipboard on X and
MS-Windows, or the pasteboard on Nextstep/Mac OS.
This variable holds a function that Emacs calls whenever text is
put in the kill ring, to make the new kill available to other
programs. The function takes one argument, TEXT, which is a
string containing the text that should be made available.")
(defvar interprogram-paste-function #'gui-selection-value
"Function to call to get text cut from other programs.
Most window systems provide a facility for cutting and pasting
text between different programs, such as the clipboard on X and
MS-Windows, or the pasteboard on Nextstep/Mac OS.
This variable holds a function that Emacs calls to obtain text
that other programs have provided for pasting. The function is
called with no arguments. If no other program has provided text
to paste, the function should return nil (in which case the
caller, usually `current-kill', should use the top of the Emacs
kill ring). If another program has provided text to paste, the
function should return that text as a string (in which case the
caller should put this string in the kill ring as the latest
kill).
The function may also return a list of strings if the window
system supports multiple selections. The first string will be
used as the pasted text, but the other will be placed in the kill
ring for easy access via `yank-pop'.
Note that the function should return a string only if a program
other than Emacs has provided a string for pasting; if Emacs
provided the most recent string, the function should return nil.
If it is difficult to tell whether Emacs or some other program
provided the current string, it is probably good enough to return
nil if the string is equal (according to `string=') to the last
text Emacs provided.")
;;;; The kill ring data structure.
(defvar kill-ring nil
"List of killed text sequences.
Since the kill ring is supposed to interact nicely with cut-and-paste
facilities offered by window systems, use of this variable should
interact nicely with `interprogram-cut-function' and
`interprogram-paste-function'. The functions `kill-new',
`kill-append', and `current-kill' are supposed to implement this
interaction; you may want to use them instead of manipulating the kill
ring directly.")
(defcustom kill-ring-max 60
"Maximum length of kill ring before oldest elements are thrown away."
:type 'integer
:group 'killing)
(defvar kill-ring-yank-pointer nil
"The tail of the kill ring whose car is the last thing yanked.")
(defcustom save-interprogram-paste-before-kill nil
"Save existing clipboard text into kill ring before replacing it.
A non-nil value ensures that Emacs kill operations do not
irrevocably overwrite existing clipboard text by saving it to the
`kill-ring' prior to the kill. Such text can subsequently be
retrieved via \\[yank] \\[yank-pop]."
:type 'boolean
:group 'killing
:version "23.2")
(defcustom kill-do-not-save-duplicates nil
"If non-nil, don't add a string to `kill-ring' if it duplicates the last one.
The comparison is done using `equal-including-properties'."
:type 'boolean
:group 'killing
:version "23.2")
(defun kill-new (string &optional replace)
"Make STRING the latest kill in the kill ring.
Set `kill-ring-yank-pointer' to point to it.
If `interprogram-cut-function' is non-nil, apply it to STRING.
Optional second argument REPLACE non-nil means that STRING will replace
the front of the kill ring, rather than being added to the list.
When `save-interprogram-paste-before-kill' and `interprogram-paste-function'
are non-nil, save the interprogram paste string(s) into `kill-ring' before
STRING.
When the yank handler has a non-nil PARAM element, the original STRING
argument is not used by `insert-for-yank'. However, since Lisp code
may access and use elements from the kill ring directly, the STRING
argument should still be a \"useful\" string for such uses."
(unless (and kill-do-not-save-duplicates
;; Due to text properties such as 'yank-handler that
;; can alter the contents to yank, comparison using
;; `equal' is unsafe.
(equal-including-properties string (car kill-ring)))
(if (fboundp 'menu-bar-update-yank-menu)
(menu-bar-update-yank-menu string (and replace (car kill-ring)))))
(when save-interprogram-paste-before-kill
(let ((interprogram-paste (and interprogram-paste-function
(funcall interprogram-paste-function))))
(when interprogram-paste
(dolist (s (if (listp interprogram-paste)
;; Use `reverse' to avoid modifying external data.
(reverse interprogram-paste)
(list interprogram-paste)))
(unless (and kill-do-not-save-duplicates
(equal-including-properties s (car kill-ring)))
(push s kill-ring))))))
(unless (and kill-do-not-save-duplicates
(equal-including-properties string (car kill-ring)))
(if (and replace kill-ring)
(setcar kill-ring string)
(let ((history-delete-duplicates nil))
(add-to-history 'kill-ring string kill-ring-max t))))
(setq kill-ring-yank-pointer kill-ring)
(if interprogram-cut-function
(funcall interprogram-cut-function string)))
;; It has been argued that this should work like `self-insert-command'
;; which merges insertions in `buffer-undo-list' in groups of 20
;; (hard-coded in `undo-auto-amalgamate').
(defcustom kill-append-merge-undo nil
"Amalgamate appending kills with the last kill for undo.
When non-nil, appending or prepending text to the last kill makes
\\[undo] restore both pieces of text simultaneously."
:type 'boolean
:group 'killing
:version "25.1")
(defun kill-append (string before-p)
"Append STRING to the end of the latest kill in the kill ring.
If BEFORE-P is non-nil, prepend STRING to the kill instead.
If `interprogram-cut-function' is non-nil, call it with the
resulting kill.
If `kill-append-merge-undo' is non-nil, remove the last undo
boundary in the current buffer."
(let ((cur (car kill-ring)))
(kill-new (if before-p (concat string cur) (concat cur string))
(or (string= cur "")
(null (get-text-property 0 'yank-handler cur)))))
(when (and kill-append-merge-undo (not buffer-read-only))
(let ((prev buffer-undo-list)
(next (cdr buffer-undo-list)))
;; Find the next undo boundary.
(while (car next)
(pop next)
(pop prev))
;; Remove this undo boundary.
(when prev
(setcdr prev (cdr next))))))
(defcustom yank-pop-change-selection nil
"Whether rotating the kill ring changes the window system selection.
If non-nil, whenever the kill ring is rotated (usually via the
`yank-pop' command), Emacs also calls `interprogram-cut-function'
to copy the new kill to the window system selection."
:type 'boolean
:group 'killing
:version "23.1")
(defun current-kill (n &optional do-not-move)
"Rotate the yanking point by N places, and then return that kill.
If N is zero and `interprogram-paste-function' is set to a
function that returns a string or a list of strings, and if that
function doesn't return nil, then that string (or list) is added
to the front of the kill ring and the string (or first string in
the list) is returned as the latest kill.
If N is not zero, and if `yank-pop-change-selection' is
non-nil, use `interprogram-cut-function' to transfer the
kill at the new yank point into the window system selection.
If optional arg DO-NOT-MOVE is non-nil, then don't actually
move the yanking point; just return the Nth kill forward."
(let ((interprogram-paste (and (= n 0)
interprogram-paste-function
(funcall interprogram-paste-function))))
(if interprogram-paste
(progn
;; Disable the interprogram cut function when we add the new
;; text to the kill ring, so Emacs doesn't try to own the
;; selection, with identical text.
;; Also disable the interprogram paste function, so that
;; `kill-new' doesn't call it repeatedly.
(let ((interprogram-cut-function nil)
(interprogram-paste-function nil))
(if (listp interprogram-paste)
;; Use `reverse' to avoid modifying external data.
(mapc #'kill-new (reverse interprogram-paste))
(kill-new interprogram-paste)))
(car kill-ring))
(or kill-ring (error "Kill ring is empty"))
(let ((ARGth-kill-element
(nthcdr (mod (- n (length kill-ring-yank-pointer))
(length kill-ring))
kill-ring)))
(unless do-not-move
(setq kill-ring-yank-pointer ARGth-kill-element)
(when (and yank-pop-change-selection
(> n 0)
interprogram-cut-function)
(funcall interprogram-cut-function (car ARGth-kill-element))))
(car ARGth-kill-element)))))
;;;; Commands for manipulating the kill ring.
(defcustom kill-read-only-ok nil
"Non-nil means don't signal an error for killing read-only text."
:type 'boolean
:group 'killing)
(defun kill-region (beg end &optional region)
"Kill (\"cut\") text between point and mark.
This deletes the text from the buffer and saves it in the kill ring.
The command \\[yank] can retrieve it from there.
\(If you want to save the region without killing it, use \\[kill-ring-save].)
If you want to append the killed region to the last killed text,
use \\[append-next-kill] before \\[kill-region].
Any command that calls this function is a \"kill command\".
If the previous command was also a kill command,
the text killed this time appends to the text killed last time
to make one entry in the kill ring.
The killed text is filtered by `filter-buffer-substring' before it is
saved in the kill ring, so the actual saved text might be different
from what was killed.
If the buffer is read-only, Emacs will beep and refrain from deleting
the text, but put the text in the kill ring anyway. This means that
you can use the killing commands to copy text from a read-only buffer.
Lisp programs should use this function for killing text.
(To delete text, use `delete-region'.)
Supply two arguments, character positions BEG and END indicating the
stretch of text to be killed. If the optional argument REGION is
non-nil, the function ignores BEG and END, and kills the current
region instead."
;; Pass mark first, then point, because the order matters when
;; calling `kill-append'.
(interactive (list (mark) (point) 'region))
(unless (and beg end)
(user-error "The mark is not set now, so there is no region"))
(condition-case nil
(let ((string (if region
(funcall region-extract-function 'delete)
(filter-buffer-substring beg end 'delete))))
(when string ;STRING is nil if BEG = END
;; Add that string to the kill ring, one way or another.
(if (eq last-command 'kill-region)
(kill-append string (< end beg))
(kill-new string)))
(when (or string (eq last-command 'kill-region))
(setq this-command 'kill-region))
(setq deactivate-mark t)
nil)
((buffer-read-only text-read-only)
;; The code above failed because the buffer, or some of the characters
;; in the region, are read-only.
;; We should beep, in case the user just isn't aware of this.
;; However, there's no harm in putting
;; the region's text in the kill ring, anyway.
(copy-region-as-kill beg end region)
;; Set this-command now, so it will be set even if we get an error.
(setq this-command 'kill-region)
;; This should barf, if appropriate, and give us the correct error.
(if kill-read-only-ok
(progn (message "Read only text copied to kill ring") nil)
;; Signal an error if the buffer is read-only.
(barf-if-buffer-read-only)
;; If the buffer isn't read-only, the text is.
(signal 'text-read-only (list (current-buffer)))))))
;; copy-region-as-kill no longer sets this-command, because it's confusing
;; to get two copies of the text when the user accidentally types M-w and
;; then corrects it with the intended C-w.
(defun copy-region-as-kill (beg end &optional region)
"Save the region as if killed, but don't kill it.
In Transient Mark mode, deactivate the mark.
If `interprogram-cut-function' is non-nil, also save the text for a window
system cut and paste.
The copied text is filtered by `filter-buffer-substring' before it is
saved in the kill ring, so the actual saved text might be different
from what was in the buffer.
When called from Lisp, save in the kill ring the stretch of text
between BEG and END, unless the optional argument REGION is
non-nil, in which case ignore BEG and END, and save the current
region instead.
This command's old key binding has been given to `kill-ring-save'."
;; Pass mark first, then point, because the order matters when
;; calling `kill-append'.
(interactive (list (mark) (point)
(prefix-numeric-value current-prefix-arg)))
(let ((str (if region
(funcall region-extract-function nil)
(filter-buffer-substring beg end))))
(if (eq last-command 'kill-region)
(kill-append str (< end beg))
(kill-new str)))
(setq deactivate-mark t)
nil)
(defun kill-ring-save (beg end &optional region)
"Save the region as if killed, but don't kill it.
In Transient Mark mode, deactivate the mark.
If `interprogram-cut-function' is non-nil, also save the text for a window
system cut and paste.
If you want to append the killed region to the last killed text,
use \\[append-next-kill] before \\[kill-ring-save].
The copied text is filtered by `filter-buffer-substring' before it is
saved in the kill ring, so the actual saved text might be different
from what was in the buffer.
When called from Lisp, save in the kill ring the stretch of text
between BEG and END, unless the optional argument REGION is
non-nil, in which case ignore BEG and END, and save the current
region instead.
This command is similar to `copy-region-as-kill', except that it gives
visual feedback indicating the extent of the region being copied."
;; Pass mark first, then point, because the order matters when
;; calling `kill-append'.
(interactive (list (mark) (point)
(prefix-numeric-value current-prefix-arg)))
(copy-region-as-kill beg end region)
;; This use of called-interactively-p is correct because the code it
;; controls just gives the user visual feedback.
(if (called-interactively-p 'interactive)
(indicate-copied-region)))
(defun indicate-copied-region (&optional message-len)
"Indicate that the region text has been copied interactively.
If the mark is visible in the selected window, blink the cursor
between point and mark if there is currently no active region
highlighting.
If the mark lies outside the selected window, display an
informative message containing a sample of the copied text. The
optional argument MESSAGE-LEN, if non-nil, specifies the length
of this sample text; it defaults to 40."
(let ((mark (mark t))
(point (point))
;; Inhibit quitting so we can make a quit here
;; look like a C-g typed as a command.
(inhibit-quit t))
(if (pos-visible-in-window-p mark (selected-window))
;; Swap point-and-mark quickly so as to show the region that
;; was selected. Don't do it if the region is highlighted.
(unless (and (region-active-p)
(face-background 'region nil t))
;; Swap point and mark.
(set-marker (mark-marker) (point) (current-buffer))
(goto-char mark)
(sit-for blink-matching-delay)
;; Swap back.
(set-marker (mark-marker) mark (current-buffer))
(goto-char point)
;; If user quit, deactivate the mark
;; as C-g would as a command.
(and quit-flag (region-active-p)
(deactivate-mark)))
(let ((len (min (abs (- mark point))
(or message-len 40))))
(if (< point mark)
;; Don't say "killed"; that is misleading.
(message "Saved text until \"%s\""
(buffer-substring-no-properties (- mark len) mark))
(message "Saved text from \"%s\""
(buffer-substring-no-properties mark (+ mark len))))))))
(defun append-next-kill (&optional interactive)
"Cause following command, if it kills, to add to previous kill.
If the next command kills forward from point, the kill is
appended to the previous killed text. If the command kills
backward, the kill is prepended. Kill commands that act on the
region, such as `kill-region', are regarded as killing forward if
point is after mark, and killing backward if point is before
mark.
If the next command is not a kill command, `append-next-kill' has
no effect.
The argument is used for internal purposes; do not supply one."
(interactive "p")
;; We don't use (interactive-p), since that breaks kbd macros.
(if interactive
(progn
(setq this-command 'kill-region)
(message "If the next command is a kill, it will append"))
(setq last-command 'kill-region)))
(defvar bidi-directional-controls-chars "\x202a-\x202e\x2066-\x2069"
"Character set that matches bidirectional formatting control characters.")
(defvar bidi-directional-non-controls-chars "^\x202a-\x202e\x2066-\x2069"
"Character set that matches any character except bidirectional controls.")
(defun squeeze-bidi-context-1 (from to category replacement)
"A subroutine of `squeeze-bidi-context'.
FROM and TO should be markers, CATEGORY and REPLACEMENT should be strings."
(let ((pt (copy-marker from))
(limit (copy-marker to))
(old-pt 0)
lim1)
(setq lim1 limit)
(goto-char pt)
(while (< pt limit)
(if (> pt old-pt)
(move-marker lim1
(save-excursion
;; L and R categories include embedding and
;; override controls, but we don't want to
;; replace them, because that might change
;; the visual order. Likewise with PDF and
;; isolate controls.
(+ pt (skip-chars-forward
bidi-directional-non-controls-chars
limit)))))
;; Replace any run of non-RTL characters by a single LRM.
(if (null (re-search-forward category lim1 t))
;; No more characters of CATEGORY, we are done.
(setq pt limit)
(replace-match replacement nil t)
(move-marker pt (point)))
(setq old-pt pt)
;; Skip directional controls, if any.
(move-marker
pt (+ pt (skip-chars-forward bidi-directional-controls-chars limit))))))
(defun squeeze-bidi-context (from to)
"Replace characters between FROM and TO while keeping bidi context.
This function replaces the region of text with as few characters
as possible, while preserving the effect that region will have on
bidirectional display before and after the region."
(let ((start (set-marker (make-marker)
(if (> from 0) from (+ (point-max) from))))
(end (set-marker (make-marker) to))
;; This is for when they copy text with read-only text
;; properties.
(inhibit-read-only t))
(if (null (marker-position end))
(setq end (point-max-marker)))
;; Replace each run of non-RTL characters with a single LRM.
(squeeze-bidi-context-1 start end "\\CR+" "\x200e")
;; Replace each run of non-LTR characters with a single RLM. Note
;; that the \cR category includes both the Arabic Letter (AL) and
;; R characters; here we ignore the distinction between them,
;; because that distinction affects only Arabic Number (AN)
;; characters, which are weak and don't affect the reordering.
(squeeze-bidi-context-1 start end "\\CL+" "\x200f")))
(defun line-substring-with-bidi-context (start end &optional no-properties)
"Return buffer text between START and END with its bidi context.
START and END are assumed to belong to the same physical line
of buffer text. This function prepends and appends to the text
between START and END bidi control characters that preserve the
visual order of that text when it is inserted at some other place."
(if (or (< start (point-min))
(> end (point-max)))
(signal 'args-out-of-range (list (current-buffer) start end)))
(let ((buf (current-buffer))
substr para-dir from to)
(save-excursion
(goto-char start)
(setq para-dir (current-bidi-paragraph-direction))
(setq from (line-beginning-position)
to (line-end-position))
(goto-char from)
;; If we don't have any mixed directional characters in the
;; entire line, we can just copy the substring without adding
;; any context.
(if (or (looking-at-p "\\CR*$")
(looking-at-p "\\CL*$"))
(setq substr (if no-properties
(buffer-substring-no-properties start end)
(buffer-substring start end)))
(setq substr
(with-temp-buffer
(if no-properties
(insert-buffer-substring-no-properties buf from to)
(insert-buffer-substring buf from to))
(squeeze-bidi-context 1 (1+ (- start from)))
(squeeze-bidi-context (- end to) nil)
(buffer-substring 1 (point-max)))))
;; Wrap the string in LRI/RLI..PDI pair to achieve 2 effects:
;; (1) force the string to have the same base embedding
;; direction as the paragraph direction at the source, no matter
;; what is the paragraph direction at destination; and (2) avoid
;; affecting the visual order of the surrounding text at
;; destination if there are characters of different
;; directionality there.
(concat (if (eq para-dir 'left-to-right) "\x2066" "\x2067")
substr "\x2069"))))
(defun buffer-substring-with-bidi-context (start end &optional no-properties)
"Return portion of current buffer between START and END with bidi context.
This function works similar to `buffer-substring', but it prepends and
appends to the text bidi directional control characters necessary to
preserve the visual appearance of the text if it is inserted at another
place. This is useful when the buffer substring includes bidirectional
text and control characters that cause non-trivial reordering on display.
If copied verbatim, such text can have a very different visual appearance,
and can also change the visual appearance of the surrounding text at the
destination of the copy.
Optional argument NO-PROPERTIES, if non-nil, means copy the text without
the text properties."
(let (line-end substr)
(if (or (< start (point-min))
(> end (point-max)))
(signal 'args-out-of-range (list (current-buffer) start end)))
(save-excursion
(goto-char start)
(setq line-end (min end (line-end-position)))
(while (< start end)
(setq substr
(concat substr
(if substr "\n" "")
(line-substring-with-bidi-context start line-end
no-properties)))
(forward-line 1)
(setq start (point))
(setq line-end (min end (line-end-position))))
substr)))
;; Yanking.
(defcustom yank-handled-properties
'((font-lock-face . yank-handle-font-lock-face-property)
(category . yank-handle-category-property))
"List of special text property handling conditions for yanking.
Each element should have the form (PROP . FUN), where PROP is a
property symbol and FUN is a function. When the `yank' command
inserts text into the buffer, it scans the inserted text for
stretches of text that have `eq' values of the text property
PROP; for each such stretch of text, FUN is called with three
arguments: the property's value in that text, and the start and
end positions of the text.
This is done prior to removing the properties specified by
`yank-excluded-properties'."
:group 'killing
:type '(repeat (cons (symbol :tag "property symbol")
function))
:version "24.3")
;; This is actually used in subr.el but defcustom does not work there.
(defcustom yank-excluded-properties
'(category field follow-link fontified font-lock-face help-echo
intangible invisible keymap local-map mouse-face read-only
yank-handler)
"Text properties to discard when yanking.
The value should be a list of text properties to discard or t,
which means to discard all text properties.
See also `yank-handled-properties'."
:type '(choice (const :tag "All" t) (repeat symbol))
:group 'killing
:version "24.3")
(defvar yank-window-start nil)
(defvar yank-undo-function nil
"If non-nil, function used by `yank-pop' to delete last stretch of yanked text.
Function is called with two parameters, START and END corresponding to
the value of the mark and point; it is guaranteed that START <= END.
Normally set from the UNDO element of a yank-handler; see `insert-for-yank'.")
(defun yank-pop (&optional arg)
"Replace just-yanked stretch of killed text with a different stretch.
This command is allowed only immediately after a `yank' or a
`yank-pop'. At such a time, the region contains a stretch of
reinserted previously-killed text. `yank-pop' deletes that text
and inserts in its place a different stretch of killed text by
traversing the value of the `kill-ring' variable.
With no argument, the previous kill is inserted.
With argument N, insert the Nth previous kill.
If N is negative, this is a more recent kill.
The sequence of kills wraps around, so that after the oldest one
comes the newest one.
