1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
|
;;; calc-poly.el --- polynomial functions for Calc -*- lexical-binding:t -*-
;; Copyright (C) 1990-1993, 2001-2025 Free Software Foundation, Inc.
;; Author: David Gillespie <daveg@synaptics.com>
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;;; Code:
;; This file is autoloaded from calc-ext.el.
(require 'calc-ext)
(require 'calc-macs)
(defun calcFunc-pcont (expr &optional var)
(cond ((Math-primp expr)
(cond ((Math-zerop expr) 1)
((Math-messy-integerp expr) (math-trunc expr))
((Math-objectp expr) expr)
((or (equal expr var) (not var)) 1)
(t expr)))
((eq (car expr) '*)
(math-mul (calcFunc-pcont (nth 1 expr) var)
(calcFunc-pcont (nth 2 expr) var)))
((eq (car expr) '/)
(math-div (calcFunc-pcont (nth 1 expr) var)
(calcFunc-pcont (nth 2 expr) var)))
((and (eq (car expr) '^) (Math-natnump (nth 2 expr)))
(math-pow (calcFunc-pcont (nth 1 expr) var) (nth 2 expr)))
((memq (car expr) '(neg polar))
(calcFunc-pcont (nth 1 expr) var))
((consp var)
(let ((p (math-is-polynomial expr var)))
(if p
(let ((lead (nth (1- (length p)) p))
(cont (math-poly-gcd-list p)))
(if (math-guess-if-neg lead)
(math-neg cont)
cont))
1)))
((memq (car expr) '(+ - cplx sdev))
(let ((cont (calcFunc-pcont (nth 1 expr) var)))
(if (eq cont 1)
1
(let ((c2 (calcFunc-pcont (nth 2 expr) var)))
(if (and (math-negp cont)
(if (eq (car expr) '-) (math-posp c2) (math-negp c2)))
(math-neg (math-poly-gcd cont c2))
(math-poly-gcd cont c2))))))
(var expr)
(t 1)))
(defun calcFunc-pprim (expr &optional var)
(let ((cont (calcFunc-pcont expr var)))
(if (math-equal-int cont 1)
expr
(math-poly-div-exact expr cont var))))
(defun math-div-poly-const (expr c)
(cond ((memq (car-safe expr) '(+ -))
(list (car expr)
(math-div-poly-const (nth 1 expr) c)
(math-div-poly-const (nth 2 expr) c)))
(t (math-div expr c))))
(defun calcFunc-pdeg (expr &optional var)
(if (Math-zerop expr)
'(neg (var inf var-inf))
(if var
(or (math-polynomial-p expr var)
(math-reject-arg expr "Expected a polynomial"))
(math-poly-degree expr))))
(defun math-poly-degree (expr)
(cond ((Math-primp expr)
(if (eq (car-safe expr) 'var) 1 0))
((eq (car expr) 'neg)
(math-poly-degree (nth 1 expr)))
((eq (car expr) '*)
(+ (math-poly-degree (nth 1 expr))
(math-poly-degree (nth 2 expr))))
((eq (car expr) '/)
(- (math-poly-degree (nth 1 expr))
(math-poly-degree (nth 2 expr))))
((and (eq (car expr) '^) (natnump (nth 2 expr)))
(* (math-poly-degree (nth 1 expr)) (nth 2 expr)))
((memq (car expr) '(+ -))
(max (math-poly-degree (nth 1 expr))
(math-poly-degree (nth 2 expr))))
(t 1)))
(defun calcFunc-plead (expr var)
(cond ((eq (car-safe expr) '*)
(math-mul (calcFunc-plead (nth 1 expr) var)
(calcFunc-plead (nth 2 expr) var)))
((eq (car-safe expr) '/)
(math-div (calcFunc-plead (nth 1 expr) var)
(calcFunc-plead (nth 2 expr) var)))
((and (eq (car-safe expr) '^) (math-natnump (nth 2 expr)))
(math-pow (calcFunc-plead (nth 1 expr) var) (nth 2 expr)))
((Math-primp expr)
(if (equal expr var)
1
expr))
(t
(let ((p (math-is-polynomial expr var)))
(if (cdr p)
(nth (1- (length p)) p)
1)))))
;;; Polynomial quotient, remainder, and GCD.