This command honors the `yank-handled-properties' and
`yank-excluded-properties' variables, and the `yank-handler' text
property, in the way that `yank' does."
(interactive "*p")
(if (not (eq last-command 'yank))
(user-error "Previous command was not a yank"))
(setq this-command 'yank)
(unless arg (setq arg 1))
(let ((inhibit-read-only t)
(before (< (point) (mark t))))
(if before
(funcall (or yank-undo-function 'delete-region) (point) (mark t))
(funcall (or yank-undo-function 'delete-region) (mark t) (point)))
(setq yank-undo-function nil)
(set-marker (mark-marker) (point) (current-buffer))
(insert-for-yank (current-kill arg))
;; Set the window start back where it was in the yank command,
;; if possible.
(set-window-start (selected-window) yank-window-start t)
(if before
;; This is like exchange-point-and-mark, but doesn't activate the mark.
;; It is cleaner to avoid activation, even though the command
;; loop would deactivate the mark because we inserted text.
(goto-char (prog1 (mark t)
(set-marker (mark-marker) (point) (current-buffer))))))
nil)
(defun yank (&optional arg)
"Reinsert (\"paste\") the last stretch of killed text.
More precisely, reinsert the most recent kill, which is the stretch of
text most recently killed OR yanked, as returned by `current-kill' (which
see). Put point at the end, and set mark at the beginning without
activating it. With just \\[universal-argument] as argument, put point
at beginning, and mark at end.
With argument N, reinsert the Nth most recent kill.
This command honors the `yank-handled-properties' and
`yank-excluded-properties' variables, and the `yank-handler' text
property, as described below.
Properties listed in `yank-handled-properties' are processed,
then those listed in `yank-excluded-properties' are discarded.
If STRING has a non-nil `yank-handler' property anywhere, the
normal insert behavior is altered, and instead, for each contiguous
segment of STRING that has a given value of the `yank-handler'
property, that value is used as follows:
The value of a `yank-handler' property must be a list of one to four
elements, of the form (FUNCTION PARAM NOEXCLUDE UNDO).
FUNCTION, if non-nil, should be a function of one argument (the
object to insert); FUNCTION is called instead of `insert'.
PARAM, if present and non-nil, is passed to FUNCTION (to be handled
in whatever way is appropriate; e.g. if FUNCTION is `yank-rectangle',
PARAM may be a list of strings to insert as a rectangle). If PARAM
is nil, then the current segment of STRING is used.
If NOEXCLUDE is present and non-nil, the normal removal of
`yank-excluded-properties' is not performed; instead FUNCTION is
responsible for the removal. This may be necessary if FUNCTION
adjusts point before or after inserting the object.
UNDO, if present and non-nil, should be a function to be called
by `yank-pop' to undo the insertion of the current PARAM. It is
given two arguments, the start and end of the region. FUNCTION
may set `yank-undo-function' to override UNDO.
See also the command `yank-pop' (\\[yank-pop])."
(interactive "*P")
(setq yank-window-start (window-start))
;; If we don't get all the way thru, make last-command indicate that
;; for the following command.
(setq this-command t)
(push-mark)
(insert-for-yank (current-kill (cond
((listp arg) 0)
((eq arg '-) -2)
(t (1- arg)))))
(if (consp arg)
;; This is like exchange-point-and-mark, but doesn't activate the mark.
;; It is cleaner to avoid activation, even though the command
;; loop would deactivate the mark because we inserted text.
(goto-char (prog1 (mark t)
(set-marker (mark-marker) (point) (current-buffer)))))
;; If we do get all the way thru, make this-command indicate that.
(if (eq this-command t)
(setq this-command 'yank))
nil)
(defun rotate-yank-pointer (arg)
"Rotate the yanking point in the kill ring.
With ARG, rotate that many kills forward (or backward, if negative)."
(interactive "p")
(current-kill arg))
;; Some kill commands.
;; Internal subroutine of delete-char
(defun kill-forward-chars (arg)
(if (listp arg) (setq arg (car arg)))
(if (eq arg '-) (setq arg -1))
(kill-region (point) (+ (point) arg)))
;; Internal subroutine of backward-delete-char
(defun kill-backward-chars (arg)
(if (listp arg) (setq arg (car arg)))
(if (eq arg '-) (setq arg -1))
(kill-region (point) (- (point) arg)))
(defcustom backward-delete-char-untabify-method 'untabify
"The method for untabifying when deleting backward.
Can be `untabify' -- turn a tab to many spaces, then delete one space;
`hungry' -- delete all whitespace, both tabs and spaces;
`all' -- delete all whitespace, including tabs, spaces and newlines;
nil -- just delete one character."
:type '(choice (const untabify) (const hungry) (const all) (const nil))
:version "20.3"
:group 'killing)
(defun backward-delete-char-untabify (arg &optional killp)
"Delete characters backward, changing tabs into spaces.
The exact behavior depends on `backward-delete-char-untabify-method'.
Delete ARG chars, and kill (save in kill ring) if KILLP is non-nil.
Interactively, ARG is the prefix arg (default 1)
and KILLP is t if a prefix arg was specified."
(interactive "*p\nP")
(when (eq backward-delete-char-untabify-method 'untabify)
(let ((count arg))
(save-excursion
(while (and (> count 0) (not (bobp)))
(if (= (preceding-char) ?\t)
(let ((col (current-column)))
(forward-char -1)
(setq col (- col (current-column)))
(insert-char ?\s col)
(delete-char 1)))
(forward-char -1)
(setq count (1- count))))))
(let* ((skip (cond ((eq backward-delete-char-untabify-method 'hungry) " \t")
((eq backward-delete-char-untabify-method 'all)
" \t\n\r")))
(n (if skip
(let* ((oldpt (point))
(wh (- oldpt (save-excursion
(skip-chars-backward skip)
(constrain-to-field nil oldpt)))))
(+ arg (if (zerop wh) 0 (1- wh))))
arg)))
;; Avoid warning about delete-backward-char
(with-no-warnings (delete-backward-char n killp))))
(defun zap-to-char (arg char)
"Kill up to and including ARGth occurrence of CHAR.
Case is ignored if `case-fold-search' is non-nil in the current buffer.
Goes backward if ARG is negative; error if CHAR not found.
See also `zap-up-to-char'."
(interactive (list (prefix-numeric-value current-prefix-arg)
(read-char-from-minibuffer "Zap to char: "
nil 'read-char-history)))
;; Avoid "obsolete" warnings for translation-table-for-input.
(with-no-warnings
(if (char-table-p translation-table-for-input)
(setq char (or (aref translation-table-for-input char) char))))
(kill-region (point) (progn
(search-forward (char-to-string char) nil nil arg)
(point))))
;; kill-line and its subroutines.
(defcustom kill-whole-line nil
"If non-nil, `kill-line' with no arg at start of line kills the whole line."
:type 'boolean
:group 'killing)
(defun kill-line (&optional arg)
"Kill the rest of the current line; if no nonblanks there, kill thru newline.
With prefix argument ARG, kill that many lines from point.
Negative arguments kill lines backward.
With zero argument, kills the text before point on the current line.
When calling from a program, nil means \"no arg\",
a number counts as a prefix arg.
To kill a whole line, when point is not at the beginning, type \
\\[move-beginning-of-line] \\[kill-line] \\[kill-line].
If `show-trailing-whitespace' is non-nil, this command will just
kill the rest of the current line, even if there are no nonblanks
there.
If option `kill-whole-line' is non-nil, then this command kills the whole line
including its terminating newline, when used at the beginning of a line
with no argument. As a consequence, you can always kill a whole line
by typing \\[move-beginning-of-line] \\[kill-line].
If you want to append the killed line to the last killed text,
use \\[append-next-kill] before \\[kill-line].
If the buffer is read-only, Emacs will beep and refrain from deleting
the line, but put the line in the kill ring anyway. This means that
you can use this command to copy text from a read-only buffer.
\(If the variable `kill-read-only-ok' is non-nil, then this won't
even beep.)"
(interactive "P")
(kill-region (point)
;; It is better to move point to the other end of the kill
;; before killing. That way, in a read-only buffer, point
;; moves across the text that is copied to the kill ring.
;; The choice has no effect on undo now that undo records
;; the value of point from before the command was run.
(progn
(if arg
(forward-visible-line (prefix-numeric-value arg))
(if (eobp)
(signal 'end-of-buffer nil))
(let ((end
(save-excursion
(end-of-visible-line) (point))))
(if (or (save-excursion
;; If trailing whitespace is visible,
;; don't treat it as nothing.
(unless show-trailing-whitespace
(skip-chars-forward " \t" end))
(= (point) end))
(and kill-whole-line (bolp)))
(forward-visible-line 1)
(goto-char end))))
(point))))
(defun kill-whole-line (&optional arg)
"Kill current line.
With prefix ARG, kill that many lines starting from the current line.
If ARG is negative, kill backward. Also kill the preceding newline.
\(This is meant to make \\[repeat] work well with negative arguments.)
If ARG is zero, kill current line but exclude the trailing newline."
(interactive "p")
(or arg (setq arg 1))
(if (and (> arg 0) (eobp) (save-excursion (forward-visible-line 0) (eobp)))
(signal 'end-of-buffer nil))
(if (and (< arg 0) (bobp) (save-excursion (end-of-visible-line) (bobp)))
(signal 'beginning-of-buffer nil))
(unless (eq last-command 'kill-region)
(kill-new "")
(setq last-command 'kill-region))
(cond ((zerop arg)
;; We need to kill in two steps, because the previous command
;; could have been a kill command, in which case the text
;; before point needs to be prepended to the current kill
;; ring entry and the text after point appended. Also, we
;; need to use save-excursion to avoid copying the same text
;; twice to the kill ring in read-only buffers.
(save-excursion
(kill-region (point) (progn (forward-visible-line 0) (point))))
(kill-region (point) (progn (end-of-visible-line) (point))))
((< arg 0)
(save-excursion
(kill-region (point) (progn (end-of-visible-line) (point))))
(kill-region (point)
(progn (forward-visible-line (1+ arg))
(unless (bobp) (backward-char))
(point))))
(t
(save-excursion
(kill-region (point) (progn (forward-visible-line 0) (point))))
(kill-region (point)
(progn (forward-visible-line arg) (point))))))
(defun forward-visible-line (arg)
"Move forward by ARG lines, ignoring currently invisible newlines only.
If ARG is negative, move backward -ARG lines.
If ARG is zero, move to the beginning of the current line."
(condition-case nil
(if (> arg 0)
(progn
(while (> arg 0)
(or (zerop (forward-line 1))
(signal 'end-of-buffer nil))
;; If the newline we just skipped is invisible,
;; don't count it.
(if (invisible-p (1- (point)))
(setq arg (1+ arg)))
(setq arg (1- arg)))
;; If invisible text follows, and it is a number of complete lines,
;; skip it.
(let ((opoint (point)))
(while (and (not (eobp))
(invisible-p (point)))
(goto-char
(if (get-text-property (point) 'invisible)
(or (next-single-property-change (point) 'invisible)
(point-max))
(next-overlay-change (point)))))
(unless (bolp)
(goto-char opoint))))
(let ((first t))
(while (or first (<= arg 0))
(if first
(beginning-of-line)
(or (zerop (forward-line -1))
(signal 'beginning-of-buffer nil)))
;; If the newline we just moved to is invisible,
;; don't count it.
(unless (bobp)
(unless (invisible-p (1- (point)))
(setq arg (1+ arg))))
(setq first nil))
;; If invisible text follows, and it is a number of complete lines,
;; skip it.
(let ((opoint (point)))
(while (and (not (bobp))
(invisible-p (1- (point))))
(goto-char
(if (get-text-property (1- (point)) 'invisible)
(or (previous-single-property-change (point) 'invisible)
(point-min))
(previous-overlay-change (point)))))
(unless (bolp)
(goto-char opoint)))))
((beginning-of-buffer end-of-buffer)
nil)))
(defun end-of-visible-line ()
"Move to end of current visible line."
(end-of-line)
;; If the following character is currently invisible,
;; skip all characters with that same `invisible' property value,
;; then find the next newline.
(while (and (not (eobp))
(save-excursion
(skip-chars-forward "^\n")
(invisible-p (point))))
(skip-chars-forward "^\n")
(if (get-text-property (point) 'invisible)
(goto-char (or (next-single-property-change (point) 'invisible)
(point-max)))
(goto-char (next-overlay-change (point))))
(end-of-line)))
(defun kill-current-buffer ()
"Kill the current buffer.
When called in the minibuffer, get out of the minibuffer
using `abort-recursive-edit'.
This is like `kill-this-buffer', but it doesn't have to be invoked
via the menu bar, and pays no attention to the menu-bar's frame."
(interactive)
(let ((frame (selected-frame)))
(if (and (frame-live-p frame)
(not (window-minibuffer-p (frame-selected-window frame))))
(kill-buffer (current-buffer))
(abort-recursive-edit))))
(defun insert-buffer (buffer)
"Insert after point the contents of BUFFER.
Puts mark after the inserted text.
BUFFER may be a buffer or a buffer name."
(declare (interactive-only insert-buffer-substring))
(interactive
(list
(progn
(barf-if-buffer-read-only)
(read-buffer "Insert buffer: "
(if (eq (selected-window) (next-window))
(other-buffer (current-buffer))
(window-buffer (next-window)))
t))))
(push-mark
(save-excursion
(insert-buffer-substring (get-buffer buffer))
(point)))
nil)
(defun append-to-buffer (buffer start end)
"Append to specified BUFFER the text of the region.
The text is inserted into that buffer before its point.
BUFFER can be a buffer or the name of a buffer; this
function will create BUFFER if it doesn't already exist.
When calling from a program, give three arguments:
BUFFER (or buffer name), START and END.
START and END specify the portion of the current buffer to be copied."
(interactive
(list (read-buffer "Append to buffer: " (other-buffer (current-buffer) t))
(region-beginning) (region-end)))
(let* ((oldbuf (current-buffer))
(append-to (get-buffer-create buffer))
(windows (get-buffer-window-list append-to t t))
point)
(save-excursion
(with-current-buffer append-to
(setq point (point))
(barf-if-buffer-read-only)
(insert-buffer-substring oldbuf start end)
(dolist (window windows)
(when (= (window-point window) point)
(set-window-point window (point))))))))
(defun prepend-to-buffer (buffer start end)
"Prepend to specified BUFFER the text of the region.
The text is inserted into that buffer after its point.
BUFFER can be a buffer or the name of a buffer; this
function will create BUFFER if it doesn't already exist.
When calling from a program, give three arguments:
BUFFER (or buffer name), START and END.
START and END specify the portion of the current buffer to be copied."
(interactive "BPrepend to buffer: \nr")
(let ((oldbuf (current-buffer)))
(with-current-buffer (get-buffer-create buffer)
(barf-if-buffer-read-only)
(save-excursion
(insert-buffer-substring oldbuf start end)))))
(defun copy-to-buffer (buffer start end)
"Copy to specified BUFFER the text of the region.
The text is inserted into that buffer, replacing existing text there.
BUFFER can be a buffer or the name of a buffer; this
function will create BUFFER if it doesn't already exist.
When calling from a program, give three arguments:
BUFFER (or buffer name), START and END.
START and END specify the portion of the current buffer to be copied."
(interactive "BCopy to buffer: \nr")
(let ((oldbuf (current-buffer)))
(with-current-buffer (get-buffer-create buffer)
(barf-if-buffer-read-only)
(erase-buffer)
(save-excursion
(insert-buffer-substring oldbuf start end)))))
(define-error 'mark-inactive (purecopy "The mark is not active now"))
(defvar activate-mark-hook nil
"Hook run when the mark becomes active.
It is also run at the end of a command, if the mark is active and
it is possible that the region may have changed.")
(defvar deactivate-mark-hook nil
"Hook run when the mark becomes inactive.")
(defun mark (&optional force)
"Return this buffer's mark value as integer, or nil if never set.
In Transient Mark mode, this function signals an error if
the mark is not active. However, if `mark-even-if-inactive' is non-nil,
or the argument FORCE is non-nil, it disregards whether the mark
is active, and returns an integer or nil in the usual way.
If you are using this in an editing command, you are most likely making
a mistake; see the documentation of `set-mark'."
(if (or force (not transient-mark-mode) mark-active mark-even-if-inactive)
(marker-position (mark-marker))
(signal 'mark-inactive nil)))
;; Behind display-selections-p.
(defun deactivate-mark (&optional force)
"Deactivate the mark.
If Transient Mark mode is disabled, this function normally does
nothing; but if FORCE is non-nil, it deactivates the mark anyway.
Deactivating the mark sets `mark-active' to nil, updates the
primary selection according to `select-active-regions', and runs
`deactivate-mark-hook'.
If Transient Mark mode was temporarily enabled, reset the value
of the variable `transient-mark-mode'; if this causes Transient
Mark mode to be disabled, don't change `mark-active' to nil or
run `deactivate-mark-hook'."
(when (or (region-active-p) force)
(when (and (if (eq select-active-regions 'only)
(eq (car-safe transient-mark-mode) 'only)
select-active-regions)
(region-active-p)
(display-selections-p))
;; The var `saved-region-selection', if non-nil, is the text in
;; the region prior to the last command modifying the buffer.
;; Set the selection to that, or to the current region.
(cond (saved-region-selection
(if (gui-backend-selection-owner-p 'PRIMARY)
(gui-set-selection 'PRIMARY saved-region-selection))
(setq saved-region-selection nil))
;; If another program has acquired the selection, region
;; deactivation should not clobber it (Bug#11772).
((and (/= (region-beginning) (region-end))
(or (gui-backend-selection-owner-p 'PRIMARY)
(null (gui-backend-selection-exists-p 'PRIMARY))))
(gui-set-selection 'PRIMARY
(funcall region-extract-function nil)))))
(when mark-active (force-mode-line-update)) ;Refresh toolbar (bug#16382).
(cond
((eq (car-safe transient-mark-mode) 'only)
(setq transient-mark-mode (cdr transient-mark-mode))
(if (eq transient-mark-mode (default-value 'transient-mark-mode))
(kill-local-variable 'transient-mark-mode)))
((eq transient-mark-mode 'lambda)
(kill-local-variable 'transient-mark-mode)))
(setq mark-active nil)
(run-hooks 'deactivate-mark-hook)
(redisplay--update-region-highlight (selected-window))))
(defun activate-mark (&optional no-tmm)
"Activate the mark.
If NO-TMM is non-nil, leave `transient-mark-mode' alone."
(when (mark t)
(unless (region-active-p)
(force-mode-line-update) ;Refresh toolbar (bug#16382).
(setq mark-active t)
(unless (or transient-mark-mode no-tmm)
(setq-local transient-mark-mode 'lambda))
(run-hooks 'activate-mark-hook))))
(defun set-mark (pos)
"Set this buffer's mark to POS. Don't use this function!
That is to say, don't use this function unless you want
the user to see that the mark has moved, and you want the previous
mark position to be lost.
Normally, when a new mark is set, the old one should go on the stack.
This is why most applications should use `push-mark', not `set-mark'.
Novice Emacs Lisp programmers often try to use the mark for the wrong
purposes. The mark saves a location for the user's convenience.
Most editing commands should not alter the mark.
To remember a location for internal use in the Lisp program,
store it in a Lisp variable. Example:
(let ((beg (point))) (forward-line 1) (delete-region beg (point)))."
(if pos
(progn
(set-marker (mark-marker) pos (current-buffer))
(activate-mark 'no-tmm))
;; Normally we never clear mark-active except in Transient Mark mode.
;; But when we actually clear out the mark value too, we must
;; clear mark-active in any mode.
(deactivate-mark t)
;; `deactivate-mark' sometimes leaves mark-active non-nil, but
;; it should never be nil if the mark is nil.
(setq mark-active nil)
(set-marker (mark-marker) nil)))
(defun save-mark-and-excursion--save ()
(cons
(let ((mark (mark-marker)))
(and (marker-position mark) (copy-marker mark)))
mark-active))
(defun save-mark-and-excursion--restore (saved-mark-info)
(let ((saved-mark (car saved-mark-info))
(omark (marker-position (mark-marker)))
(nmark nil)
(saved-mark-active (cdr saved-mark-info)))
;; Mark marker
(if (null saved-mark)
(set-marker (mark-marker) nil)
(setf nmark (marker-position saved-mark))
(set-marker (mark-marker) nmark)
(set-marker saved-mark nil))
;; Mark active
(let ((cur-mark-active mark-active))
(setq mark-active saved-mark-active)
;; If mark is active now, and either was not active or was at a
;; different place, run the activate hook.
(if saved-mark-active
(when (or (not cur-mark-active)
(not (eq omark nmark)))
(run-hooks 'activate-mark-hook))
;; If mark has ceased to be active, run deactivate hook.
(when cur-mark-active
(run-hooks 'deactivate-mark-hook))))))
(defmacro save-mark-and-excursion (&rest body)
"Like `save-excursion', but also save and restore the mark state.
This macro does what `save-excursion' did before Emacs 25.1."
(declare (indent 0) (debug t))
(let ((saved-marker-sym (make-symbol "saved-marker")))
`(let ((,saved-marker-sym (save-mark-and-excursion--save)))
(unwind-protect
(save-excursion ,@body)
(save-mark-and-excursion--restore ,saved-marker-sym)))))
(defcustom use-empty-active-region nil
"Whether \"region-aware\" commands should act on empty regions.
If nil, region-aware commands treat the empty region as inactive.
If non-nil, region-aware commands treat the region as active as
long as the mark is active, even if the region is empty.
Region-aware commands are those that act on the region if it is
active and Transient Mark mode is enabled, and on the text near
point otherwise."
:type 'boolean
:version "23.1"
:group 'editing-basics)
(defun use-region-p ()
"Return t if the region is active and it is appropriate to act on it.
This is used by commands that act specially on the region under
Transient Mark mode.
The return value is t if Transient Mark mode is enabled and the
mark is active; furthermore, if `use-empty-active-region' is nil,
the region must not be empty. Otherwise, the return value is nil.
For some commands, it may be appropriate to ignore the value of
`use-empty-active-region'; in that case, use `region-active-p'."
(and (region-active-p)
(or use-empty-active-region (> (region-end) (region-beginning)))
t))
(defun region-active-p ()
"Return t if Transient Mark mode is enabled and the mark is active.
Some commands act specially on the region when Transient Mark
mode is enabled. Usually, such commands should use
`use-region-p' instead of this function, because `use-region-p'
also checks the value of `use-empty-active-region'."
(and transient-mark-mode mark-active
;; FIXME: Somehow we sometimes end up with mark-active non-nil but
;; without the mark being set (e.g. bug#17324). We really should fix
;; that problem, but in the mean time, let's make sure we don't say the
;; region is active when there's no mark.
(progn (cl-assert (mark)) t)))
(defun region-bounds ()
"Return the boundaries of the region.
Value is a list of one or more cons cells of the form (START . END).
It will have more than one cons cell when the region is non-contiguous,
see `region-noncontiguous-p' and `extract-rectangle-bounds'."
(funcall region-extract-function 'bounds))
(defun region-noncontiguous-p ()
"Return non-nil if the region contains several pieces.
An example is a rectangular region handled as a list of
separate contiguous regions for each line."
(cdr (region-bounds)))
(defvar redisplay-unhighlight-region-function
(lambda (rol) (when (overlayp rol) (delete-overlay rol))))
(defvar redisplay-highlight-region-function
(lambda (start end window rol)
(if (not (overlayp rol))
(let ((nrol (make-overlay start end)))
(funcall redisplay-unhighlight-region-function rol)
(overlay-put nrol 'window window)
(overlay-put nrol 'face 'region)
;; Normal priority so that a large region doesn't hide all the
;; overlays within it, but high secondary priority so that if it
;; ends/starts in the middle of a small overlay, that small overlay
;; won't hide the region's boundaries.
(overlay-put nrol 'priority '(nil . 100))
nrol)
(unless (and (eq (overlay-buffer rol) (current-buffer))
(eq (overlay-start rol) start)
(eq (overlay-end rol) end))
(move-overlay rol start end (current-buffer)))
rol))
"Function to move the region-highlight overlay.
This function is called with four parameters, START, END, WINDOW
and OVERLAY. If OVERLAY is nil, a new overlay is created. In
any case, the overlay is adjusted to reflect the other three
parameters.
The overlay is returned by the function.")
(defun redisplay--update-region-highlight (window)
(let ((rol (window-parameter window 'internal-region-overlay)))
(if (not (and (region-active-p)
(or highlight-nonselected-windows
(eq window (selected-window))
(and (window-minibuffer-p)
(eq window (minibuffer-selected-window))))))
(funcall redisplay-unhighlight-region-function rol)
(let* ((pt (window-point window))
(mark (mark))
(start (min pt mark))
(end (max pt mark))
(new
(funcall redisplay-highlight-region-function
start end window rol)))
(unless (equal new rol)
(set-window-parameter window 'internal-region-overlay
new))))))
(defvar pre-redisplay-functions (list #'redisplay--update-region-highlight)
"Hook run just before redisplay.
It is called in each window that is to be redisplayed. It takes one argument,
which is the window that will be redisplayed. When run, the `current-buffer'
is set to the buffer displayed in that window.")
(defun redisplay--pre-redisplay-functions (windows)
(with-demoted-errors "redisplay--pre-redisplay-functions: %S"
(if (null windows)
(with-current-buffer (window-buffer (selected-window))
(run-hook-with-args 'pre-redisplay-functions (selected-window)))
(dolist (win (if (listp windows) windows (window-list-1 nil nil t)))
(with-current-buffer (window-buffer win)
(run-hook-with-args 'pre-redisplay-functions win))))))
(add-function :before pre-redisplay-function
#'redisplay--pre-redisplay-functions)
(defvar-local mark-ring nil
"The list of former marks of the current buffer, most recent first.")
(put 'mark-ring 'permanent-local t)
(defcustom mark-ring-max 16
"Maximum size of mark ring. Start discarding off end if gets this big."
:type 'integer
:group 'editing-basics)
(defvar global-mark-ring nil
"The list of saved global marks, most recent first.")
(defcustom global-mark-ring-max 16
"Maximum size of global mark ring. \
Start discarding off end if gets this big."
:type 'integer
:group 'editing-basics)
(defun pop-to-mark-command ()
"Jump to mark, and pop a new position for mark off the ring.
\(Does not affect global mark ring)."
(interactive)
(if (null (mark t))
(user-error "No mark set in this buffer")
(if (= (point) (mark t))
(message "Mark popped"))
(goto-char (mark t))
(pop-mark)))
(defun push-mark-command (arg &optional nomsg)
"Set mark at where point is.
If no prefix ARG and mark is already set there, just activate it.
Display `Mark set' unless the optional second arg NOMSG is non-nil."
(interactive "P")
(let ((mark (mark t)))
(if (or arg (null mark) (/= mark (point)))
(push-mark nil nomsg t)
(activate-mark 'no-tmm)
(unless nomsg
(message "Mark activated")))))
(defcustom set-mark-command-repeat-pop nil
"Non-nil means repeating \\[set-mark-command] after popping mark pops it again.
That means that C-u \\[set-mark-command] \\[set-mark-command]
will pop the mark twice, and
C-u \\[set-mark-command] \\[set-mark-command] \\[set-mark-command]
will pop the mark three times.
A value of nil means \\[set-mark-command]'s behavior does not change
after C-u \\[set-mark-command]."
:type 'boolean
:group 'editing-basics)
(defun set-mark-command (arg)
"Set the mark where point is, and activate it; or jump to the mark.
Setting the mark also alters the region, which is the text
between point and mark; this is the closest equivalent in
Emacs to what some editors call the \"selection\".
With no prefix argument, set the mark at point, and push the
old mark position on local mark ring. Also push the new mark on
global mark ring, if the previous mark was set in another buffer.
When Transient Mark Mode is off, immediately repeating this
command activates `transient-mark-mode' temporarily.
With prefix argument (e.g., \\[universal-argument] \\[set-mark-command]), \
jump to the mark, and set the mark from
position popped off the local mark ring (this does not affect the global
mark ring). Use \\[pop-global-mark] to jump to a mark popped off the global
mark ring (see `pop-global-mark').
If `set-mark-command-repeat-pop' is non-nil, repeating
the \\[set-mark-command] command with no prefix argument pops the next position
off the local (or global) mark ring and jumps there.
With \\[universal-argument] \\[universal-argument] as prefix
argument, unconditionally set mark where point is, even if
`set-mark-command-repeat-pop' is non-nil.
Novice Emacs Lisp programmers often try to use the mark for the wrong
purposes. See the documentation of `set-mark' for more information."
(interactive "P")
(cond ((eq transient-mark-mode 'lambda)
(kill-local-variable 'transient-mark-mode))
((eq (car-safe transient-mark-mode) 'only)
(deactivate-mark)))
(cond
((and (consp arg) (> (prefix-numeric-value arg) 4))
(push-mark-command nil))
((not (eq this-command 'set-mark-command))
(if arg
(pop-to-mark-command)
(push-mark-command t)))
((and set-mark-command-repeat-pop
(eq last-command 'pop-global-mark)
(not arg))
(setq this-command 'pop-global-mark)
(pop-global-mark))
((or (and set-mark-command-repeat-pop
(eq last-command 'pop-to-mark-command))
arg)
(setq this-command 'pop-to-mark-command)
(pop-to-mark-command))
((eq last-command 'set-mark-command)
(if (region-active-p)
(progn
(deactivate-mark)
(message "Mark deactivated"))
(activate-mark)
(message "Mark activated")))
(t
(push-mark-command nil))))
(defun push-mark (&optional location nomsg activate)
"Set mark at LOCATION (point, by default) and push old mark on mark ring.
If the last global mark pushed was not in the current buffer,
also push LOCATION on the global mark ring.
Display `Mark set' unless the optional second arg NOMSG is non-nil.
Novice Emacs Lisp programmers often try to use the mark for the wrong
purposes. See the documentation of `set-mark' for more information.
In Transient Mark mode, activate mark if optional third arg ACTIVATE non-nil."
(when (mark t)
(let ((old (nth mark-ring-max mark-ring))
(history-delete-duplicates nil))
(add-to-history 'mark-ring (copy-marker (mark-marker)) mark-ring-max t)
(when old
(set-marker old nil))))
(set-marker (mark-marker) (or location (point)) (current-buffer))
;; Don't push the mark on the global mark ring if the last global
;; mark pushed was in this same buffer.
(unless (and global-mark-ring
(eq (marker-buffer (car global-mark-ring)) (current-buffer)))
(let ((old (nth global-mark-ring-max global-mark-ring))
(history-delete-duplicates nil))
(add-to-history
'global-mark-ring (copy-marker (mark-marker)) global-mark-ring-max t)
(when old
(set-marker old nil))))
(or nomsg executing-kbd-macro (> (minibuffer-depth) 0)
(message "Mark set"))
(if (or activate (not transient-mark-mode))
(set-mark (mark t)))
nil)
(defun pop-mark ()
"Pop off mark ring into the buffer's actual mark.
Does not set point. Does nothing if mark ring is empty."
(when mark-ring
(setq mark-ring (nconc mark-ring (list (copy-marker (mark-marker)))))
(set-marker (mark-marker) (car mark-ring))
(set-marker (car mark-ring) nil)
(unless (mark t) (ding))
(pop mark-ring))
(deactivate-mark))
(define-obsolete-function-alias
'exchange-dot-and-mark 'exchange-point-and-mark "23.3")
(defun exchange-point-and-mark (&optional arg)
"Put the mark where point is now, and point where the mark is now.
This command works even when the mark is not active,
and it reactivates the mark.
If Transient Mark mode is on, a prefix ARG deactivates the mark
if it is active, and otherwise avoids reactivating it. If
Transient Mark mode is off, a prefix ARG enables Transient Mark
mode temporarily."
(interactive "P")
(let ((omark (mark t))
(temp-highlight (eq (car-safe transient-mark-mode) 'only)))
(if (null omark)
(user-error "No mark set in this buffer"))
(set-mark (point))
(goto-char omark)
(cond (temp-highlight
(setq-local transient-mark-mode (cons 'only transient-mark-mode)))
((xor arg (not (region-active-p)))
(deactivate-mark))
(t (activate-mark)))
nil))
(defcustom shift-select-mode t
"When non-nil, shifted motion keys activate the mark momentarily.
While the mark is activated in this way, any shift-translated point
motion key extends the region, and if Transient Mark mode was off, it
is temporarily turned on. Furthermore, the mark will be deactivated
by any subsequent point motion key that was not shift-translated, or
by any action that normally deactivates the mark in Transient Mark mode.
See `this-command-keys-shift-translated' for the meaning of
shift-translation."
:type 'boolean
:group 'editing-basics)
(defun handle-shift-selection ()
"Activate/deactivate mark depending on invocation thru shift translation.
This function is called by `call-interactively' when a command
with a `^' character in its `interactive' spec is invoked, before
running the command itself.
If `shift-select-mode' is enabled and the command was invoked
through shift translation, set the mark and activate the region
temporarily, unless it was already set in this way. See
`this-command-keys-shift-translated' for the meaning of shift
translation.
Otherwise, if the region has been activated temporarily,
deactivate it, and restore the variable `transient-mark-mode' to
its earlier value."
(cond ((and shift-select-mode this-command-keys-shift-translated)
(unless (and mark-active
(eq (car-safe transient-mark-mode) 'only))
(setq-local transient-mark-mode
(cons 'only
(unless (eq transient-mark-mode 'lambda)
transient-mark-mode)))
(push-mark nil nil t)))
((eq (car-safe transient-mark-mode) 'only)
(setq transient-mark-mode (cdr transient-mark-mode))
(if (eq transient-mark-mode (default-value 'transient-mark-mode))
(kill-local-variable 'transient-mark-mode))
(deactivate-mark))))
(define-minor-mode transient-mark-mode
"Toggle Transient Mark mode.
Transient Mark mode is a global minor mode. When enabled, the
region is highlighted with the `region' face whenever the mark
is active. The mark is \"deactivated\" after certain non-motion
commands, including those that change the text in the buffer, and
during shift or mouse selection by any unshifted cursor motion
command (see Info node `Shift Selection' for more details).
You can also deactivate the mark by typing \\[keyboard-quit] or
\\[keyboard-escape-quit].
Many commands change their behavior when Transient Mark mode is
in effect and the mark is active, by acting on the region instead
of their usual default part of the buffer's text. Examples of
such commands include \\[comment-dwim], \\[flush-lines], \\[keep-lines],
\\[query-replace], \\[query-replace-regexp], \\[ispell], and \\[undo].
To see the documentation of commands that are sensitive to the
Transient Mark mode, invoke \\[apropos-documentation] and type \"transient\"
or \"mark.*active\" at the prompt."
:global t
;; It's defined in C/cus-start, this stops the d-m-m macro defining it again.
:variable (default-value 'transient-mark-mode))
(defvar widen-automatically t
"Non-nil means it is ok for commands to call `widen' when they want to.
Some commands will do this in order to go to positions outside
the current accessible part of the buffer.
If `widen-automatically' is nil, these commands will do something else
as a fallback, and won't change the buffer bounds.")
(defvar non-essential nil
"Whether the currently executing code is performing an essential task.
This variable should be non-nil only when running code that should not
disturb the user. E.g., it can be used to prevent Tramp from prompting
the user for a password when we are simply scanning a set of files in the
background or displaying possible completions before the user even asked
for it.")
(defun pop-global-mark ()
"Pop off global mark ring and jump to the top location."
(interactive)
;; Pop entries that refer to non-existent buffers.
(while (and global-mark-ring (not (marker-buffer (car global-mark-ring))))
(setq global-mark-ring (cdr global-mark-ring)))
(or global-mark-ring
(error "No global mark set"))
(let* ((marker (car global-mark-ring))
(buffer (marker-buffer marker))
(position (marker-position marker)))
(setq global-mark-ring (nconc (cdr global-mark-ring)
(list (car global-mark-ring))))
(set-buffer buffer)
(or (and (>= position (point-min))
(<= position (point-max)))
(if widen-automatically
(widen)
(error "Global mark position is outside accessible part of buffer")))
(goto-char position)
(switch-to-buffer buffer)))
(defcustom next-line-add-newlines nil
"If non-nil, `next-line' inserts newline to avoid `end of buffer' error."
:type 'boolean
:version "21.1"
:group 'editing-basics)
(defun next-line (&optional arg try-vscroll)
"Move cursor vertically down ARG lines.
Interactively, vscroll tall lines if `auto-window-vscroll' is enabled.
Non-interactively, use TRY-VSCROLL to control whether to vscroll tall
lines: if either `auto-window-vscroll' or TRY-VSCROLL is nil, this
function will not vscroll.
ARG defaults to 1.
If there is no character in the target line exactly under the current column,
the cursor is positioned after the character in that line that spans this
column, or at the end of the line if it is not long enough.
If there is no line in the buffer after this one, behavior depends on the
value of `next-line-add-newlines'. If non-nil, it inserts a newline character
to create a line, and moves the cursor to that line. Otherwise it moves the
cursor to the end of the buffer.
If the variable `line-move-visual' is non-nil, this command moves
by display lines. Otherwise, it moves by buffer lines, without
taking variable-width characters or continued lines into account.
See \\[next-logical-line] for a command that always moves by buffer lines.
The command \\[set-goal-column] can be used to create
a semipermanent goal column for this command.
Then instead of trying to move exactly vertically (or as close as possible),
this command moves to the specified goal column (or as close as possible).
The goal column is stored in the variable `goal-column', which is nil
when there is no goal column. Note that setting `goal-column'
overrides `line-move-visual' and causes this command to move by buffer
lines rather than by display lines."
(declare (interactive-only forward-line))
(interactive "^p\np")
(or arg (setq arg 1))
(if (and next-line-add-newlines (= arg 1))
(if (save-excursion (end-of-line) (eobp))
;; When adding a newline, don't expand an abbrev.
(let ((abbrev-mode nil))
(end-of-line)
(insert (if use-hard-newlines hard-newline "\n")))
(line-move arg nil nil try-vscroll))
(if (called-interactively-p 'interactive)
(condition-case err
(line-move arg nil nil try-vscroll)
((beginning-of-buffer end-of-buffer)
(signal (car err) (cdr err))))
(line-move arg nil nil try-vscroll)))
nil)
(defun previous-line (&optional arg try-vscroll)
"Move cursor vertically up ARG lines.
Interactively, vscroll tall lines if `auto-window-vscroll' is enabled.
Non-interactively, use TRY-VSCROLL to control whether to vscroll tall
lines: if either `auto-window-vscroll' or TRY-VSCROLL is nil, this
function will not vscroll.
ARG defaults to 1.
If there is no character in the target line exactly over the current column,
the cursor is positioned after the character in that line that spans this
column, or at the end of the line if it is not long enough.
If the variable `line-move-visual' is non-nil, this command moves
by display lines. Otherwise, it moves by buffer lines, without
taking variable-width characters or continued lines into account.
See \\[previous-logical-line] for a command that always moves by buffer lines.
The command \\[set-goal-column] can be used to create
a semipermanent goal column for this command.
Then instead of trying to move exactly vertically (or as close as possible),
this command moves to the specified goal column (or as close as possible).
The goal column is stored in the variable `goal-column', which is nil
when there is no goal column. Note that setting `goal-column'
overrides `line-move-visual' and causes this command to move by buffer
lines rather than by display lines."
(declare (interactive-only
"use `forward-line' with negative argument instead."))
(interactive "^p\np")
(or arg (setq arg 1))
(if (called-interactively-p 'interactive)
(condition-case err
(line-move (- arg) nil nil try-vscroll)
((beginning-of-buffer end-of-buffer)
(signal (car err) (cdr err))))
(line-move (- arg) nil nil try-vscroll))
nil)
(defcustom track-eol nil
"Non-nil means vertical motion starting at end of line keeps to ends of lines.
This means moving to the end of each line moved onto.
The beginning of a blank line does not count as the end of a line.
This has no effect when the variable `line-move-visual' is non-nil."
:type 'boolean
:group 'editing-basics)
(defcustom goal-column nil
"Semipermanent goal column for vertical motion, as set by \\[set-goal-column], or nil.
A non-nil setting overrides the variable `line-move-visual', which see."
:type '(choice integer
(const :tag "None" nil))
:group 'editing-basics)
(make-variable-buffer-local 'goal-column)
(defvar temporary-goal-column 0
"Current goal column for vertical motion.
It is the column where point was at the start of the current run
of vertical motion commands.
When moving by visual lines via the function `line-move-visual', it is a cons
cell (COL . HSCROLL), where COL is the x-position, in pixels,
divided by the default column width, and HSCROLL is the number of
columns by which window is scrolled from left margin.
When the `track-eol' feature is doing its job, the value is
`most-positive-fixnum'.")
(defcustom line-move-ignore-invisible t
"Non-nil means commands that move by lines ignore invisible newlines.
When this option is non-nil, \\[next-line], \\[previous-line], \\[move-end-of-line], and \\[move-beginning-of-line] behave
as if newlines that are invisible didn't exist, and count
only visible newlines. Thus, moving across 2 newlines
one of which is invisible will be counted as a one-line move.
Also, a non-nil value causes invisible text to be ignored when
counting columns for the purposes of keeping point in the same
column by \\[next-line] and \\[previous-line].
Outline mode sets this."
:type 'boolean
:group 'editing-basics)
(defcustom line-move-visual t
"When non-nil, `line-move' moves point by visual lines.
This movement is based on where the cursor is displayed on the
screen, instead of relying on buffer contents alone. It takes
into account variable-width characters and line continuation.
If nil, `line-move' moves point by logical lines.
A non-nil setting of `goal-column' overrides the value of this variable
and forces movement by logical lines.
A window that is horizontally scrolled also forces movement by logical
lines."
:type 'boolean
:group 'editing-basics
:version "23.1")
;; Used only if display-graphic-p.
(declare-function font-info "font.c" (name &optional frame))
(defun default-font-height ()
"Return the height in pixels of the current buffer's default face font.
If the default font is remapped (see `face-remapping-alist'), the
function returns the height of the remapped face.
This function uses the definition of the default face for the currently
selected frame."
(let ((default-font (face-font 'default)))
(cond
((and (display-multi-font-p)
;; Avoid calling font-info if the frame's default font was
;; not changed since the frame was created. That's because
;; font-info is expensive for some fonts, see bug #14838.
(not (string= (frame-parameter nil 'font) default-font)))
(aref (font-info default-font) 3))
(t (frame-char-height)))))
(defun default-font-width ()
"Return the width in pixels of the current buffer's default face font.
If the default font is remapped (see `face-remapping-alist'), the
function returns the width of the remapped face.