;;; Originally by Ove Ewerlid (ewerlid@mizar.DoCS.UU.SE).
;;; Modifications and simplifications by daveg.
(defvar math-poly-modulus 1)
;;; Return gcd of two polynomials
(defun calcFunc-pgcd (pn pd)
(if (math-any-floats pn)
(math-reject-arg pn "Coefficients must be rational"))
(if (math-any-floats pd)
(math-reject-arg pd "Coefficients must be rational"))
(let ((calc-prefer-frac t)
(math-poly-modulus (math-poly-modulus pn pd)))
(math-poly-gcd pn pd)))
;;; Return only quotient to top of stack (nil if zero)
;; calc-poly-div-remainder is a local variable for
;; calc-poly-div (in calc-alg.el), but is used by
;; calcFunc-pdiv, which is called by calc-poly-div.
(defvar calc-poly-div-remainder)
(defun calcFunc-pdiv (pn pd &optional base)
(let* ((calc-prefer-frac t)
(math-poly-modulus (math-poly-modulus pn pd))
(res (math-poly-div pn pd base)))
(setq calc-poly-div-remainder (cdr res))
(car res)))
;;; Return only remainder to top of stack
(defun calcFunc-prem (pn pd &optional base)
(let ((calc-prefer-frac t)
(math-poly-modulus (math-poly-modulus pn pd)))
(cdr (math-poly-div pn pd base))))
(defun calcFunc-pdivrem (pn pd &optional base)
(let* ((calc-prefer-frac t)
(math-poly-modulus (math-poly-modulus pn pd))
(res (math-poly-div pn pd base)))
(list 'vec (car res) (cdr res))))
(defun calcFunc-pdivide (pn pd &optional base)
(let* ((calc-prefer-frac t)
(math-poly-modulus (math-poly-modulus pn pd))
(res (math-poly-div pn pd base)))
(math-add (car res) (math-div (cdr res) pd))))
(defun math-mul-thru (lhs rhs)
"Multiply two terms, expanding out products of sums."
(if (memq (car-safe lhs) '(+ -))
(list (car lhs)
(math-mul-thru (nth 1 lhs) rhs)
(math-mul-thru (nth 2 lhs) rhs))
(if (memq (car-safe rhs) '(+ -))
(list (car rhs)
(math-mul-thru lhs (nth 1 rhs))
(math-mul-thru lhs (nth 2 rhs)))
(math-mul lhs rhs))))
(defun math-div-thru (num den)
(if (memq (car-safe num) '(+ -))
(list (car num)
(math-div-thru (nth 1 num) den)
(math-div-thru (nth 2 num) den))
(math-div num den)))
(defun math-sort-terms (expr)
"Sort the terms of a sum into canonical order."
(if (memq (car-safe expr) '(+ -))
(math-list-to-sum
(sort (math-sum-to-list expr)
(lambda (a b) (math-beforep (car a) (car b)))))
expr))
(defun math-list-to-sum (lst)
(if (cdr lst)
(list (if (cdr (car lst)) '- '+)
(math-list-to-sum (cdr lst))
(car (car lst)))
(if (cdr (car lst))
(math-neg (car (car lst)))
(car (car lst)))))
(defun math-sum-to-list (tree &optional neg)
(cond ((eq (car-safe tree) '+)
(nconc (math-sum-to-list (nth 1 tree) neg)
(math-sum-to-list (nth 2 tree) neg)))
((eq (car-safe tree) '-)
(nconc (math-sum-to-list (nth 1 tree) neg)
(math-sum-to-list (nth 2 tree) (not neg))))
(t (list (cons tree neg)))))
(defun math-poly-modulus (expr &optional expr2)
"Check if the polynomial coefficients are modulo forms."
(or (math-poly-modulus-rec expr)
(and expr2 (math-poly-modulus-rec expr2))
1))
(defun math-poly-modulus-rec (expr)
(if (and (eq (car-safe expr) 'mod) (Math-natnump (nth 2 expr)))
(list 'mod 1 (nth 2 expr))
(and (memq (car-safe expr) '(+ - * /))
(or (math-poly-modulus-rec (nth 1 expr))
(math-poly-modulus-rec (nth 2 expr))))))
(defvar math-poly-div-base nil)
(defun math-poly-div (u v &optional div-base)
"Divide two polynomials. Return (quotient . remainder)."
(let ((math-poly-div-base div-base))
(if div-base
(math-do-poly-div u v)
(math-do-poly-div (calcFunc-expand u) (calcFunc-expand v)))))
(defun math-poly-div-exact (u v &optional base)
(let ((res (math-poly-div u v base)))
(if (eq (cdr res) 0)
(car res)
(math-reject-arg (list 'vec u v) "Argument is not a polynomial"))))
(defun math-do-poly-div (u v)
(cond ((math-constp u)
(if (math-constp v)
(cons (math-div u v) 0)
(cons 0 u)))
((math-constp v)
(cons (if (eq v 1)
u
(if (memq (car-safe u) '(+ -))
(math-add-or-sub (math-poly-div-exact (nth 1 u) v)
(math-poly-div-exact (nth 2 u) v)
nil (eq (car u) '-))
(math-div u v)))
0))
((Math-equal u v)
(cons math-poly-modulus 0))
((and (math-atomic-factorp u) (math-atomic-factorp v))
(cons (math-simplify (math-div u v)) 0))
(t
(let ((base (or math-poly-div-base
(math-poly-div-base u v)))
vp up res)
(if (or (null base)
(null (setq vp (math-is-polynomial v base nil 'gen))))
(cons 0 u)
(setq up (math-is-polynomial u base nil 'gen)
res (math-poly-div-coefs up vp))
(cons (math-build-polynomial-expr (car res) base)
(math-build-polynomial-expr (cdr res) base)))))))
(defun math-poly-div-rec (u v)
(cond ((math-constp u)
(math-div u v))
((math-constp v)
(if (eq v 1)
u
(if (memq (car-safe u) '(+ -))
(math-add-or-sub (math-poly-div-rec (nth 1 u) v)
(math-poly-div-rec (nth 2 u) v)
nil (eq (car u) '-))
(math-div u v))))
((Math-equal u v) math-poly-modulus)
((and (math-atomic-factorp u) (math-atomic-factorp v))
(math-simplify (math-div u v)))
(math-poly-div-base
(math-div u v))
(t
(let ((base (math-poly-div-base u v))
vp up res)
(if (or (null base)
(null (setq vp (math-is-polynomial v base nil 'gen))))
(math-div u v)
(setq up (math-is-polynomial u base nil 'gen)
res (math-poly-div-coefs up vp))
(math-add (math-build-polynomial-expr (car res) base)
(math-div (math-build-polynomial-expr (cdr res) base)
v)))))))
(defun math-poly-div-coefs (u v)
"Divide two polynomials in coefficient-list form. Return (quot . rem)."
(cond ((null v) (math-reject-arg nil "Division by zero"))
((< (length u) (length v)) (cons nil u))
((cdr u)
(let ((q nil)
(urev (reverse u))
(vrev (reverse v)))
(while
(let ((qk (math-poly-div-rec (math-simplify (car urev))
(car vrev)))
(up urev)
(vp vrev))
(if (or q (not (math-zerop qk)))
(setq q (cons qk q)))
(while (setq up (cdr up) vp (cdr vp))
(setcar up (math-sub (car up) (math-mul-thru qk (car vp)))))
(setq urev (cdr urev))
up))
(while (and urev (Math-zerop (car urev)))
(setq urev (cdr urev)))
(cons q (nreverse (mapcar 'math-simplify urev)))))
(t
(cons (list (math-poly-div-rec (car u) (car v)))
nil))))
(defun math-poly-pseudo-div (u v)
"Perform a pseudo-division of polynomials. (See Knuth section 4.6.1.)