This function uses the definition of the default face for the currently
selected frame."
(let ((default-font (face-font 'default)))
(cond
((and (display-multi-font-p)
;; Avoid calling font-info if the frame's default font was
;; not changed since the frame was created. That's because
;; font-info is expensive for some fonts, see bug #14838.
(not (string= (frame-parameter nil 'font) default-font)))
(let* ((info (font-info (face-font 'default)))
(width (aref info 11)))
(if (> width 0)
width
(aref info 10))))
(t (frame-char-width)))))
(defun default-line-height ()
"Return the pixel height of current buffer's default-face text line.
The value includes `line-spacing', if any, defined for the buffer
or the frame.
This function uses the definition of the default face for the currently
selected frame."
(let ((dfh (default-font-height))
(lsp (if (display-graphic-p)
(or line-spacing
(default-value 'line-spacing)
(frame-parameter nil 'line-spacing)
0)
0)))
(if (floatp lsp)
(setq lsp (truncate (* (frame-char-height) lsp))))
(+ dfh lsp)))
(defun window-screen-lines ()
"Return the number of screen lines in the text area of the selected window.
This is different from `window-text-height' in that this function counts
lines in units of the height of the font used by the default face displayed
in the window, not in units of the frame's default font, and also accounts
for `line-spacing', if any, defined for the window's buffer or frame.
The value is a floating-point number."
(let ((edges (window-inside-pixel-edges))
(dlh (default-line-height)))
(/ (float (- (nth 3 edges) (nth 1 edges))) dlh)))
;; Returns non-nil if partial move was done.
(defun line-move-partial (arg noerror &optional _to-end)
(if (< arg 0)
;; Move backward (up).
;; If already vscrolled, reduce vscroll
(let ((vs (window-vscroll nil t))
(dlh (default-line-height)))
(when (> vs dlh)
(set-window-vscroll nil (- vs dlh) t)))
;; Move forward (down).
(let* ((lh (window-line-height -1))
(rowh (car lh))
(vpos (nth 1 lh))
(ypos (nth 2 lh))
(rbot (nth 3 lh))
(this-lh (window-line-height))
(this-height (car this-lh))
(this-ypos (nth 2 this-lh))
(dlh (default-line-height))
(wslines (window-screen-lines))
(edges (window-inside-pixel-edges))
(winh (- (nth 3 edges) (nth 1 edges) 1))
py vs last-line)
(if (> (mod wslines 1.0) 0.0)
(setq wslines (round (+ wslines 0.5))))
(when (or (null lh)
(>= rbot dlh)
(<= ypos (- dlh))
(null this-lh)
(<= this-ypos (- dlh)))
(unless lh
(let ((wend (pos-visible-in-window-p t nil t)))
(setq rbot (nth 3 wend)
rowh (nth 4 wend)
vpos (nth 5 wend))))
(unless this-lh
(let ((wstart (pos-visible-in-window-p nil nil t)))
(setq this-ypos (nth 2 wstart)
this-height (nth 4 wstart))))
(setq py
(or (nth 1 this-lh)
(let ((ppos (posn-at-point))
col-row)
(setq col-row (posn-actual-col-row ppos))
(if col-row
(- (cdr col-row) (window-vscroll))
(cdr (posn-col-row ppos))))))
;; VPOS > 0 means the last line is only partially visible.
;; But if the part that is visible is at least as tall as the
;; default font, that means the line is actually fully
;; readable, and something like line-spacing is hidden. So in
;; that case we accept the last line in the window as still
;; visible, and consider the margin as starting one line
;; later.
(if (and vpos (> vpos 0))
(if (and rowh
(>= rowh (default-font-height))
(< rowh dlh))
(setq last-line (min (- wslines scroll-margin) vpos))
(setq last-line (min (- wslines scroll-margin 1) (1- vpos)))))
(cond
;; If last line of window is fully visible, and vscrolling
;; more would make this line invisible, move forward.
((and (or (< (setq vs (window-vscroll nil t)) dlh)
(null this-height)
(<= this-height dlh))
(or (null rbot) (= rbot 0)))
nil)
;; If cursor is not in the bottom scroll margin, and the
;; current line is not too tall, move forward.
((and (or (null this-height) (<= this-height winh))
vpos
(> vpos 0)
(< py last-line))
nil)
;; When already vscrolled, we vscroll some more if we can,
;; or clear vscroll and move forward at end of tall image.
((> vs 0)
(when (or (and rbot (> rbot 0))
(and this-height (> this-height dlh)))
(set-window-vscroll nil (+ vs dlh) t)))
;; If cursor just entered the bottom scroll margin, move forward,
;; but also optionally vscroll one line so redisplay won't recenter.
((and vpos
(> vpos 0)
(= py last-line))
;; Don't vscroll if the partially-visible line at window
;; bottom is not too tall (a.k.a. "just one more text
;; line"): in that case, we do want redisplay to behave
;; normally, i.e. recenter or whatever.
;;
;; Note: ROWH + RBOT from the value returned by
;; pos-visible-in-window-p give the total height of the
;; partially-visible glyph row at the end of the window. As
;; we are dealing with floats, we disregard sub-pixel
;; discrepancies between that and DLH.
(if (and rowh rbot (>= (- (+ rowh rbot) winh) 1))
(set-window-vscroll nil dlh t))
(line-move-1 arg noerror)
t)
;; If there are lines above the last line, scroll-up one line.
((and vpos (> vpos 0))
(scroll-up 1)
t)
;; Finally, start vscroll.
(t
(set-window-vscroll nil dlh t)))))))
;; This is like line-move-1 except that it also performs
;; vertical scrolling of tall images if appropriate.
;; That is not really a clean thing to do, since it mixes
;; scrolling with cursor motion. But so far we don't have
;; a cleaner solution to the problem of making C-n do something
;; useful given a tall image.
(defun line-move (arg &optional noerror _to-end try-vscroll)
"Move forward ARG lines.
If NOERROR, don't signal an error if we can't move ARG lines.
TO-END is unused.
TRY-VSCROLL controls whether to vscroll tall lines: if either
`auto-window-vscroll' or TRY-VSCROLL is nil, this function will
not vscroll."
(if noninteractive
(line-move-1 arg noerror)
(unless (and auto-window-vscroll try-vscroll
;; Only vscroll for single line moves
(= (abs arg) 1)
;; Under scroll-conservatively, the display engine
;; does this better.
(zerop scroll-conservatively)
;; But don't vscroll in a keyboard macro.
(not defining-kbd-macro)
(not executing-kbd-macro)
(line-move-partial arg noerror))
(set-window-vscroll nil 0 t)
(if (and line-move-visual
;; Display-based column are incompatible with goal-column.
(not goal-column)
;; When the text in the window is scrolled to the left,
;; display-based motion doesn't make sense (because each
;; logical line occupies exactly one screen line).
(not (> (window-hscroll) 0))
;; Likewise when the text _was_ scrolled to the left
;; when the current run of vertical motion commands
;; started.
(not (and (memq last-command
`(next-line previous-line ,this-command))
auto-hscroll-mode
(numberp temporary-goal-column)
(>= temporary-goal-column
(- (window-width) hscroll-margin)))))
(prog1 (line-move-visual arg noerror)
;; If we moved into a tall line, set vscroll to make
;; scrolling through tall images more smooth.
(let ((lh (line-pixel-height))
(edges (window-inside-pixel-edges))
(dlh (default-line-height))
winh)
(setq winh (- (nth 3 edges) (nth 1 edges) 1))
(if (and (< arg 0)
(< (point) (window-start))
(> lh winh))
(set-window-vscroll
nil
(- lh dlh) t))))
(line-move-1 arg noerror)))))
;; Display-based alternative to line-move-1.
;; Arg says how many lines to move. The value is t if we can move the
;; specified number of lines.
(defun line-move-visual (arg &optional noerror)
"Move ARG lines forward.
If NOERROR, don't signal an error if we can't move that many lines."
(let ((opoint (point))
(hscroll (window-hscroll))
(lnum-width (line-number-display-width t))
target-hscroll)
;; Check if the previous command was a line-motion command, or if
;; we were called from some other command.
(if (and (consp temporary-goal-column)
(memq last-command `(next-line previous-line ,this-command)))
;; If so, there's no need to reset `temporary-goal-column',
;; but we may need to hscroll.
(if (or (/= (cdr temporary-goal-column) hscroll)
(> (cdr temporary-goal-column) 0))
(setq target-hscroll (cdr temporary-goal-column)))
;; Otherwise, we should reset `temporary-goal-column'.
(let ((posn (posn-at-point))
x-pos)
(cond
;; Handle the `overflow-newline-into-fringe' case
;; (left-fringe is for the R2L case):
((memq (nth 1 posn) '(right-fringe left-fringe))
(setq temporary-goal-column (cons (window-width) hscroll)))
((car (posn-x-y posn))
(setq x-pos (- (car (posn-x-y posn)) lnum-width))
;; In R2L lines, the X pixel coordinate is measured from the
;; left edge of the window, but columns are still counted
;; from the logical-order beginning of the line, i.e. from
;; the right edge in this case. We need to adjust for that.
(if (eq (current-bidi-paragraph-direction) 'right-to-left)
(setq x-pos (- (window-body-width nil t) 1 x-pos)))
(setq temporary-goal-column
(cons (/ (float x-pos)
(frame-char-width))
hscroll)))
(executing-kbd-macro
;; When we move beyond the first/last character visible in
;; the window, posn-at-point will return nil, so we need to
;; approximate the goal column as below.
(setq temporary-goal-column
(mod (current-column) (window-text-width)))))))
(if target-hscroll
(set-window-hscroll (selected-window) target-hscroll))
;; vertical-motion can move more than it was asked to if it moves
;; across display strings with newlines. We don't want to ring
;; the bell and announce beginning/end of buffer in that case.
(or (and (or (and (>= arg 0)
(>= (vertical-motion
(cons (or goal-column
(if (consp temporary-goal-column)
(car temporary-goal-column)
temporary-goal-column))
arg))
arg))
(and (< arg 0)
(<= (vertical-motion
(cons (or goal-column
(if (consp temporary-goal-column)
(car temporary-goal-column)
temporary-goal-column))
arg))
arg)))
(or (>= arg 0)
(/= (point) opoint)
;; If the goal column lies on a display string,
;; `vertical-motion' advances the cursor to the end
;; of the string. For arg < 0, this can cause the
;; cursor to get stuck. (Bug#3020).
(= (vertical-motion arg) arg)))
(unless noerror
(signal (if (< arg 0) 'beginning-of-buffer 'end-of-buffer)
nil)))))
;; This is the guts of next-line and previous-line.
;; Arg says how many lines to move.
;; The value is t if we can move the specified number of lines.
(defun line-move-1 (arg &optional noerror _to-end)
;; Don't run any point-motion hooks, and disregard intangibility,
;; for intermediate positions.
(let ((inhibit-point-motion-hooks t)
(opoint (point))
(orig-arg arg))
(if (consp temporary-goal-column)
(setq temporary-goal-column (+ (car temporary-goal-column)
(cdr temporary-goal-column))))
(unwind-protect
(progn
(if (not (memq last-command '(next-line previous-line)))
(setq temporary-goal-column
(if (and track-eol (eolp)
;; Don't count beg of empty line as end of line
;; unless we just did explicit end-of-line.
(or (not (bolp)) (eq last-command 'move-end-of-line)))
most-positive-fixnum
(current-column))))
(if (not (or (integerp selective-display)
line-move-ignore-invisible))
;; Use just newline characters.
;; Set ARG to 0 if we move as many lines as requested.
(or (if (> arg 0)
(progn (if (> arg 1) (forward-line (1- arg)))
;; This way of moving forward ARG lines
;; verifies that we have a newline after the last one.
;; It doesn't get confused by intangible text.
(end-of-line)
(if (zerop (forward-line 1))
(setq arg 0)))
(and (zerop (forward-line arg))
(bolp)
(setq arg 0)))
(unless noerror
(signal (if (< arg 0)
'beginning-of-buffer
'end-of-buffer)
nil)))
;; Move by arg lines, but ignore invisible ones.
(let (done)
(while (and (> arg 0) (not done))
;; If the following character is currently invisible,
;; skip all characters with that same `invisible' property value.
(while (and (not (eobp)) (invisible-p (point)))
(goto-char (next-char-property-change (point))))
;; Move a line.
;; We don't use `end-of-line', since we want to escape
;; from field boundaries occurring exactly at point.
(goto-char (constrain-to-field
(let ((inhibit-field-text-motion t))
(line-end-position))
(point) t t
'inhibit-line-move-field-capture))
;; If there's no invisibility here, move over the newline.
(cond
((eobp)
(if (not noerror)
(signal 'end-of-buffer nil)
(setq done t)))
((and (> arg 1) ;; Use vertical-motion for last move
(not (integerp selective-display))
(not (invisible-p (point))))
;; We avoid vertical-motion when possible
;; because that has to fontify.
(forward-line 1))
;; Otherwise move a more sophisticated way.
((zerop (vertical-motion 1))
(if (not noerror)
(signal 'end-of-buffer nil)
(setq done t))))
(unless done
(setq arg (1- arg))))
;; The logic of this is the same as the loop above,
;; it just goes in the other direction.
(while (and (< arg 0) (not done))
;; For completely consistency with the forward-motion
;; case, we should call beginning-of-line here.
;; However, if point is inside a field and on a
;; continued line, the call to (vertical-motion -1)
;; below won't move us back far enough; then we return
;; to the same column in line-move-finish, and point
;; gets stuck -- cyd
(forward-line 0)
(cond
((bobp)
(if (not noerror)
(signal 'beginning-of-buffer nil)
(setq done t)))
((and (< arg -1) ;; Use vertical-motion for last move
(not (integerp selective-display))
(not (invisible-p (1- (point)))))
(forward-line -1))
((zerop (vertical-motion -1))
(if (not noerror)
(signal 'beginning-of-buffer nil)
(setq done t))))
(unless done
(setq arg (1+ arg))
(while (and ;; Don't move over previous invis lines
;; if our target is the middle of this line.
(or (zerop (or goal-column temporary-goal-column))
(< arg 0))
(not (bobp)) (invisible-p (1- (point))))
(goto-char (previous-char-property-change (point))))))))
;; This is the value the function returns.
(= arg 0))
(cond ((> arg 0)
;; If we did not move down as far as desired, at least go
;; to end of line. Be sure to call point-entered and
;; point-left-hooks.
(let* ((npoint (prog1 (line-end-position)
(goto-char opoint)))
(inhibit-point-motion-hooks nil))
(goto-char npoint)))
((< arg 0)
;; If we did not move up as far as desired,
;; at least go to beginning of line.
(let* ((npoint (prog1 (line-beginning-position)
(goto-char opoint)))
(inhibit-point-motion-hooks nil))
(goto-char npoint)))
(t
(line-move-finish (or goal-column temporary-goal-column)
opoint (> orig-arg 0)))))))
(defun line-move-finish (column opoint forward)
(let ((repeat t))
(while repeat
;; Set REPEAT to t to repeat the whole thing.
(setq repeat nil)
(let (new
(old (point))
(line-beg (line-beginning-position))
(line-end
;; Compute the end of the line
;; ignoring effectively invisible newlines.
(save-excursion
;; Like end-of-line but ignores fields.
(skip-chars-forward "^\n")
(while (and (not (eobp)) (invisible-p (point)))
(goto-char (next-char-property-change (point)))
(skip-chars-forward "^\n"))
(point))))
;; Move to the desired column.
(if (and line-move-visual
(not (or truncate-lines truncate-partial-width-windows)))
;; Under line-move-visual, goal-column should be
;; interpreted in units of the frame's canonical character
;; width, which is exactly what vertical-motion does.
(vertical-motion (cons column 0))
(line-move-to-column (truncate column)))
;; Corner case: suppose we start out in a field boundary in
;; the middle of a continued line. When we get to
;; line-move-finish, point is at the start of a new *screen*
;; line but the same text line; then line-move-to-column would
;; move us backwards. Test using C-n with point on the "x" in
;; (insert "a" (propertize "x" 'field t) (make-string 89 ?y))
(and forward
(< (point) old)
(goto-char old))
(setq new (point))
;; Process intangibility within a line.
;; With inhibit-point-motion-hooks bound to nil, a call to
;; goto-char moves point past intangible text.
;; However, inhibit-point-motion-hooks controls both the
;; intangibility and the point-entered/point-left hooks. The
;; following hack avoids calling the point-* hooks
;; unnecessarily. Note that we move *forward* past intangible
;; text when the initial and final points are the same.
(goto-char new)
(let ((inhibit-point-motion-hooks nil))
(goto-char new)
;; If intangibility moves us to a different (later) place
;; in the same line, use that as the destination.
(if (<= (point) line-end)
(setq new (point))
;; If that position is "too late",
;; try the previous allowable position.
;; See if it is ok.
(backward-char)
(if (if forward
;; If going forward, don't accept the previous
;; allowable position if it is before the target line.
(< line-beg (point))
;; If going backward, don't accept the previous
;; allowable position if it is still after the target line.
(<= (point) line-end))
(setq new (point))
;; As a last resort, use the end of the line.
(setq new line-end))))
;; Now move to the updated destination, processing fields
;; as well as intangibility.
(goto-char opoint)
(let ((inhibit-point-motion-hooks nil))
(goto-char
;; Ignore field boundaries if the initial and final
;; positions have the same `field' property, even if the
;; fields are non-contiguous. This seems to be "nicer"
;; behavior in many situations.
(if (eq (get-char-property new 'field)
(get-char-property opoint 'field))
new
(constrain-to-field new opoint t t
'inhibit-line-move-field-capture))))
;; If all this moved us to a different line,
;; retry everything within that new line.
(when (or (< (point) line-beg) (> (point) line-end))
;; Repeat the intangibility and field processing.
(setq repeat t))))))
(defun line-move-to-column (col)
"Try to find column COL, considering invisibility.
This function works only in certain cases,
because what we really need is for `move-to-column'
and `current-column' to be able to ignore invisible text."
(if (zerop col)
(beginning-of-line)
(move-to-column col))
(when (and line-move-ignore-invisible
(not (bolp)) (invisible-p (1- (point))))
(let ((normal-location (point))
(normal-column (current-column)))
;; If the following character is currently invisible,
;; skip all characters with that same `invisible' property value.
(while (and (not (eobp))
(invisible-p (point)))
(goto-char (next-char-property-change (point))))
;; Have we advanced to a larger column position?
(if (> (current-column) normal-column)
;; We have made some progress towards the desired column.
;; See if we can make any further progress.
(line-move-to-column (+ (current-column) (- col normal-column)))
;; Otherwise, go to the place we originally found
;; and move back over invisible text.
;; that will get us to the same place on the screen
;; but with a more reasonable buffer position.
(goto-char normal-location)
(let ((line-beg
;; We want the real line beginning, so it's consistent
;; with bolp below, otherwise we might infloop.
(let ((inhibit-field-text-motion t))
(line-beginning-position))))
(while (and (not (bolp)) (invisible-p (1- (point))))
(goto-char (previous-char-property-change (point) line-beg))))))))
(defun move-end-of-line (arg)
"Move point to end of current line as displayed.
With argument ARG not nil or 1, move forward ARG - 1 lines first.
If point reaches the beginning or end of buffer, it stops there.
To ignore the effects of the `intangible' text or overlay
property, bind `inhibit-point-motion-hooks' to t.
If there is an image in the current line, this function
disregards newlines that are part of the text on which the image
rests."
(interactive "^p")
(or arg (setq arg 1))
(let (done)
(while (not done)
(let ((newpos
(save-excursion
(let ((goal-column 0)
(line-move-visual nil))
(and (line-move arg t)
;; With bidi reordering, we may not be at bol,
;; so make sure we are.
(skip-chars-backward "^\n")
(not (bobp))
(progn
(while (and (not (bobp)) (invisible-p (1- (point))))
(goto-char (previous-single-char-property-change
(point) 'invisible)))
(backward-char 1)))
(point)))))
(goto-char newpos)
(if (and (> (point) newpos)
(eq (preceding-char) ?\n))
(backward-char 1)
(if (and (> (point) newpos) (not (eobp))
(not (eq (following-char) ?\n)))
;; If we skipped something intangible and now we're not
;; really at eol, keep going.
(setq arg 1)
(setq done t)))))))
(defun move-beginning-of-line (arg)
"Move point to beginning of current line as displayed.
\(If there's an image in the line, this disregards newlines
that are part of the text that the image rests on.)
With argument ARG not nil or 1, move forward ARG - 1 lines first.
If point reaches the beginning or end of buffer, it stops there.
\(But if the buffer doesn't end in a newline, it stops at the
beginning of the last line.)
To ignore intangibility, bind `inhibit-point-motion-hooks' to t."
(interactive "^p")
(or arg (setq arg 1))
(let ((orig (point))
first-vis first-vis-field-value)
;; Move by lines, if ARG is not 1 (the default).
(if (/= arg 1)
(let ((line-move-visual nil))
(line-move (1- arg) t)))
;; Move to beginning-of-line, ignoring fields and invisible text.
(skip-chars-backward "^\n")
(while (and (not (bobp)) (invisible-p (1- (point))))
(goto-char (previous-char-property-change (point)))
(skip-chars-backward "^\n"))
;; Now find first visible char in the line.
(while (and (< (point) orig) (invisible-p (point)))
(goto-char (next-char-property-change (point) orig)))
(setq first-vis (point))
;; See if fields would stop us from reaching FIRST-VIS.
(setq first-vis-field-value
(constrain-to-field first-vis orig (/= arg 1) t nil))
(goto-char (if (/= first-vis-field-value first-vis)
;; If yes, obey them.
first-vis-field-value
;; Otherwise, move to START with attention to fields.
;; (It is possible that fields never matter in this case.)
(constrain-to-field (point) orig
(/= arg 1) t nil)))))
;; Many people have said they rarely use this feature, and often type
;; it by accident. Maybe it shouldn't even be on a key.
(put 'set-goal-column 'disabled t)
(defun set-goal-column (arg)
"Set the current horizontal position as a goal for \\[next-line] and \\[previous-line].
Those commands will move to this position in the line moved to
rather than trying to keep the same horizontal position.
With a non-nil argument ARG, clears out the goal column
so that \\[next-line] and \\[previous-line] resume vertical motion.
The goal column is stored in the variable `goal-column'.
This is a buffer-local setting."
(interactive "P")
(if arg
(progn
(setq goal-column nil)
(message "No goal column"))
(setq goal-column (current-column))
;; The older method below can be erroneous if `set-goal-column' is bound
;; to a sequence containing %
;;(message (substitute-command-keys
;;"Goal column %d (use \\[set-goal-column] with an arg to unset it)")
;;goal-column)
(message "%s"
(concat
(format "Goal column %d " goal-column)
(substitute-command-keys
"(use \\[set-goal-column] with an arg to unset it)")))
)
nil)
;;; Editing based on visual lines, as opposed to logical lines.
(defun end-of-visual-line (&optional n)
"Move point to end of current visual line.
With argument N not nil or 1, move forward N - 1 visual lines first.
If point reaches the beginning or end of buffer, it stops there.
To ignore intangibility, bind `inhibit-point-motion-hooks' to t."
(interactive "^p")
(or n (setq n 1))
(if (/= n 1)
(let ((line-move-visual t))
(line-move (1- n) t)))
;; Unlike `move-beginning-of-line', `move-end-of-line' doesn't
;; constrain to field boundaries, so we don't either.
(vertical-motion (cons (window-width) 0)))
(defun beginning-of-visual-line (&optional n)
"Move point to beginning of current visual line.
With argument N not nil or 1, move forward N - 1 visual lines first.
If point reaches the beginning or end of buffer, it stops there.
\(But if the buffer doesn't end in a newline, it stops at the
beginning of the last visual line.)
To ignore intangibility, bind `inhibit-point-motion-hooks' to t."
(interactive "^p")
(or n (setq n 1))
(let ((opoint (point)))
(if (/= n 1)
(let ((line-move-visual t))
(line-move (1- n) t)))
(vertical-motion 0)
;; Constrain to field boundaries, like `move-beginning-of-line'.
(goto-char (constrain-to-field (point) opoint (/= n 1)))))
(defun kill-visual-line (&optional arg)
"Kill the rest of the visual line.
With prefix argument ARG, kill that many visual lines from point.
If ARG is negative, kill visual lines backward.
If ARG is zero, kill the text before point on the current visual
line.
If you want to append the killed line to the last killed text,
use \\[append-next-kill] before \\[kill-line].
If the buffer is read-only, Emacs will beep and refrain from deleting
the line, but put the line in the kill ring anyway. This means that
you can use this command to copy text from a read-only buffer.
\(If the variable `kill-read-only-ok' is non-nil, then this won't
even beep.)"
(interactive "P")
;; Like in `kill-line', it's better to move point to the other end
;; of the kill before killing.
(let ((opoint (point))
(kill-whole-line (and kill-whole-line (bolp))))
(if arg
(vertical-motion (prefix-numeric-value arg))
(end-of-visual-line 1)
(if (= (point) opoint)
(vertical-motion 1)
;; Skip any trailing whitespace at the end of the visual line.
;; We used to do this only if `show-trailing-whitespace' is
;; nil, but that's wrong; the correct thing would be to check
;; whether the trailing whitespace is highlighted. But, it's
;; OK to just do this unconditionally.
(skip-chars-forward " \t")))
(kill-region opoint (if (and kill-whole-line (= (following-char) ?\n))
(1+ (point))
(point)))))
(defun next-logical-line (&optional arg try-vscroll)
"Move cursor vertically down ARG lines.
This is identical to `next-line', except that it always moves
by logical lines instead of visual lines, ignoring the value of
the variable `line-move-visual'."
(interactive "^p\np")
(let ((line-move-visual nil))
(with-no-warnings
(next-line arg try-vscroll))))
(defun previous-logical-line (&optional arg try-vscroll)
"Move cursor vertically up ARG lines.
This is identical to `previous-line', except that it always moves
by logical lines instead of visual lines, ignoring the value of
the variable `line-move-visual'."
(interactive "^p\np")
(let ((line-move-visual nil))
(with-no-warnings
(previous-line arg try-vscroll))))
(defgroup visual-line nil
"Editing based on visual lines."
:group 'convenience
:version "23.1")
(defvar visual-line-mode-map
(let ((map (make-sparse-keymap)))
(define-key map [remap kill-line] 'kill-visual-line)
(define-key map [remap move-beginning-of-line] 'beginning-of-visual-line)
(define-key map [remap move-end-of-line] 'end-of-visual-line)
;; These keybindings interfere with xterm function keys. Are
;; there any other suitable bindings?
;; (define-key map "\M-[" 'previous-logical-line)
;; (define-key map "\M-]" 'next-logical-line)
map))
(defcustom visual-line-fringe-indicators '(nil nil)
"How fringe indicators are shown for wrapped lines in `visual-line-mode'.
The value should be a list of the form (LEFT RIGHT), where LEFT
and RIGHT are symbols representing the bitmaps to display, to
indicate wrapped lines, in the left and right fringes respectively.
See also `fringe-indicator-alist'.
The default is not to display fringe indicators for wrapped lines.
This variable does not affect fringe indicators displayed for
other purposes."
:type '(list (choice (const :tag "Hide left indicator" nil)
(const :tag "Left curly arrow" left-curly-arrow)
(symbol :tag "Other bitmap"))
(choice (const :tag "Hide right indicator" nil)
(const :tag "Right curly arrow" right-curly-arrow)
(symbol :tag "Other bitmap")))
:set (lambda (symbol value)
(dolist (buf (buffer-list))
(with-current-buffer buf
(when (and (boundp 'visual-line-mode)
(symbol-value 'visual-line-mode))
(setq fringe-indicator-alist
(cons (cons 'continuation value)
(assq-delete-all
'continuation
(copy-tree fringe-indicator-alist)))))))
(set-default symbol value)))
(defvar visual-line--saved-state nil)
(define-minor-mode visual-line-mode
"Toggle visual line based editing (Visual Line mode) in the current buffer.
When Visual Line mode is enabled, `word-wrap' is turned on in
this buffer, and simple editing commands are redefined to act on
visual lines, not logical lines. See Info node `Visual Line
Mode' for details."
:keymap visual-line-mode-map
:group 'visual-line
:lighter " Wrap"
(if visual-line-mode
(progn
(set (make-local-variable 'visual-line--saved-state) nil)
;; Save the local values of some variables, to be restored if
;; visual-line-mode is turned off.
(dolist (var '(line-move-visual truncate-lines
truncate-partial-width-windows
word-wrap fringe-indicator-alist))
(if (local-variable-p var)
(push (cons var (symbol-value var))
visual-line--saved-state)))
(set (make-local-variable 'line-move-visual) t)
(set (make-local-variable 'truncate-partial-width-windows) nil)
(setq truncate-lines nil
word-wrap t
fringe-indicator-alist
(cons (cons 'continuation visual-line-fringe-indicators)
fringe-indicator-alist)))
(kill-local-variable 'line-move-visual)
(kill-local-variable 'word-wrap)
(kill-local-variable 'truncate-lines)
(kill-local-variable 'truncate-partial-width-windows)
(kill-local-variable 'fringe-indicator-alist)
(dolist (saved visual-line--saved-state)
(set (make-local-variable (car saved)) (cdr saved)))
(kill-local-variable 'visual-line--saved-state)))
(defun turn-on-visual-line-mode ()
(visual-line-mode 1))
(define-globalized-minor-mode global-visual-line-mode
visual-line-mode turn-on-visual-line-mode)
(defun transpose-chars (arg)
"Interchange characters around point, moving forward one character.
With prefix arg ARG, effect is to take character before point
and drag it forward past ARG other characters (backward if ARG negative).
If no argument and at end of line, the previous two chars are exchanged."
(interactive "*P")
(when (and (null arg) (eolp) (not (bobp))
(not (get-text-property (1- (point)) 'read-only)))
(forward-char -1))
(transpose-subr 'forward-char (prefix-numeric-value arg)))
(defun transpose-words (arg)
"Interchange words around point, leaving point at end of them.
With prefix arg ARG, effect is to take word before or around point
and drag it forward past ARG other words (backward if ARG negative).
If ARG is zero, the words around or after point and around or after mark
are interchanged."
;; FIXME: `foo a!nd bar' should transpose into `bar and foo'.
(interactive "*p")
(transpose-subr 'forward-word arg))
(defun transpose-sexps (arg)
"Like \\[transpose-chars] (`transpose-chars'), but applies to sexps.
Unlike `transpose-words', point must be between the two sexps and not
in the middle of a sexp to be transposed.
With non-zero prefix arg ARG, effect is to take the sexp before point
and drag it forward past ARG other sexps (backward if ARG is negative).
If ARG is zero, the sexps ending at or after point and at or after mark
are interchanged."
(interactive "*p")
(transpose-subr
(lambda (arg)
;; Here we should try to simulate the behavior of
;; (cons (progn (forward-sexp x) (point))
;; (progn (forward-sexp (- x)) (point)))
;; Except that we don't want to rely on the second forward-sexp
;; putting us back to where we want to be, since forward-sexp-function
;; might do funny things like infix-precedence.
(if (if (> arg 0)
(looking-at "\\sw\\|\\s_")
(and (not (bobp))
(save-excursion (forward-char -1) (looking-at "\\sw\\|\\s_"))))
;; Jumping over a symbol. We might be inside it, mind you.
(progn (funcall (if (> arg 0)
'skip-syntax-backward 'skip-syntax-forward)
"w_")
(cons (save-excursion (forward-sexp arg) (point)) (point)))
;; Otherwise, we're between sexps. Take a step back before jumping
;; to make sure we'll obey the same precedence no matter which direction
;; we're going.
(funcall (if (> arg 0) 'skip-syntax-backward 'skip-syntax-forward) " .")
(cons (save-excursion (forward-sexp arg) (point))
(progn (while (or (forward-comment (if (> arg 0) 1 -1))
(not (zerop (funcall (if (> arg 0)
'skip-syntax-forward
'skip-syntax-backward)
".")))))
(point)))))
arg 'special))
(defun transpose-lines (arg)
"Exchange current line and previous line, leaving point after both.
With argument ARG, takes previous line and moves it past ARG lines.
With argument 0, interchanges line point is in with line mark is in."
(interactive "*p")
(transpose-subr (function
(lambda (arg)
(if (> arg 0)
(progn
;; Move forward over ARG lines,
;; but create newlines if necessary.
(setq arg (forward-line arg))
(if (/= (preceding-char) ?\n)
(setq arg (1+ arg)))
(if (> arg 0)
(newline arg)))
(forward-line arg))))
arg))
;; FIXME seems to leave point BEFORE the current object when ARG = 0,
;; which seems inconsistent with the ARG /= 0 case.
;; FIXME document SPECIAL.
(defun transpose-subr (mover arg &optional special)
"Subroutine to do the work of transposing objects.
Works for lines, sentences, paragraphs, etc. MOVER is a function that
moves forward by units of the given object (e.g. forward-sentence,
forward-paragraph). If ARG is zero, exchanges the current object
with the one containing mark. If ARG is an integer, moves the
current object past ARG following (if ARG is positive) or
preceding (if ARG is negative) objects, leaving point after the
current object."
(let ((aux (if special mover
(lambda (x)
(cons (progn (funcall mover x) (point))
(progn (funcall mover (- x)) (point))))))
pos1 pos2)
(cond
((= arg 0)
(save-excursion
(setq pos1 (funcall aux 1))
(goto-char (or (mark) (error "No mark set in this buffer")))
(setq pos2 (funcall aux 1))
(transpose-subr-1 pos1 pos2))
(exchange-point-and-mark))
((> arg 0)
(setq pos1 (funcall aux -1))
(setq pos2 (funcall aux arg))
(transpose-subr-1 pos1 pos2)
(goto-char (car pos2)))
(t
(setq pos1 (funcall aux -1))
(goto-char (car pos1))
(setq pos2 (funcall aux arg))
(transpose-subr-1 pos1 pos2)
(goto-char (+ (car pos2) (- (cdr pos1) (car pos1))))))))
(defun transpose-subr-1 (pos1 pos2)
(when (> (car pos1) (cdr pos1)) (setq pos1 (cons (cdr pos1) (car pos1))))
(when (> (car pos2) (cdr pos2)) (setq pos2 (cons (cdr pos2) (car pos2))))
(when (> (car pos1) (car pos2))
(let ((swap pos1))
(setq pos1 pos2 pos2 swap)))
(if (> (cdr pos1) (car pos2)) (error "Don't have two things to transpose"))
(atomic-change-group
;; This sequence of insertions attempts to preserve marker
;; positions at the start and end of the transposed objects.
(let* ((word (buffer-substring (car pos2) (cdr pos2)))
(len1 (- (cdr pos1) (car pos1)))
(len2 (length word))
(boundary (make-marker)))
(set-marker boundary (car pos2))
(goto-char (cdr pos1))
(insert-before-markers word)
(setq word (delete-and-extract-region (car pos1) (+ (car pos1) len1)))
(goto-char boundary)
(insert word)
(goto-char (+ boundary len1))
(delete-region (point) (+ (point) len2))
(set-marker boundary nil))))
(defun backward-word (&optional arg)
"Move backward until encountering the beginning of a word.
With argument ARG, do this that many times.
If ARG is omitted or nil, move point backward one word.
The word boundaries are normally determined by the buffer's
syntax table and character script (according to
`char-script-table'), but `find-word-boundary-function-table',
such as set up by `subword-mode', can change that. If a Lisp
program needs to move by words determined strictly by the syntax
table, it should use `backward-word-strictly' instead. See Info
node `(elisp) Word Motion' for details."
(interactive "^p")
(forward-word (- (or arg 1))))
(defun mark-word (&optional arg allow-extend)
"Set mark ARG words away from point.
The place mark goes is the same place \\[forward-word] would
move to with the same argument.
Interactively, if this command is repeated
or (in Transient Mark mode) if the mark is active,
it marks the next ARG words after the ones already marked."
(interactive "P\np")
(cond ((and allow-extend
(or (and (eq last-command this-command) (mark t))
(region-active-p)))
(setq arg (if arg (prefix-numeric-value arg)
(if (< (mark) (point)) -1 1)))
(set-mark
(save-excursion
(goto-char (mark))
(forward-word arg)
(point))))
(t
(push-mark
(save-excursion
(forward-word (prefix-numeric-value arg))
(point))
nil t))))
(defun kill-word (arg)
"Kill characters forward until encountering the end of a word.
With argument ARG, do this that many times."
(interactive "p")
(kill-region (point) (progn (forward-word arg) (point))))
(defun backward-kill-word (arg)
"Kill characters backward until encountering the beginning of a word.
With argument ARG, do this that many times."
(interactive "p")
(kill-word (- arg)))
(defun current-word (&optional strict really-word)
"Return the word at or near point, as a string.
The return value includes no text properties.
If optional arg STRICT is non-nil, return nil unless point is
within or adjacent to a word, otherwise look for a word within
point's line. If there is no word anywhere on point's line, the
value is nil regardless of STRICT.
By default, this function treats as a single word any sequence of
characters that have either word or symbol syntax. If optional
arg REALLY-WORD is non-nil, only characters of word syntax can
constitute a word."
(save-excursion
(let* ((oldpoint (point)) (start (point)) (end (point))
(syntaxes (if really-word "w" "w_"))
(not-syntaxes (concat "^" syntaxes)))
(skip-syntax-backward syntaxes) (setq start (point))
(goto-char oldpoint)
(skip-syntax-forward syntaxes) (setq end (point))
(when (and (eq start oldpoint) (eq end oldpoint)
;; Point is neither within nor adjacent to a word.
(not strict))
;; Look for preceding word in same line.
(skip-syntax-backward not-syntaxes (line-beginning-position))
(if (bolp)
;; No preceding word in same line.
;; Look for following word in same line.
(progn
(skip-syntax-forward not-syntaxes (line-end-position))
(setq start (point))
(skip-syntax-forward syntaxes)
(setq end (point)))
(setq end (point))
(skip-syntax-backward syntaxes)
(setq start (point))))
;; If we found something nonempty, return it as a string.
(unless (= start end)
(buffer-substring-no-properties start end)))))
(defcustom fill-prefix nil
"String for filling to insert at front of new line, or nil for none."
:type '(choice (const :tag "None" nil)
string)
:group 'fill)
(make-variable-buffer-local 'fill-prefix)
(put 'fill-prefix 'safe-local-variable 'string-or-null-p)
(defcustom auto-fill-inhibit-regexp nil
"Regexp to match lines that should not be auto-filled."
:type '(choice (const :tag "None" nil)
regexp)
:group 'fill)
(defun do-auto-fill ()
"The default value for `normal-auto-fill-function'.
This is the default auto-fill function, some major modes use a different one.
Returns t if it really did any work."
(let (fc justify give-up
(fill-prefix fill-prefix))
(if (or (not (setq justify (current-justification)))
(null (setq fc (current-fill-column)))
(and (eq justify 'left)
(<= (current-column) fc))
(and auto-fill-inhibit-regexp
(save-excursion (beginning-of-line)
(looking-at auto-fill-inhibit-regexp))))
nil ;; Auto-filling not required
(if (memq justify '(full center right))
(save-excursion (unjustify-current-line)))
;; Choose a fill-prefix automatically.
(when (and adaptive-fill-mode
(or (null fill-prefix) (string= fill-prefix "")))
(let ((prefix
(fill-context-prefix
(save-excursion (fill-forward-paragraph -1) (point))
(save-excursion (fill-forward-paragraph 1) (point)))))
(and prefix (not (equal prefix ""))
;; Use auto-indentation rather than a guessed empty prefix.
(not (and fill-indent-according-to-mode
(string-match "\\`[ \t]*\\'" prefix)))
(setq fill-prefix prefix))))
(while (and (not give-up) (> (current-column) fc))
;; Determine where to split the line.
(let ((fill-point
(save-excursion
(beginning-of-line)
;; Don't split earlier in the line than the length of the
;; fill prefix, since the resulting line would be longer.
(when fill-prefix
(move-to-column (string-width fill-prefix)))
(let ((after-prefix (point)))
(move-to-column (1+ fc))
(fill-move-to-break-point after-prefix)
(point)))))
;; See whether the place we found is any good.
(if (save-excursion
(goto-char fill-point)
(or (bolp)
;; There is no use breaking at end of line.
(save-excursion (skip-chars-forward " ") (eolp))
;; Don't split right after a comment starter
;; since we would just make another comment starter.
(and comment-start-skip
(let ((limit (point)))
(beginning-of-line)
(and (re-search-forward comment-start-skip
limit t)
(eq (point) limit))))))
;; No good place to break => stop trying.
(setq give-up t)
;; Ok, we have a useful place to break the line. Do it.
(let ((prev-column (current-column)))
;; If point is at the fill-point, do not `save-excursion'.
;; Otherwise, if a comment prefix or fill-prefix is inserted,
;; point will end up before it rather than after it.
(if (save-excursion
(skip-chars-backward " \t")
(= (point) fill-point))
(default-indent-new-line t)
(save-excursion
(goto-char fill-point)
(default-indent-new-line t)))
;; Now do justification, if required
(if (not (eq justify 'left))
(save-excursion
(end-of-line 0)
(justify-current-line justify nil t)))
;; If making the new line didn't reduce the hpos of
;; the end of the line, then give up now;
;; trying again will not help.
(if (>= (current-column) prev-column)
(setq give-up t))))))
;; Justify last line.
(justify-current-line justify t t)
t)))
(defvar comment-line-break-function 'comment-indent-new-line
"Mode-specific function that line breaks and continues a comment.
This function is called during auto-filling when a comment syntax
is defined.
The function should take a single optional argument, which is a flag
indicating whether it should use soft newlines.")
(defun default-indent-new-line (&optional soft)
"Break line at point and indent.
If a comment syntax is defined, call `comment-line-break-function'.
The inserted newline is marked hard if variable `use-hard-newlines' is true,
unless optional argument SOFT is non-nil."
(interactive)
(if comment-start
(funcall comment-line-break-function soft)
;; Insert the newline before removing empty space so that markers
;; get preserved better.
(if soft (insert-and-inherit ?\n) (newline 1))
(save-excursion (forward-char -1) (delete-horizontal-space))
(delete-horizontal-space)
(if (and fill-prefix (not adaptive-fill-mode))
;; Blindly trust a non-adaptive fill-prefix.
(progn
(indent-to-left-margin)
(insert-before-markers-and-inherit fill-prefix))
(cond
;; If there's an adaptive prefix, use it unless we're inside
;; a comment and the prefix is not a comment starter.
(fill-prefix
(indent-to-left-margin)
(insert-and-inherit fill-prefix))
;; If we're not inside a comment, just try to indent.