This returns only the remainder from the pseudo-division."
(cond ((null v) nil)
((< (length u) (length v)) u)
((or (cdr u) (cdr v))
(let ((urev (reverse u))
(vrev (reverse v))
up)
(while
(let ((vp vrev))
(setq up urev)
(while (setq up (cdr up) vp (cdr vp))
(setcar up (math-sub (math-mul-thru (car vrev) (car up))
(math-mul-thru (car urev) (car vp)))))
(setq urev (cdr urev))
up)
(while up
(setcar up (math-mul-thru (car vrev) (car up)))
(setq up (cdr up))))
(while (and urev (Math-zerop (car urev)))
(setq urev (cdr urev)))
(nreverse (mapcar 'math-simplify urev))))
(t nil)))
(defun math-poly-gcd (u v)
"Compute the GCD of two multivariate polynomials."
(cond ((Math-equal u v) u)
((math-constp u)
(if (Math-zerop u)
v
(calcFunc-gcd u (calcFunc-pcont v))))
((math-constp v)
(if (Math-zerop v)
v
(calcFunc-gcd v (calcFunc-pcont u))))
(t
(let ((base (math-poly-gcd-base u v)))
(if base
(math-simplify
(calcFunc-expand
(math-build-polynomial-expr
(math-poly-gcd-coefs (math-is-polynomial u base nil 'gen)
(math-is-polynomial v base nil 'gen))
base)))
(calcFunc-gcd (calcFunc-pcont u) (calcFunc-pcont u)))))))
(defun math-poly-div-list (lst a)
(if (eq a 1)
lst
(if (eq a -1)
(math-mul-list lst a)
(mapcar (lambda (x) (math-poly-div-exact x a)) lst))))
(defun math-mul-list (lst a)
(if (eq a 1)
lst
(if (eq a -1)
(mapcar 'math-neg lst)
(and (not (eq a 0))
(mapcar (lambda (x) (math-mul x a)) lst)))))
;;; Run GCD on all elements in a list.
(defun math-poly-gcd-list (lst)
(if (or (memq 1 lst) (memq -1 lst))
(math-poly-gcd-frac-list lst)
(let ((gcd (car lst)))
(while (and (setq lst (cdr lst)) (not (eq gcd 1)))
(or (eq (car lst) 0)
(setq gcd (math-poly-gcd gcd (car lst)))))
(if lst (setq lst (math-poly-gcd-frac-list lst)))
gcd)))
(defun math-poly-gcd-frac-list (lst)
(while (and lst (not (eq (car-safe (car lst)) 'frac)))
(setq lst (cdr lst)))
(if lst
(let ((denom (nth 2 (car lst))))
(while (setq lst (cdr lst))
(if (eq (car-safe (car lst)) 'frac)
(setq denom (calcFunc-lcm denom (nth 2 (car lst))))))
(list 'frac 1 denom))
1))
;;; Compute the GCD of two univariate polynomial lists.
;;; Knuth section 4.6.1, algorithm C.
(defun math-poly-gcd-coefs (u v)
(let ((d (math-poly-gcd (math-poly-gcd-list u)
(math-poly-gcd-list v)))
(g 1) (h 1) (z 0) r delta)
(while (and u v (Math-zerop (car u)) (Math-zerop (car v)))
(setq u (cdr u) v (cdr v) z (1+ z)))
(or (eq d 1)
(setq u (math-poly-div-list u d)
v (math-poly-div-list v d)))
(while (progn
(setq delta (- (length u) (length v)))
(if (< delta 0)
(setq r u u v v r delta (- delta)))
(setq r (math-poly-pseudo-div u v))
(cdr r))
(setq u v
v (math-poly-div-list r (math-mul g (math-pow h delta)))
g (nth (1- (length u)) u)
h (if (<= delta 1)
(math-mul (math-pow g delta) (math-pow h (- 1 delta)))
(math-poly-div-exact (math-pow g delta)
(math-pow h (1- delta))))))
(setq v (if r
(list d)
(math-mul-list (math-poly-div-list v (math-poly-gcd-list v)) d)))
(if (math-guess-if-neg (nth (1- (length v)) v))
(setq v (math-mul-list v -1)))
(while (>= (setq z (1- z)) 0)
(setq v (cons 0 v)))
v))
(defun math-atomic-factorp (expr)
"Return non-nil if is a factor containing no sums or quotients."
(cond ((eq (car-safe expr) '*)
(and (math-atomic-factorp (nth 1 expr))
(math-atomic-factorp (nth 2 expr))))
((memq (car-safe expr) '(+ - /))
nil)
((memq (car-safe expr) '(^ neg))
(math-atomic-factorp (nth 1 expr)))
(t t)))
(defun math-poly-div-base (a b)
"Find a suitable base for dividing a by b.
The base must exist in both expressions.
The degree in the numerator must be higher or equal than the
degree in the denominator.
If the above conditions are not met the quotient is just a remainder.
Return nil if this is the case."
(let (a-base b-base)
(and (setq a-base (math-total-polynomial-base a))
(setq b-base (math-total-polynomial-base b))
(catch 'return
(while a-base
(let ((maybe (assoc (car (car a-base)) b-base)))
(if maybe
(if (>= (nth 1 (car a-base)) (nth 1 maybe))
(throw 'return (car (car a-base))))))
(setq a-base (cdr a-base)))))))
(defun math-poly-gcd-base (a b)
"Same as `math-poly-div-base' but for gcd algorithm.
Here there is no requirement that degree(a) > degree(b).
Take the base that has the highest degree considering both a and b.
(\"a^20+b^21+x^3+a+b\", \"a+b^2+x^5+a^22+b^10\") --> (a 22)"
(let (a-base b-base)
(and (setq a-base (math-total-polynomial-base a))
(setq b-base (math-total-polynomial-base b))
(catch 'return
(while (and a-base b-base)
(if (> (nth 1 (car a-base)) (nth 1 (car b-base)))
(if (assoc (car (car a-base)) b-base)
(throw 'return (car (car a-base)))
(setq a-base (cdr a-base)))
(if (assoc (car (car b-base)) a-base)
(throw 'return (car (car b-base)))
(setq b-base (cdr b-base)))))))))
(defun math-sort-poly-base-list (lst)
"Sort a list of polynomial bases."
(sort lst (lambda (a b)
(or (> (nth 1 a) (nth 1 b))
(and (= (nth 1 a) (nth 1 b))
(math-beforep (car a) (car b)))))))
;;; Given an expression find all variables that are polynomial bases.
;;; Return list in the form '( (var1 degree1) (var2 degree2) ... ).
;; The variable math-poly-base-total-base and math-poly-base-top-expr are local
;; to math-total-polynomial-base, but used by math-polynomial-p1, which is
;; called by math-total-polynomial-base.
(defvar math-poly-base-total-base)
(defvar math-poly-base-top-expr)
(defun math-total-polynomial-base (expr)
(let ((math-poly-base-total-base nil)
(math-poly-base-top-expr expr))
(math-polynomial-base expr #'math-polynomial-p1)
(math-sort-poly-base-list math-poly-base-total-base)))
(defun math-polynomial-p1 (subexpr)
(or (assoc subexpr math-poly-base-total-base)
(memq (car subexpr) '(+ - * / neg))
(and (eq (car subexpr) '^) (natnump (nth 2 subexpr)))
(let* ((math-poly-base-variable subexpr)
(exponent (math-polynomial-p math-poly-base-top-expr subexpr)))
(if exponent
(setq math-poly-base-total-base (cons (list subexpr exponent)
math-poly-base-total-base)))))
nil)
;; The variable math-factored-vars is local to calcFunc-factors and
;; calcFunc-factor, but is used by math-factor-expr and
;; math-factor-expr-part, which are called (directly and indirectly) by
;; calcFunc-factor and calcFunc-factors.