(t (indent-according-to-mode))))))
(defun internal-auto-fill ()
"The function called by `self-insert-command' to perform auto-filling."
(when (or (not comment-start)
(not comment-auto-fill-only-comments)
(nth 4 (syntax-ppss)))
(funcall auto-fill-function)))
(defvar normal-auto-fill-function 'do-auto-fill
"The function to use for `auto-fill-function' if Auto Fill mode is turned on.
Some major modes set this.")
(put 'auto-fill-function :minor-mode-function 'auto-fill-mode)
;; `functions' and `hooks' are usually unsafe to set, but setting
;; auto-fill-function to nil in a file-local setting is safe and
;; can be useful to prevent auto-filling.
(put 'auto-fill-function 'safe-local-variable 'null)
(define-minor-mode auto-fill-mode
"Toggle automatic line breaking (Auto Fill mode).
When Auto Fill mode is enabled, inserting a space at a column
beyond `current-fill-column' automatically breaks the line at a
previous space.
When `auto-fill-mode' is on, the `auto-fill-function' variable is
non-nil.
The value of `normal-auto-fill-function' specifies the function to use
for `auto-fill-function' when turning Auto Fill mode on."
:variable (auto-fill-function
. (lambda (v) (setq auto-fill-function
(if v normal-auto-fill-function)))))
;; This holds a document string used to document auto-fill-mode.
(defun auto-fill-function ()
"Automatically break line at a previous space, in insertion of text."
nil)
(defun turn-on-auto-fill ()
"Unconditionally turn on Auto Fill mode."
(auto-fill-mode 1))
(defun turn-off-auto-fill ()
"Unconditionally turn off Auto Fill mode."
(auto-fill-mode -1))
(custom-add-option 'text-mode-hook 'turn-on-auto-fill)
(defun set-fill-column (arg)
"Set `fill-column' to specified argument.
Use \\[universal-argument] followed by a number to specify a column.
Just \\[universal-argument] as argument means to use the current column."
(interactive
(list (or current-prefix-arg
;; We used to use current-column silently, but C-x f is too easily
;; typed as a typo for C-x C-f, so we turned it into an error and
;; now an interactive prompt.
(read-number "Set fill-column to: " (current-column)))))
(if (consp arg)
(setq arg (current-column)))
(if (not (integerp arg))
;; Disallow missing argument; it's probably a typo for C-x C-f.
(error "set-fill-column requires an explicit argument")
(message "Fill column set to %d (was %d)" arg fill-column)
(setq fill-column arg)))
(defun set-selective-display (arg)
"Set `selective-display' to ARG; clear it if no arg.
When the value of `selective-display' is a number > 0,
lines whose indentation is >= that value are not displayed.
The variable `selective-display' has a separate value for each buffer."
(interactive "P")
(if (eq selective-display t)
(error "selective-display already in use for marked lines"))
(let ((current-vpos
(save-restriction
(narrow-to-region (point-min) (point))
(goto-char (window-start))
(vertical-motion (window-height)))))
(setq selective-display
(and arg (prefix-numeric-value arg)))
(recenter current-vpos))
(set-window-start (selected-window) (window-start))
(princ "selective-display set to " t)
(prin1 selective-display t)
(princ "." t))
(defvaralias 'indicate-unused-lines 'indicate-empty-lines)
(defun toggle-truncate-lines (&optional arg)
"Toggle truncating of long lines for the current buffer.
When truncating is off, long lines are folded.
With prefix argument ARG, truncate long lines if ARG is positive,
otherwise fold them. Note that in side-by-side windows, this
command has no effect if `truncate-partial-width-windows' is
non-nil."
(interactive "P")
(setq truncate-lines
(if (null arg)
(not truncate-lines)
(> (prefix-numeric-value arg) 0)))
(force-mode-line-update)
(unless truncate-lines
(let ((buffer (current-buffer)))
(walk-windows (lambda (window)
(if (eq buffer (window-buffer window))
(set-window-hscroll window 0)))
nil t)))
(message "Truncate long lines %s"
(if truncate-lines "enabled" "disabled")))
(defun toggle-word-wrap (&optional arg)
"Toggle whether to use word-wrapping for continuation lines.
With prefix argument ARG, wrap continuation lines at word boundaries
if ARG is positive, otherwise wrap them at the right screen edge.
This command toggles the value of `word-wrap'. It has no effect
if long lines are truncated."
(interactive "P")
(setq word-wrap
(if (null arg)
(not word-wrap)
(> (prefix-numeric-value arg) 0)))
(force-mode-line-update)
(message "Word wrapping %s"
(if word-wrap "enabled" "disabled")))
(defvar overwrite-mode-textual (purecopy " Ovwrt")
"The string displayed in the mode line when in overwrite mode.")
(defvar overwrite-mode-binary (purecopy " Bin Ovwrt")
"The string displayed in the mode line when in binary overwrite mode.")
(define-minor-mode overwrite-mode
"Toggle Overwrite mode.
When Overwrite mode is enabled, printing characters typed in
replace existing text on a one-for-one basis, rather than pushing
it to the right. At the end of a line, such characters extend
the line. Before a tab, such characters insert until the tab is
filled in. \\[quoted-insert] still inserts characters in
overwrite mode; this is supposed to make it easier to insert
characters when necessary."
:variable (overwrite-mode
. (lambda (v) (setq overwrite-mode (if v 'overwrite-mode-textual)))))
(define-minor-mode binary-overwrite-mode
"Toggle Binary Overwrite mode.
When Binary Overwrite mode is enabled, printing characters typed
in replace existing text. Newlines are not treated specially, so
typing at the end of a line joins the line to the next, with the
typed character between them. Typing before a tab character
simply replaces the tab with the character typed.
\\[quoted-insert] replaces the text at the cursor, just as
ordinary typing characters do.
Note that Binary Overwrite mode is not its own minor mode; it is
a specialization of overwrite mode, entered by setting the
`overwrite-mode' variable to `overwrite-mode-binary'."
:variable (overwrite-mode
. (lambda (v) (setq overwrite-mode (if v 'overwrite-mode-binary)))))
(define-minor-mode line-number-mode
"Toggle line number display in the mode line (Line Number mode).
Line numbers do not appear for very large buffers and buffers
with very long lines; see variables `line-number-display-limit'
and `line-number-display-limit-width'."
:init-value t :global t :group 'mode-line)
(define-minor-mode column-number-mode
"Toggle column number display in the mode line (Column Number mode)."
:global t :group 'mode-line)
(define-minor-mode size-indication-mode
"Toggle buffer size display in the mode line (Size Indication mode)."
:global t :group 'mode-line)
(define-minor-mode auto-save-mode
"Toggle auto-saving in the current buffer (Auto Save mode)."
:variable ((and buffer-auto-save-file-name
;; If auto-save is off because buffer has shrunk,
;; then toggling should turn it on.
(>= buffer-saved-size 0))
. (lambda (val)
(setq buffer-auto-save-file-name
(cond
((null val) nil)
((and buffer-file-name auto-save-visited-file-name
(not buffer-read-only))
buffer-file-name)
(t (make-auto-save-file-name))))))
;; If -1 was stored here, to temporarily turn off saving,
;; turn it back on.
(and (< buffer-saved-size 0)
(setq buffer-saved-size 0)))
(defgroup paren-blinking nil
"Blinking matching of parens and expressions."
:prefix "blink-matching-"
:group 'paren-matching)
(defcustom blink-matching-paren t
"Non-nil means show matching open-paren when close-paren is inserted.
If t, highlight the paren. If `jump', briefly move cursor to its
position. If `jump-offscreen', move cursor there even if the
position is off screen. With any other non-nil value, the
off-screen position of the opening paren will be shown in the
echo area."
:type '(choice
(const :tag "Disable" nil)
(const :tag "Highlight" t)
(const :tag "Move cursor" jump)
(const :tag "Move cursor, even if off screen" jump-offscreen))
:group 'paren-blinking)
(defcustom blink-matching-paren-on-screen t
"Non-nil means show matching open-paren when it is on screen.
If nil, don't show it (but the open-paren can still be shown
in the echo area when it is off screen).
This variable has no effect if `blink-matching-paren' is nil.
\(In that case, the open-paren is never shown.)
It is also ignored if `show-paren-mode' is enabled."
:type 'boolean
:group 'paren-blinking)
(defcustom blink-matching-paren-distance (* 100 1024)
"If non-nil, maximum distance to search backwards for matching open-paren.
If nil, search stops at the beginning of the accessible portion of the buffer."
:version "23.2" ; 25->100k
:type '(choice (const nil) integer)
:group 'paren-blinking)
(defcustom blink-matching-delay 1
"Time in seconds to delay after showing a matching paren."
:type 'number
:group 'paren-blinking)
(defcustom blink-matching-paren-dont-ignore-comments nil
"If nil, `blink-matching-paren' ignores comments.
More precisely, when looking for the matching parenthesis,
it skips the contents of comments that end before point."
:type 'boolean
:group 'paren-blinking)
(defun blink-matching-check-mismatch (start end)
"Return whether or not START...END are matching parens.
END is the current point and START is the blink position.
START might be nil if no matching starter was found.
Returns non-nil if we find there is a mismatch."
(let* ((end-syntax (syntax-after (1- end)))
(matching-paren (and (consp end-syntax)
(eq (syntax-class end-syntax) 5)
(cdr end-syntax))))
;; For self-matched chars like " and $, we can't know when they're
;; mismatched or unmatched, so we can do it only for parens.
(when matching-paren
(not (and start
(or
(eq (char-after start) matching-paren)
;; The cdr might hold a new paren-class info rather than
;; a matching-char info, in which case the two CDRs
;; should match.
(eq matching-paren (cdr-safe (syntax-after start)))))))))
(defvar blink-matching-check-function #'blink-matching-check-mismatch
"Function to check parentheses mismatches.
The function takes two arguments (START and END) where START is the
position just before the opening token and END is the position right after.
START can be nil, if it was not found.
The function should return non-nil if the two tokens do not match.")
(defvar blink-matching--overlay
(let ((ol (make-overlay (point) (point) nil t)))
(overlay-put ol 'face 'show-paren-match)
(delete-overlay ol)
ol)
"Overlay used to highlight the matching paren.")
(defun blink-matching-open ()
"Momentarily highlight the beginning of the sexp before point."
(interactive)
(when (and (not (bobp))
blink-matching-paren)
(let* ((oldpos (point))
(message-log-max nil) ; Don't log messages about paren matching.
(blinkpos
(save-excursion
(save-restriction
(if blink-matching-paren-distance
(narrow-to-region
(max (minibuffer-prompt-end) ;(point-min) unless minibuf.
(- (point) blink-matching-paren-distance))
oldpos))
(let ((parse-sexp-ignore-comments
(and parse-sexp-ignore-comments
(not blink-matching-paren-dont-ignore-comments))))
(condition-case ()
(progn
(syntax-propertize (point))
(forward-sexp -1)
;; backward-sexp skips backward over prefix chars,
;; so move back to the matching paren.
(while (and (< (point) (1- oldpos))
(let ((code (syntax-after (point))))
(or (eq (syntax-class code) 6)
(eq (logand 1048576 (car code))
1048576))))
(forward-char 1))
(point))
(error nil))))))
(mismatch (funcall blink-matching-check-function blinkpos oldpos)))
(cond
(mismatch
(if blinkpos
(if (minibufferp)
(minibuffer-message "Mismatched parentheses")
(message "Mismatched parentheses"))
(if (minibufferp)
(minibuffer-message "No matching parenthesis found")
(message "No matching parenthesis found"))))
((not blinkpos) nil)
((or
(eq blink-matching-paren 'jump-offscreen)
(pos-visible-in-window-p blinkpos))
;; Matching open within window, temporarily move to or highlight
;; char after blinkpos but only if `blink-matching-paren-on-screen'
;; is non-nil.
(and blink-matching-paren-on-screen
(not show-paren-mode)
(if (memq blink-matching-paren '(jump jump-offscreen))
(save-excursion
(goto-char blinkpos)
(sit-for blink-matching-delay))
(unwind-protect
(progn
(move-overlay blink-matching--overlay blinkpos (1+ blinkpos)
(current-buffer))
(sit-for blink-matching-delay))
(delete-overlay blink-matching--overlay)))))
(t
(let ((open-paren-line-string
(save-excursion
(goto-char blinkpos)
;; Show what precedes the open in its line, if anything.
(cond
((save-excursion (skip-chars-backward " \t") (not (bolp)))
(buffer-substring (line-beginning-position)
(1+ blinkpos)))
;; Show what follows the open in its line, if anything.
((save-excursion
(forward-char 1)
(skip-chars-forward " \t")
(not (eolp)))
(buffer-substring blinkpos
(line-end-position)))
;; Otherwise show the previous nonblank line,
;; if there is one.
((save-excursion (skip-chars-backward "\n \t") (not (bobp)))
(concat
(buffer-substring (progn
(skip-chars-backward "\n \t")
(line-beginning-position))
(progn (end-of-line)
(skip-chars-backward " \t")
(point)))
;; Replace the newline and other whitespace with `...'.
"..."
(buffer-substring blinkpos (1+ blinkpos))))
;; There is nothing to show except the char itself.
(t (buffer-substring blinkpos (1+ blinkpos)))))))
(minibuffer-message
"Matches %s"
(substring-no-properties open-paren-line-string))))))))
(defvar blink-paren-function 'blink-matching-open
"Function called, if non-nil, whenever a close parenthesis is inserted.
More precisely, a char with closeparen syntax is self-inserted.")
(defun blink-paren-post-self-insert-function ()
(when (and (eq (char-before) last-command-event) ; Sanity check.
(memq (char-syntax last-command-event) '(?\) ?\$))
blink-paren-function
(not executing-kbd-macro)
(not noninteractive)
;; Verify an even number of quoting characters precede the close.
;; FIXME: Also check if this parenthesis closes a comment as
;; can happen in Pascal and SML.
(= 1 (logand 1 (- (point)
(save-excursion
(forward-char -1)
(skip-syntax-backward "/\\")
(point))))))
(funcall blink-paren-function)))
(put 'blink-paren-post-self-insert-function 'priority 100)
(add-hook 'post-self-insert-hook #'blink-paren-post-self-insert-function
;; Most likely, this hook is nil, so this arg doesn't matter,
;; but I use it as a reminder that this function usually
;; likes to be run after others since it does
;; `sit-for'. That's also the reason it get a `priority' prop
;; of 100.
'append)
;; This executes C-g typed while Emacs is waiting for a command.
;; Quitting out of a program does not go through here;
;; that happens in the maybe_quit function at the C code level.
(defun keyboard-quit ()
"Signal a `quit' condition.
During execution of Lisp code, this character causes a quit directly.
At top-level, as an editor command, this simply beeps."
(interactive)
;; Avoid adding the region to the window selection.
(setq saved-region-selection nil)
(let (select-active-regions)
(deactivate-mark))
(if (fboundp 'kmacro-keyboard-quit)
(kmacro-keyboard-quit))
(when completion-in-region-mode
(completion-in-region-mode -1))
;; Force the next redisplay cycle to remove the "Def" indicator from
;; all the mode lines.
(if defining-kbd-macro
(force-mode-line-update t))
(setq defining-kbd-macro nil)
(let ((debug-on-quit nil))
(signal 'quit nil)))
(defvar buffer-quit-function nil
"Function to call to \"quit\" the current buffer, or nil if none.
\\[keyboard-escape-quit] calls this function when its more local actions
\(such as canceling a prefix argument, minibuffer or region) do not apply.")
(defun keyboard-escape-quit ()
"Exit the current \"mode\" (in a generalized sense of the word).
This command can exit an interactive command such as `query-replace',
can clear out a prefix argument or a region,
can get out of the minibuffer or other recursive edit,
cancel the use of the current buffer (for special-purpose buffers),
or go back to just one window (by deleting all but the selected window)."
(interactive)
(cond ((eq last-command 'mode-exited) nil)
((region-active-p)
(deactivate-mark))
((> (minibuffer-depth) 0)
(abort-recursive-edit))
(current-prefix-arg
nil)
((> (recursion-depth) 0)
(exit-recursive-edit))
(buffer-quit-function
(funcall buffer-quit-function))
((not (one-window-p t))
(delete-other-windows))
((string-match "^ \\*" (buffer-name (current-buffer)))
(bury-buffer))))
(defun play-sound-file (file &optional volume device)
"Play sound stored in FILE.
VOLUME and DEVICE correspond to the keywords of the sound
specification for `play-sound'."
(interactive "fPlay sound file: ")
(let ((sound (list :file file)))
(if volume
(plist-put sound :volume volume))
(if device
(plist-put sound :device device))
(push 'sound sound)
(play-sound sound)))
(defcustom read-mail-command 'rmail
"Your preference for a mail reading package.
This is used by some keybindings that support reading mail.
See also `mail-user-agent' concerning sending mail."
:type '(radio (function-item :tag "Rmail" :format "%t\n" rmail)
(function-item :tag "Gnus" :format "%t\n" gnus)
(function-item :tag "Emacs interface to MH"
:format "%t\n" mh-rmail)
(function :tag "Other"))
:version "21.1"
:group 'mail)
(defcustom mail-user-agent 'message-user-agent
"Your preference for a mail composition package.
Various Emacs Lisp packages (e.g. Reporter) require you to compose an
outgoing email message. This variable lets you specify which
mail-sending package you prefer.
Valid values include:
`message-user-agent' -- use the Message package.
See Info node `(message)'.
`sendmail-user-agent' -- use the Mail package.
See Info node `(emacs)Sending Mail'.
`mh-e-user-agent' -- use the Emacs interface to the MH mail system.
See Info node `(mh-e)'.
`gnus-user-agent' -- like `message-user-agent', but with Gnus
paraphernalia if Gnus is running, particularly
the Gcc: header for archiving.
Additional valid symbols may be available; check with the author of
your package for details. The function should return non-nil if it
succeeds.
See also `read-mail-command' concerning reading mail."
:type '(radio (function-item :tag "Message package"
:format "%t\n"
message-user-agent)
(function-item :tag "Mail package"
:format "%t\n"
sendmail-user-agent)
(function-item :tag "Emacs interface to MH"
:format "%t\n"
mh-e-user-agent)
(function-item :tag "Message with full Gnus features"
:format "%t\n"
gnus-user-agent)
(function :tag "Other"))
:version "23.2" ; sendmail->message
:group 'mail)
(defcustom compose-mail-user-agent-warnings t
"If non-nil, `compose-mail' warns about changes in `mail-user-agent'.
If the value of `mail-user-agent' is the default, and the user
appears to have customizations applying to the old default,
`compose-mail' issues a warning."
:type 'boolean
:version "23.2"
:group 'mail)
(defun rfc822-goto-eoh ()
"If the buffer starts with a mail header, move point to the header's end.
Otherwise, moves to `point-min'.
The end of the header is the start of the next line, if there is one,
else the end of the last line. This function obeys RFC 822 (or later)."
(goto-char (point-min))
(when (re-search-forward
"^\\([:\n]\\|[^: \t\n]+[ \t\n]\\)" nil 'move)
(goto-char (match-beginning 0))))
;; Used by Rmail (e.g., rmail-forward).
(defvar mail-encode-mml nil
"If non-nil, mail-user-agent's `sendfunc' command should mml-encode
the outgoing message before sending it.")
(defun compose-mail (&optional to subject other-headers continue
switch-function yank-action send-actions
return-action)
"Start composing a mail message to send.
This uses the user's chosen mail composition package
as selected with the variable `mail-user-agent'.
The optional arguments TO and SUBJECT specify recipients
and the initial Subject field, respectively.
OTHER-HEADERS is an alist specifying additional
header fields. Elements look like (HEADER . VALUE) where both
HEADER and VALUE are strings.
By default, if an unsent message is already being composed, this
command will ask whether to erase the unsent message, and will not
start a new message if the user doesn't allow erasing. However, if
CONTINUE is non-nil, it means to continue editing a message already
being composed without asking. Interactively, CONTINUE is the prefix
argument.
SWITCH-FUNCTION, if non-nil, is a function to use to
switch to and display the buffer used for mail composition.
YANK-ACTION, if non-nil, is an action to perform, if and when necessary,
to insert the raw text of the message being replied to.
It has the form (FUNCTION . ARGS). The user agent will apply
FUNCTION to ARGS, to insert the raw text of the original message.
\(The user agent will also run `mail-citation-hook', *after* the
original text has been inserted in this way.)
SEND-ACTIONS is a list of actions to call when the message is sent.
Each action has the form (FUNCTION . ARGS).
RETURN-ACTION, if non-nil, is an action for returning to the
caller. It has the form (FUNCTION . ARGS). The function is
called after the mail has been sent or put aside, and the mail
buffer buried."
(interactive
(list nil nil nil current-prefix-arg))
;; In Emacs 23.2, the default value of `mail-user-agent' changed
;; from sendmail-user-agent to message-user-agent. Some users may
;; encounter incompatibilities. This hack tries to detect problems
;; and warn about them.
(and compose-mail-user-agent-warnings
(eq mail-user-agent 'message-user-agent)
(let (warn-vars)
(dolist (var '(mail-mode-hook mail-send-hook mail-setup-hook
mail-citation-hook mail-archive-file-name
mail-default-reply-to mail-mailing-lists
mail-self-blind))
(and (boundp var)
(symbol-value var)
(push var warn-vars)))
(when warn-vars
(display-warning 'mail
(format-message "\
The default mail mode is now Message mode.
You have the following Mail mode variable%s customized:
\n %s\n\nTo use Mail mode, set `mail-user-agent' to sendmail-user-agent.
To disable this warning, set `compose-mail-user-agent-warnings' to nil."
(if (> (length warn-vars) 1) "s" "")
(mapconcat 'symbol-name
warn-vars " "))))))
(let ((function (get mail-user-agent 'composefunc)))
(unless function
(error "Invalid value for `mail-user-agent'"))
(funcall function to subject other-headers continue switch-function
yank-action send-actions return-action)))
(defun compose-mail-other-window (&optional to subject other-headers continue
yank-action send-actions
return-action)
"Like \\[compose-mail], but edit the outgoing message in another window."
(interactive (list nil nil nil current-prefix-arg))
(compose-mail to subject other-headers continue
'switch-to-buffer-other-window yank-action send-actions
return-action))
(defun compose-mail-other-frame (&optional to subject other-headers continue
yank-action send-actions
return-action)
"Like \\[compose-mail], but edit the outgoing message in another frame."
(interactive (list nil nil nil current-prefix-arg))
(compose-mail to subject other-headers continue
'switch-to-buffer-other-frame yank-action send-actions
return-action))
(defvar set-variable-value-history nil
"History of values entered with `set-variable'.
Maximum length of the history list is determined by the value
of `history-length', which see.")
(defun set-variable (variable value &optional make-local)
"Set VARIABLE to VALUE. VALUE is a Lisp object.
VARIABLE should be a user option variable name, a Lisp variable
meant to be customized by users. You should enter VALUE in Lisp syntax,
so if you want VALUE to be a string, you must surround it with doublequotes.
VALUE is used literally, not evaluated.
If VARIABLE has a `variable-interactive' property, that is used as if
it were the arg to `interactive' (which see) to interactively read VALUE.
If VARIABLE has been defined with `defcustom', then the type information
in the definition is used to check that VALUE is valid.
Note that this function is at heart equivalent to the basic `set' function.
For a variable defined with `defcustom', it does not pay attention to
any :set property that the variable might have (if you want that, use
\\[customize-set-variable] instead).
With a prefix argument, set VARIABLE to VALUE buffer-locally.
When called interactively, the user is prompted for VARIABLE and
then VALUE. The current value of VARIABLE will be put in the
minibuffer history so that it can be accessed with `M-n', which
makes it easier to edit it."
(interactive
(let* ((default-var (variable-at-point))
(var (if (custom-variable-p default-var)
(read-variable (format "Set variable (default %s): " default-var)
default-var)
(read-variable "Set variable: ")))
(minibuffer-help-form `(describe-variable ',var))
(prop (get var 'variable-interactive))
(obsolete (car (get var 'byte-obsolete-variable)))
(prompt (format "Set %s %s to value: " var
(cond ((local-variable-p var)
"(buffer-local)")
((or current-prefix-arg
(local-variable-if-set-p var))
"buffer-locally")
(t "globally"))))
(val (progn
(when obsolete
(message (concat "`%S' is obsolete; "
(if (symbolp obsolete) "use `%S' instead" "%s"))
var obsolete)
(sit-for 3))
(if prop
;; Use VAR's `variable-interactive' property
;; as an interactive spec for prompting.
(call-interactively `(lambda (arg)
(interactive ,prop)
arg))
(read-from-minibuffer prompt nil
read-expression-map t
'set-variable-value-history
(format "%S" (symbol-value var)))))))
(list var val current-prefix-arg)))
(and (custom-variable-p variable)
(not (get variable 'custom-type))
(custom-load-symbol variable))
(let ((type (get variable 'custom-type)))
(when type
;; Match with custom type.
(require 'cus-edit)
(setq type (widget-convert type))
(unless (widget-apply type :match value)
(user-error "Value `%S' does not match type %S of %S"
value (car type) variable))))
(if make-local
(make-local-variable variable))
(set variable value)
;; Force a thorough redisplay for the case that the variable
;; has an effect on the display, like `tab-width' has.
(force-mode-line-update))
;; Define the major mode for lists of completions.
(defvar completion-list-mode-map
(let ((map (make-sparse-keymap)))
(define-key map [mouse-2] 'choose-completion)
(define-key map [follow-link] 'mouse-face)
(define-key map [down-mouse-2] nil)
(define-key map "\C-m" 'choose-completion)
(define-key map "\e\e\e" 'delete-completion-window)
(define-key map [left] 'previous-completion)
(define-key map [right] 'next-completion)
(define-key map [?\t] 'next-completion)
(define-key map [backtab] 'previous-completion)
(define-key map "q" 'quit-window)
(define-key map "z" 'kill-current-buffer)
map)
"Local map for completion list buffers.")
;; Completion mode is suitable only for specially formatted data.
(put 'completion-list-mode 'mode-class 'special)
(defvar completion-reference-buffer nil
"Record the buffer that was current when the completion list was requested.
This is a local variable in the completion list buffer.
Initial value is nil to avoid some compiler warnings.")
(defvar completion-no-auto-exit nil
"Non-nil means `choose-completion-string' should never exit the minibuffer.
This also applies to other functions such as `choose-completion'.")
(defvar completion-base-position nil
"Position of the base of the text corresponding to the shown completions.
This variable is used in the *Completions* buffers.
Its value is a list of the form (START END) where START is the place
where the completion should be inserted and END (if non-nil) is the end
of the text to replace. If END is nil, point is used instead.")
(defvar completion-list-insert-choice-function #'completion--replace
"Function to use to insert the text chosen in *Completions*.
Called with three arguments (BEG END TEXT), it should replace the text
between BEG and END with TEXT. Expected to be set buffer-locally
in the *Completions* buffer.")
(defvar completion-base-size nil
"Number of chars before point not involved in completion.
This is a local variable in the completion list buffer.
It refers to the chars in the minibuffer if completing in the
minibuffer, or in `completion-reference-buffer' otherwise.
Only characters in the field at point are included.
If nil, Emacs determines which part of the tail end of the
buffer's text is involved in completion by comparing the text
directly.")
(make-obsolete-variable 'completion-base-size 'completion-base-position "23.2")
(defun delete-completion-window ()
"Delete the completion list window.
Go to the window from which completion was requested."
(interactive)
(let ((buf completion-reference-buffer))
(if (one-window-p t)
(if (window-dedicated-p) (delete-frame))
(delete-window (selected-window))
(if (get-buffer-window buf)
(select-window (get-buffer-window buf))))))
(defun previous-completion (n)
"Move to the previous item in the completion list."
(interactive "p")
(next-completion (- n)))
(defun next-completion (n)
"Move to the next item in the completion list.
With prefix argument N, move N items (negative N means move backward)."
(interactive "p")
(let ((beg (point-min)) (end (point-max)))
(while (and (> n 0) (not (eobp)))
;; If in a completion, move to the end of it.
(when (get-text-property (point) 'mouse-face)
(goto-char (next-single-property-change (point) 'mouse-face nil end)))
;; Move to start of next one.
(unless (get-text-property (point) 'mouse-face)
(goto-char (next-single-property-change (point) 'mouse-face nil end)))
(setq n (1- n)))
(while (and (< n 0) (not (bobp)))
(let ((prop (get-text-property (1- (point)) 'mouse-face)))
;; If in a completion, move to the start of it.
(when (and prop (eq prop (get-text-property (point) 'mouse-face)))
(goto-char (previous-single-property-change
(point) 'mouse-face nil beg)))
;; Move to end of the previous completion.
(unless (or (bobp) (get-text-property (1- (point)) 'mouse-face))
(goto-char (previous-single-property-change
(point) 'mouse-face nil beg)))
;; Move to the start of that one.
(goto-char (previous-single-property-change
(point) 'mouse-face nil beg))
(setq n (1+ n))))))
(defun choose-completion (&optional event)
"Choose the completion at point.
If EVENT, use EVENT's position to determine the starting position."
(interactive (list last-nonmenu-event))
;; In case this is run via the mouse, give temporary modes such as
;; isearch a chance to turn off.
(run-hooks 'mouse-leave-buffer-hook)
(with-current-buffer (window-buffer (posn-window (event-start event)))
(let ((buffer completion-reference-buffer)
(base-size completion-base-size)
(base-position completion-base-position)
(insert-function completion-list-insert-choice-function)
(choice
(save-excursion
(goto-char (posn-point (event-start event)))
(let (beg end)
(cond
((and (not (eobp)) (get-text-property (point) 'mouse-face))
(setq end (point) beg (1+ (point))))
((and (not (bobp))
(get-text-property (1- (point)) 'mouse-face))
(setq end (1- (point)) beg (point)))
(t (error "No completion here")))
(setq beg (previous-single-property-change beg 'mouse-face))
(setq end (or (next-single-property-change end 'mouse-face)
(point-max)))
(buffer-substring-no-properties beg end)))))
(unless (buffer-live-p buffer)
(error "Destination buffer is dead"))
(quit-window nil (posn-window (event-start event)))
(with-current-buffer buffer
(choose-completion-string
choice buffer
(or base-position
(when base-size
;; Someone's using old completion code that doesn't know
;; about base-position yet.
(list (+ base-size (field-beginning))))
;; If all else fails, just guess.
(list (choose-completion-guess-base-position choice)))
insert-function)))))
;; Delete the longest partial match for STRING
;; that can be found before POINT.
(defun choose-completion-guess-base-position (string)
(save-excursion
(let ((opoint (point))
len)
;; Try moving back by the length of the string.
(goto-char (max (- (point) (length string))
(minibuffer-prompt-end)))
;; See how far back we were actually able to move. That is the
;; upper bound on how much we can match and delete.
(setq len (- opoint (point)))
(if completion-ignore-case
(setq string (downcase string)))
(while (and (> len 0)
(let ((tail (buffer-substring (point) opoint)))
(if completion-ignore-case
(setq tail (downcase tail)))
(not (string= tail (substring string 0 len)))))
(setq len (1- len))
(forward-char 1))
(point))))
(defun choose-completion-delete-max-match (string)
(declare (obsolete choose-completion-guess-base-position "23.2"))
(delete-region (choose-completion-guess-base-position string) (point)))
(defvar choose-completion-string-functions nil
"Functions that may override the normal insertion of a completion choice.
These functions are called in order with three arguments:
CHOICE - the string to insert in the buffer,
BUFFER - the buffer in which the choice should be inserted,
BASE-POSITION - where to insert the completion.
Functions should also accept and ignore a potential fourth
argument, passed for backwards compatibility.
If a function in the list returns non-nil, that function is supposed
to have inserted the CHOICE in the BUFFER, and possibly exited
the minibuffer; no further functions will be called.
If all functions in the list return nil, that means to use
the default method of inserting the completion in BUFFER.")
(defun choose-completion-string (choice &optional
buffer base-position insert-function)
"Switch to BUFFER and insert the completion choice CHOICE.
BASE-POSITION says where to insert the completion.
INSERT-FUNCTION says how to insert the completion and falls
back on `completion-list-insert-choice-function' when nil."
;; If BUFFER is the minibuffer, exit the minibuffer
;; unless it is reading a file name and CHOICE is a directory,
;; or completion-no-auto-exit is non-nil.
;; Some older code may call us passing `base-size' instead of
;; `base-position'. It's difficult to make any use of `base-size',
;; so we just ignore it.
(unless (consp base-position)
(message "Obsolete `base-size' passed to choose-completion-string")
(setq base-position nil))
(let* ((buffer (or buffer completion-reference-buffer))
(mini-p (minibufferp buffer)))
;; If BUFFER is a minibuffer, barf unless it's the currently
;; active minibuffer.
(if (and mini-p
(not (and (active-minibuffer-window)
(equal buffer
(window-buffer (active-minibuffer-window))))))
(error "Minibuffer is not active for completion")
;; Set buffer so buffer-local choose-completion-string-functions works.
(set-buffer buffer)
(unless (run-hook-with-args-until-success
'choose-completion-string-functions
;; The fourth arg used to be `mini-p' but was useless
;; (since minibufferp can be used on the `buffer' arg)
;; and indeed unused. The last used to be `base-size', so we
;; keep it to try and avoid breaking old code.
choice buffer base-position nil)
;; This remove-text-properties should be unnecessary since `choice'
;; comes from buffer-substring-no-properties.
;;(remove-text-properties 0 (length choice) '(mouse-face nil) choice)
;; Insert the completion into the buffer where it was requested.
(funcall (or insert-function completion-list-insert-choice-function)
(or (car base-position) (point))
(or (cadr base-position) (point))
choice)
;; Update point in the window that BUFFER is showing in.
(let ((window (get-buffer-window buffer t)))
(set-window-point window (point)))
;; If completing for the minibuffer, exit it with this choice.
(and (not completion-no-auto-exit)
(minibufferp buffer)
minibuffer-completion-table
;; If this is reading a file name, and the file name chosen
;; is a directory, don't exit the minibuffer.
(let* ((result (buffer-substring (field-beginning) (point)))
(bounds
(completion-boundaries result minibuffer-completion-table
minibuffer-completion-predicate
"")))
(if (eq (car bounds) (length result))
;; The completion chosen leads to a new set of completions
;; (e.g. it's a directory): don't exit the minibuffer yet.
(let ((mini (active-minibuffer-window)))
(select-window mini)
(when minibuffer-auto-raise
(raise-frame (window-frame mini))))
(exit-minibuffer))))))))
(define-derived-mode completion-list-mode nil "Completion List"
"Major mode for buffers showing lists of possible completions.
Type \\<completion-list-mode-map>\\[choose-completion] in the completion list\
to select the completion near point.
Or click to select one with the mouse.
\\{completion-list-mode-map}"
(set (make-local-variable 'completion-base-size) nil))
(defun completion-list-mode-finish ()
"Finish setup of the completions buffer.
Called from `temp-buffer-show-hook'."
(when (eq major-mode 'completion-list-mode)
(setq buffer-read-only t)))
(add-hook 'temp-buffer-show-hook 'completion-list-mode-finish)
;; Variables and faces used in `completion-setup-function'.
(defcustom completion-show-help t
"Non-nil means show help message in *Completions* buffer."
:type 'boolean
:version "22.1"
:group 'completion)
;; This function goes in completion-setup-hook, so that it is called
;; after the text of the completion list buffer is written.
(defun completion-setup-function ()
(let* ((mainbuf (current-buffer))
(base-dir
;; FIXME: This is a bad hack. We try to set the default-directory
;; in the *Completions* buffer so that the relative file names
;; displayed there can be treated as valid file names, independently
;; from the completion context. But this suffers from many problems:
;; - It's not clear when the completions are file names. With some
;; completion tables (e.g. bzr revision specs), the listed
;; completions can mix file names and other things.
;; - It doesn't pay attention to possible quoting.
;; - With fancy completion styles, the code below will not always
;; find the right base directory.
(if minibuffer-completing-file-name
(file-name-as-directory
(expand-file-name
(buffer-substring (minibuffer-prompt-end)
(- (point) (or completion-base-size 0))))))))
(with-current-buffer standard-output
(let ((base-size completion-base-size) ;Read before killing localvars.
(base-position completion-base-position)
(insert-fun completion-list-insert-choice-function))
(completion-list-mode)
(set (make-local-variable 'completion-base-size) base-size)
(set (make-local-variable 'completion-base-position) base-position)
(set (make-local-variable 'completion-list-insert-choice-function)
insert-fun))
(set (make-local-variable 'completion-reference-buffer) mainbuf)
(if base-dir (setq default-directory base-dir))
;; Maybe insert help string.
(when completion-show-help
(goto-char (point-min))
(if (display-mouse-p)
(insert "Click on a completion to select it.\n"))
(insert (substitute-command-keys
"In this buffer, type \\[choose-completion] to \
select the completion near point.\n\n"))))))
(add-hook 'completion-setup-hook #'completion-setup-function)
(defun switch-to-completions ()
"Select the completion list window."
(interactive)
(let ((window (or (get-buffer-window "*Completions*" 0)
;; Make sure we have a completions window.
(progn (minibuffer-completion-help)
(get-buffer-window "*Completions*" 0)))))
(when window
(select-window window)
;; In the new buffer, go to the first completion.
;; FIXME: Perhaps this should be done in `minibuffer-completion-help'.
(when (bobp)
(next-completion 1)))))
;;; Support keyboard commands to turn on various modifiers.
;; These functions -- which are not commands -- each add one modifier
;; to the following event.
(defun event-apply-alt-modifier (_ignore-prompt)
"\\<function-key-map>Add the Alt modifier to the following event.
For example, type \\[event-apply-alt-modifier] & to enter Alt-&."
(vector (event-apply-modifier (read-event) 'alt 22 "A-")))
(defun event-apply-super-modifier (_ignore-prompt)
"\\<function-key-map>Add the Super modifier to the following event.
For example, type \\[event-apply-super-modifier] & to enter Super-&."
(vector (event-apply-modifier (read-event) 'super 23 "s-")))
(defun event-apply-hyper-modifier (_ignore-prompt)
"\\<function-key-map>Add the Hyper modifier to the following event.
For example, type \\[event-apply-hyper-modifier] & to enter Hyper-&."
(vector (event-apply-modifier (read-event) 'hyper 24 "H-")))
(defun event-apply-shift-modifier (_ignore-prompt)
"\\<function-key-map>Add the Shift modifier to the following event.
For example, type \\[event-apply-shift-modifier] & to enter Shift-&."
(vector (event-apply-modifier (read-event) 'shift 25 "S-")))
(defun event-apply-control-modifier (_ignore-prompt)
"\\<function-key-map>Add the Ctrl modifier to the following event.
For example, type \\[event-apply-control-modifier] & to enter Ctrl-&."
(vector (event-apply-modifier (read-event) 'control 26 "C-")))
(defun event-apply-meta-modifier (_ignore-prompt)
"\\<function-key-map>Add the Meta modifier to the following event.
For example, type \\[event-apply-meta-modifier] & to enter Meta-&."
(vector (event-apply-modifier (read-event) 'meta 27 "M-")))
(defun event-apply-modifier (event symbol lshiftby prefix)
"Apply a modifier flag to event EVENT.
SYMBOL is the name of this modifier, as a symbol.
LSHIFTBY is the numeric value of this modifier, in keyboard events.
PREFIX is the string that represents this modifier in an event type symbol."
(if (numberp event)
(cond ((eq symbol 'control)
(if (<= 64 (upcase event) 95)
(- (upcase event) 64)
(logior (ash 1 lshiftby) event)))
((eq symbol 'shift)
;; FIXME: Should we also apply this "upcase" behavior of shift
;; to non-ascii letters?
(if (and (<= (downcase event) ?z)
(>= (downcase event) ?a))
(upcase event)
(logior (ash 1 lshiftby) event)))
(t
(logior (ash 1 lshiftby) event)))
(if (memq symbol (event-modifiers event))
event
(let ((event-type (if (symbolp event) event (car event))))
(setq event-type (intern (concat prefix (symbol-name event-type))))
(if (symbolp event)
event-type
(cons event-type (cdr event)))))))
(define-key function-key-map [?\C-x ?@ ?h] 'event-apply-hyper-modifier)
(define-key function-key-map [?\C-x ?@ ?s] 'event-apply-super-modifier)
(define-key function-key-map [?\C-x ?@ ?m] 'event-apply-meta-modifier)
(define-key function-key-map [?\C-x ?@ ?a] 'event-apply-alt-modifier)
(define-key function-key-map [?\C-x ?@ ?S] 'event-apply-shift-modifier)
(define-key function-key-map [?\C-x ?@ ?c] 'event-apply-control-modifier)
;;;; Keypad support.
;; Make the keypad keys act like ordinary typing keys. If people add
;; bindings for the function key symbols, then those bindings will
;; override these, so this shouldn't interfere with any existing
;; bindings.
;; Also tell read-char how to handle these keys.
(mapc
(lambda (keypad-normal)
(let ((keypad (nth 0 keypad-normal))
(normal (nth 1 keypad-normal)))
(put keypad 'ascii-character normal)
(define-key function-key-map (vector keypad) (vector normal))))
;; See also kp-keys bound in bindings.el.
'((kp-space ?\s)
(kp-tab ?\t)
(kp-enter ?\r)
(kp-separator ?,)
(kp-equal ?=)
;; Do the same for various keys that are represented as symbols under
;; GUIs but naturally correspond to characters.
(backspace 127)
(delete 127)
(tab ?\t)
(linefeed ?\n)
(clear ?\C-l)
(return ?\C-m)
(escape ?\e)
))
;;;;
;;;; forking a twin copy of a buffer.
;;;;
(defvar clone-buffer-hook nil
"Normal hook to run in the new buffer at the end of `clone-buffer'.")
(defvar clone-indirect-buffer-hook nil
"Normal hook to run in the new buffer at the end of `clone-indirect-buffer'.")
(defun clone-process (process &optional newname)
"Create a twin copy of PROCESS.
If NEWNAME is nil, it defaults to PROCESS' name;
NEWNAME is modified by adding or incrementing <N> at the end as necessary.
If PROCESS is associated with a buffer, the new process will be associated
with the current buffer instead.
Returns nil if PROCESS has already terminated."
(setq newname (or newname (process-name process)))
(if (string-match "<[0-9]+>\\'" newname)
(setq newname (substring newname 0 (match-beginning 0))))
(when (memq (process-status process) '(run stop open))
(let* ((process-connection-type (process-tty-name process))
(new-process
(if (memq (process-status process) '(open))
(let ((args (process-contact process t)))
(setq args (plist-put args :name newname))
(setq args (plist-put args :buffer
(if (process-buffer process)
(current-buffer))))
(apply 'make-network-process args))
(apply 'start-process newname
(if (process-buffer process) (current-buffer))
(process-command process)))))
(set-process-query-on-exit-flag
new-process (process-query-on-exit-flag process))
(set-process-inherit-coding-system-flag
new-process (process-inherit-coding-system-flag process))
(set-process-filter new-process (process-filter process))
(set-process-sentinel new-process (process-sentinel process))
(set-process-plist new-process (copy-sequence (process-plist process)))
new-process)))
;; things to maybe add (currently partly covered by `funcall mode'):
;; - syntax-table
;; - overlays
(defun clone-buffer (&optional newname display-flag)
"Create and return a twin copy of the current buffer.
Unlike an indirect buffer, the new buffer can be edited
independently of the old one (if it is not read-only).
NEWNAME is the name of the new buffer. It may be modified by
adding or incrementing <N> at the end as necessary to create a
unique buffer name. If nil, it defaults to the name of the
current buffer, with the proper suffix. If DISPLAY-FLAG is
non-nil, the new buffer is shown with `pop-to-buffer'. Trying to
clone a file-visiting buffer, or a buffer whose major mode symbol
has a non-nil `no-clone' property, results in an error.
Interactively, DISPLAY-FLAG is t and NEWNAME is the name of the
current buffer with appropriate suffix. However, if a prefix
argument is given, then the command prompts for NEWNAME in the
minibuffer.
This runs the normal hook `clone-buffer-hook' in the new buffer
after it has been set up properly in other respects."
(interactive
(progn
(if buffer-file-name
(error "Cannot clone a file-visiting buffer"))
(if (get major-mode 'no-clone)
(error "Cannot clone a buffer in %s mode" mode-name))
(list (if current-prefix-arg
(read-buffer "Name of new cloned buffer: " (current-buffer)))
t)))
(if buffer-file-name
(error "Cannot clone a file-visiting buffer"))
(if (get major-mode 'no-clone)
(error "Cannot clone a buffer in %s mode" mode-name))
(setq newname (or newname (buffer-name)))
(if (string-match "<[0-9]+>\\'" newname)
(setq newname (substring newname 0 (match-beginning 0))))
(let ((buf (current-buffer))
(ptmin (point-min))
(ptmax (point-max))
(pt (point))
(mk (if mark-active (mark t)))
(modified (buffer-modified-p))
(mode major-mode)
(lvars (buffer-local-variables))
(process (get-buffer-process (current-buffer)))
(new (generate-new-buffer (or newname (buffer-name)))))
(save-restriction
(widen)
(with-current-buffer new
(insert-buffer-substring buf)))
(with-current-buffer new
(narrow-to-region ptmin ptmax)
(goto-char pt)
(if mk (set-mark mk))
(set-buffer-modified-p modified)
;; Clone the old buffer's process, if any.
(when process (clone-process process))
;; Now set up the major mode.
(funcall mode)
;; Set up other local variables.
(mapc (lambda (v)
(condition-case ()
(if (symbolp v)
(makunbound (make-local-variable v))
(set (make-local-variable (car v)) (cdr v)))
(setting-constant nil))) ;E.g. for enable-multibyte-characters.
lvars)
(setq mark-ring (mapcar (lambda (mk) (copy-marker (marker-position mk)))
mark-ring))
;; Run any hooks (typically set up by the major mode
;; for cloning to work properly).
(run-hooks 'clone-buffer-hook))
(if display-flag
;; Presumably the current buffer is shown in the selected frame, so
;; we want to display the clone elsewhere.
(let ((same-window-regexps nil)
(same-window-buffer-names))
(pop-to-buffer new)))
new))
(defun clone-indirect-buffer (newname display-flag &optional norecord)
"Create an indirect buffer that is a twin copy of the current buffer.
Give the indirect buffer name NEWNAME. Interactively, read NEWNAME
from the minibuffer when invoked with a prefix arg. If NEWNAME is nil
or if not called with a prefix arg, NEWNAME defaults to the current
buffer's name. The name is modified by adding a `<N>' suffix to it
or by incrementing the N in an existing suffix. Trying to clone a
buffer whose major mode symbol has a non-nil `no-clone-indirect'
property results in an error.
DISPLAY-FLAG non-nil means show the new buffer with `pop-to-buffer'.
This is always done when called interactively.
Optional third arg NORECORD non-nil means do not put this buffer at the
front of the list of recently selected ones.
Returns the newly created indirect buffer."
(interactive
(progn
(if (get major-mode 'no-clone-indirect)
(error "Cannot indirectly clone a buffer in %s mode" mode-name))
(list (if current-prefix-arg
(read-buffer "Name of indirect buffer: " (current-buffer)))
t)))
(if (get major-mode 'no-clone-indirect)
(error "Cannot indirectly clone a buffer in %s mode" mode-name))
(setq newname (or newname (buffer-name)))
(if (string-match "<[0-9]+>\\'" newname)
(setq newname (substring newname 0 (match-beginning 0))))
(let* ((name (generate-new-buffer-name newname))
(buffer (make-indirect-buffer (current-buffer) name t)))
(with-current-buffer buffer
(run-hooks 'clone-indirect-buffer-hook))
(when display-flag
(pop-to-buffer buffer nil norecord))
buffer))
(defun clone-indirect-buffer-other-window (newname display-flag &optional norecord)
"Like `clone-indirect-buffer' but display in another window."
(interactive
(progn
(if (get major-mode 'no-clone-indirect)
(error "Cannot indirectly clone a buffer in %s mode" mode-name))
(list (if current-prefix-arg
(read-buffer "Name of indirect buffer: " (current-buffer)))
t)))
(let ((pop-up-windows t))
(clone-indirect-buffer newname display-flag norecord)))
;;; Handling of Backspace and Delete keys.
(defcustom normal-erase-is-backspace 'maybe
"Set the default behavior of the Delete and Backspace keys.
If set to t, Delete key deletes forward and Backspace key deletes
backward.
If set to nil, both Delete and Backspace keys delete backward.
If set to `maybe' (which is the default), Emacs automatically
selects a behavior. On window systems, the behavior depends on
the keyboard used. If the keyboard has both a Backspace key and
a Delete key, and both are mapped to their usual meanings, the
option's default value is set to t, so that Backspace can be used
to delete backward, and Delete can be used to delete forward.
If not running under a window system, customizing this option
accomplishes a similar effect by mapping C-h, which is usually
generated by the Backspace key, to DEL, and by mapping DEL to C-d
via `keyboard-translate'. The former functionality of C-h is
available on the F1 key. You should probably not use this
setting if you don't have both Backspace, Delete and F1 keys.
Setting this variable with setq doesn't take effect. Programmatically,
call `normal-erase-is-backspace-mode' (which see) instead."
:type '(choice (const :tag "Off" nil)
(const :tag "Maybe" maybe)
(other :tag "On" t))
:group 'editing-basics
:version "21.1"
:set (lambda (symbol value)
;; The fboundp is because of a problem with :set when
;; dumping Emacs. It doesn't really matter.
(if (fboundp 'normal-erase-is-backspace-mode)
(normal-erase-is-backspace-mode (or value 0))
(set-default symbol value))))
(defun normal-erase-is-backspace-setup-frame (&optional frame)
"Set up `normal-erase-is-backspace-mode' on FRAME, if necessary."
(unless frame (setq frame (selected-frame)))
(with-selected-frame frame
(unless (terminal-parameter nil 'normal-erase-is-backspace)
(normal-erase-is-backspace-mode
(if (if (eq normal-erase-is-backspace 'maybe)
(and (not noninteractive)
(or (memq system-type '(ms-dos windows-nt))
(memq window-system '(w32 ns))
(and (eq window-system 'x)
(fboundp 'x-backspace-delete-keys-p)
(x-backspace-delete-keys-p))
;; If the terminal Emacs is running on has erase char
;; set to ^H, use the Backspace key for deleting
;; backward, and the Delete key for deleting forward.
(and (null window-system)
(eq tty-erase-char ?\^H))))
normal-erase-is-backspace)
1 0)))))
(declare-function display-symbol-keys-p "frame" (&optional display))
(define-minor-mode normal-erase-is-backspace-mode
"Toggle the Erase and Delete mode of the Backspace and Delete keys.
On window systems, when this mode is on, Delete is mapped to C-d
and Backspace is mapped to DEL; when this mode is off, both
Delete and Backspace are mapped to DEL. (The remapping goes via
`local-function-key-map', so binding Delete or Backspace in the
global or local keymap will override that.)
In addition, on window systems, the bindings of C-Delete, M-Delete,
C-M-Delete, C-Backspace, M-Backspace, and C-M-Backspace are changed in
the global keymap in accordance with the functionality of Delete and
Backspace. For example, if Delete is remapped to C-d, which deletes
forward, C-Delete is bound to `kill-word', but if Delete is remapped
to DEL, which deletes backward, C-Delete is bound to
`backward-kill-word'.
If not running on a window system, a similar effect is accomplished by
remapping C-h (normally produced by the Backspace key) and DEL via
`keyboard-translate': if this mode is on, C-h is mapped to DEL and DEL
to C-d; if it's off, the keys are not remapped.
When not running on a window system, and this mode is turned on, the
former functionality of C-h is available on the F1 key. You should
probably not turn on this mode on a text-only terminal if you don't
have both Backspace, Delete and F1 keys.
See also `normal-erase-is-backspace'."
:variable ((eq (terminal-parameter nil 'normal-erase-is-backspace) 1)
. (lambda (v)
(setf (terminal-parameter nil 'normal-erase-is-backspace)
(if v 1 0))))
(let ((enabled (eq 1 (terminal-parameter
nil 'normal-erase-is-backspace))))
(cond ((display-symbol-keys-p)
(let ((bindings
'(([M-delete] [M-backspace])
([C-M-delete] [C-M-backspace])
([?\e C-delete] [?\e C-backspace]))))
(if enabled
(progn
(define-key local-function-key-map [delete] [deletechar])
(define-key local-function-key-map [kp-delete] [deletechar])
(define-key local-function-key-map [backspace] [?\C-?])
(dolist (b bindings)
;; Not sure if input-decode-map is really right, but
;; keyboard-translate-table (used below) works only
;; for integer events, and key-translation-table is
;; global (like the global-map, used earlier).
(define-key input-decode-map (car b) nil)
(define-key input-decode-map (cadr b) nil)))
(define-key local-function-key-map [delete] [?\C-?])
(define-key local-function-key-map [kp-delete] [?\C-?])
(define-key local-function-key-map [backspace] [?\C-?])
(dolist (b bindings)
(define-key input-decode-map (car b) (cadr b))
(define-key input-decode-map (cadr b) (car b))))))
(t
(if enabled
(progn
(keyboard-translate ?\C-h ?\C-?)
(keyboard-translate ?\C-? ?\C-d))
(keyboard-translate ?\C-h ?\C-h)
(keyboard-translate ?\C-? ?\C-?))))
(if (called-interactively-p 'interactive)
(message "Delete key deletes %s"
(if (eq 1 (terminal-parameter nil 'normal-erase-is-backspace))
"forward" "backward")))))
(defvar vis-mode-saved-buffer-invisibility-spec nil
"Saved value of `buffer-invisibility-spec' when Visible mode is on.")
(define-minor-mode read-only-mode
"Change whether the current buffer is read-only.
If buffer is read-only and `view-read-only' is non-nil, enter
view mode.
Do not call this from a Lisp program unless you really intend to
do the same thing as the \\[read-only-mode] command, including
possibly enabling or disabling View mode. Also, note that this
command works by setting the variable `buffer-read-only', which
does not affect read-only regions caused by text properties. To
ignore read-only status in a Lisp program (whether due to text
properties or buffer state), bind `inhibit-read-only' temporarily
to a non-nil value."
:variable buffer-read-only
(cond
((and (not buffer-read-only) view-mode)
(View-exit-and-edit)
(make-local-variable 'view-read-only)
(setq view-read-only t)) ; Must leave view mode.
((and buffer-read-only view-read-only
;; If view-mode is already active, `view-mode-enter' is a nop.
(not view-mode)
(not (eq (get major-mode 'mode-class) 'special)))
(view-mode-enter))))
(define-minor-mode visible-mode
"Toggle making all invisible text temporarily visible (Visible mode).
This mode works by saving the value of `buffer-invisibility-spec'
and setting it to nil."
:lighter " Vis"
:group 'editing-basics
(when (local-variable-p 'vis-mode-saved-buffer-invisibility-spec)
(setq buffer-invisibility-spec vis-mode-saved-buffer-invisibility-spec)
(kill-local-variable 'vis-mode-saved-buffer-invisibility-spec))
(when visible-mode
(set (make-local-variable 'vis-mode-saved-buffer-invisibility-spec)
buffer-invisibility-spec)
(setq buffer-invisibility-spec nil)))
(defvar messages-buffer-mode-map
(let ((map (make-sparse-keymap)))
(set-keymap-parent map special-mode-map)
(define-key map "g" nil) ; nothing to revert
map))
(define-derived-mode messages-buffer-mode special-mode "Messages"
"Major mode used in the \"*Messages*\" buffer.")
(defun messages-buffer ()
"Return the \"*Messages*\" buffer.
If it does not exist, create it and switch it to `messages-buffer-mode'."
(or (get-buffer "*Messages*")
(with-current-buffer (get-buffer-create "*Messages*")
(messages-buffer-mode)
(current-buffer))))
;; Minibuffer prompt stuff.
;;(defun minibuffer-prompt-modification (start end)
;; (error "You cannot modify the prompt"))
;;
;;
;;(defun minibuffer-prompt-insertion (start end)
;; (let ((inhibit-modification-hooks t))
;; (delete-region start end)
;; ;; Discard undo information for the text insertion itself
;; ;; and for the text deletion.above.
;; (when (consp buffer-undo-list)
;; (setq buffer-undo-list (cddr buffer-undo-list)))
;; (message "You cannot modify the prompt")))
;;
;;
;;(setq minibuffer-prompt-properties
;; (list 'modification-hooks '(minibuffer-prompt-modification)
;; 'insert-in-front-hooks '(minibuffer-prompt-insertion)))
;;;; Problematic external packages.
;; rms says this should be done by specifying symbols that define
;; versions together with bad values. This is therefore not as
;; flexible as it could be. See the thread:
;; https://lists.gnu.org/r/emacs-devel/2007-08/msg00300.html
(defconst bad-packages-alist
;; Not sure exactly which semantic versions have problems.
;; Definitely 2.0pre3, probably all 2.0pre's before this.
'((semantic semantic-version "\\`2\\.0pre[1-3]\\'"
"The version of `semantic' loaded does not work in Emacs 22.
It can cause constant high CPU load.
Upgrade to at least Semantic 2.0pre4 (distributed with CEDET 1.0pre4).")
;; CUA-mode does not work with GNU Emacs version 22.1 and newer.
;; Except for version 1.2, all of the 1.x and 2.x version of cua-mode
;; provided the `CUA-mode' feature. Since this is no longer true,
;; we can warn the user if the `CUA-mode' feature is ever provided.
(CUA-mode t nil
"CUA-mode is now part of the standard GNU Emacs distribution,
so you can now enable CUA via the Options menu or by customizing `cua-mode'.
You have loaded an older version of CUA-mode which does not work
correctly with this version of Emacs. You should remove the old
version and use the one distributed with Emacs."))
"Alist of packages known to cause problems in this version of Emacs.
Each element has the form (PACKAGE SYMBOL REGEXP STRING).
PACKAGE is either a regular expression to match file names, or a
symbol (a feature name), like for `with-eval-after-load'.
SYMBOL is either the name of a string variable, or t. Upon
loading PACKAGE, if SYMBOL is t or matches REGEXP, display a
warning using STRING as the message.")
(defun bad-package-check (package)
"Run a check using the element from `bad-packages-alist' matching PACKAGE."
(condition-case nil
(let* ((list (assoc package bad-packages-alist))
(symbol (nth 1 list)))
(and list
(boundp symbol)
(or (eq symbol t)
(and (stringp (setq symbol (eval symbol)))
(string-match-p (nth 2 list) symbol)))
(display-warning package (nth 3 list) :warning)))
(error nil)))
(dolist (elem bad-packages-alist)
(let ((pkg (car elem)))
(with-eval-after-load pkg
(bad-package-check pkg))))
;;; Generic dispatcher commands
;; Macro `define-alternatives' is used to create generic commands.
;; Generic commands are these (like web, mail, news, encrypt, irc, etc.)
;; that can have different alternative implementations where choosing
;; among them is exclusively a matter of user preference.
;; (define-alternatives COMMAND) creates a new interactive command
;; M-x COMMAND and a customizable variable COMMAND-alternatives.
;; Typically, the user will not need to customize this variable; packages
;; wanting to add alternative implementations should use
;;
;; ;;;###autoload (push '("My impl name" . my-impl-symbol) COMMAND-alternatives
(defmacro define-alternatives (command &rest customizations)
"Define the new command `COMMAND'.
The argument `COMMAND' should be a symbol.
Running `M-x COMMAND RET' for the first time prompts for which
alternative to use and records the selected command as a custom
variable.
Running `C-u M-x COMMAND RET' prompts again for an alternative
and overwrites the previous choice.
The variable `COMMAND-alternatives' contains an alist with
alternative implementations of COMMAND. `define-alternatives'
does not have any effect until this variable is set.
CUSTOMIZATIONS, if non-nil, should be composed of alternating
`defcustom' keywords and values to add to the declaration of
`COMMAND-alternatives' (typically :group and :version)."
(let* ((command-name (symbol-name command))
(varalt-name (concat command-name "-alternatives"))
(varalt-sym (intern varalt-name))
(varimp-sym (intern (concat command-name "--implementation"))))
`(progn
(defcustom ,varalt-sym nil
,(format "Alist of alternative implementations for the `%s' command.
Each entry must be a pair (ALTNAME . ALTFUN), where:
ALTNAME - The name shown at user to describe the alternative implementation.
ALTFUN - The function called to implement this alternative."
command-name)
:type '(alist :key-type string :value-type function)
,@customizations)
(put ',varalt-sym 'definition-name ',command)
(defvar ,varimp-sym nil "Internal use only.")
(defun ,command (&optional arg)
,(format "Run generic command `%s'.
If used for the first time, or with interactive ARG, ask the user which
implementation to use for `%s'. The variable `%s'
contains the list of implementations currently supported for this command."
command-name command-name varalt-name)
(interactive "P")
(when (or arg (null ,varimp-sym))
(let ((val (completing-read
,(format-message
"Select implementation for command `%s': "
command-name)
,varalt-sym nil t)))
(unless (string-equal val "")
(when (null ,varimp-sym)
(message
"Use `C-u M-x %s RET' to select another implementation"
,command-name)
(sit-for 3))
(customize-save-variable ',varimp-sym
(cdr (assoc-string val ,varalt-sym))))))
(if ,varimp-sym
(call-interactively ,varimp-sym)
(message "%s" ,(format-message
"No implementation selected for command `%s'"
command-name)))))))
;;; Functions for changing capitalization that Do What I Mean
(defun upcase-dwim (arg)
"Upcase words in the region, if active; if not, upcase word at point.
If the region is active, this function calls `upcase-region'.
Otherwise, it calls `upcase-word', with prefix argument passed to it
to upcase ARG words."
(interactive "*p")
(if (use-region-p)
(upcase-region (region-beginning) (region-end) (region-noncontiguous-p))
(upcase-word arg)))
(defun downcase-dwim (arg)
"Downcase words in the region, if active; if not, downcase word at point.
If the region is active, this function calls `downcase-region'.
Otherwise, it calls `downcase-word', with prefix argument passed to it
to downcase ARG words."
(interactive "*p")
(if (use-region-p)
(downcase-region (region-beginning) (region-end) (region-noncontiguous-p))
(downcase-word arg)))
(defun capitalize-dwim (arg)
"Capitalize words in the region, if active; if not, capitalize word at point.
If the region is active, this function calls `capitalize-region'.
Otherwise, it calls `capitalize-word', with prefix argument passed to it
to capitalize ARG words."
(interactive "*p")
(if (use-region-p)
(capitalize-region (region-beginning) (region-end) (region-noncontiguous-p))
(capitalize-word arg)))
;;; Accessors for `decode-time' values.
(cl-defstruct (decoded-time
(:constructor nil)
(:copier nil)
(:type list))
(second nil :documentation "\
This is an integer or a Lisp timestamp (TICKS . HZ) representing a nonnegative
number of seconds less than 61. (If not less than 60, it is a leap second,
which only some operating systems support.)")
(minute nil :documentation "This is an integer between 0 and 59 (inclusive).")
(hour nil :documentation "This is an integer between 0 and 23 (inclusive).")
(day nil :documentation "This is an integer between 1 and 31 (inclusive).")
(month nil :documentation "\
This is an integer between 1 and 12 (inclusive). January is 1.")
(year nil :documentation "This is a four digit integer.")
(weekday nil :documentation "\
This is a number between 0 and 6, and 0 is Sunday.")
(dst nil :documentation "\
This is t if daylight saving time is in effect, nil if it is not
in effect, and -1 if daylight saving information is not
available.")
(zone nil :documentation "\
This is an integer indicating the UTC offset in seconds, i.e.,
the number of seconds east of Greenwich.")
)
(provide 'simple)
;;; simple.el ends here
|