(defvar math-factored-vars)
;; The variable math-fact-expr is local to calcFunc-factors,
;; calcFunc-factor and math-factor-expr, but is used by math-factor-expr-try
;; and math-factor-expr-part, which are called (directly and indirectly) by
;; calcFunc-factor, calcFunc-factors and math-factor-expr.
(defvar math-fact-expr)
;; The variable math-to-list is local to calcFunc-factors and
;; calcFunc-factor, but is used by math-accum-factors, which is
;; called (indirectly) by calcFunc-factors and calcFunc-factor.
(defvar math-to-list)
(defun calcFunc-factors (expr &optional var)
(let ((math-factored-vars (if var t nil))
(math-to-list t)
(calc-prefer-frac t))
(or var
(setq var (math-polynomial-base expr)))
(let ((res (math-factor-finish
(or (catch 'factor
(let ((math-fact-expr expr)) (math-factor-expr-try var)))
expr))))
(math-simplify (if (math-vectorp res)
res
(list 'vec (list 'vec res 1)))))))
(defun calcFunc-factor (expr &optional var)
(let ((math-factored-vars nil)
(math-to-list nil)
(calc-prefer-frac t))
(math-simplify (math-factor-finish
(if var
(let ((math-factored-vars t)
(math-fact-expr expr))
(or (catch 'factor (math-factor-expr-try var)) expr))
(math-factor-expr expr))))))
(defun math-factor-finish (x)
(if (Math-primp x)
x
(if (eq (car x) 'calcFunc-Fac-Prot)
(math-factor-finish (nth 1 x))
(cons (car x) (mapcar 'math-factor-finish (cdr x))))))
(defun math-factor-protect (x)
(if (memq (car-safe x) '(+ -))
(list 'calcFunc-Fac-Prot x)
x))
(defun math-factor-expr (expr)
(cond ((eq math-factored-vars t) expr)
((or (memq (car-safe expr) '(* / ^ neg))
(assq (car-safe expr) calc-tweak-eqn-table))
(cons (car expr) (mapcar 'math-factor-expr (cdr expr))))
((memq (car-safe expr) '(+ -))
(let* ((math-factored-vars math-factored-vars)
(y (catch 'factor (let ((math-fact-expr expr))
(math-factor-expr-part expr)))))
(if y
(math-factor-expr y)
expr)))
(t expr)))
(defun math-factor-expr-part (x) ; uses "expr"
(if (memq (car-safe x) '(+ - * / ^ neg))
(while (setq x (cdr x))
(math-factor-expr-part (car x)))
(and (not (Math-objvecp x))
(not (assoc x math-factored-vars))
(> (math-factor-contains math-fact-expr x) 1)
(setq math-factored-vars (cons (list x) math-factored-vars))
(math-factor-expr-try x))))
;; The variable math-fet-x is local to math-factor-expr-try, but is
;; used by math-factor-poly-coefs, which is called by math-factor-expr-try.
(defvar math-fet-x)
(defun math-factor-expr-try (x)
(if (eq (car-safe math-fact-expr) '*)
(let ((res1 (catch 'factor (let ((math-fact-expr (nth 1 math-fact-expr)))
(math-factor-expr-try x))))
(res2 (catch 'factor (let ((math-fact-expr (nth 2 math-fact-expr)))
(math-factor-expr-try x)))))
(and (or res1 res2)
(throw 'factor (math-accum-factors (or res1 (nth 1 math-fact-expr)) 1
(or res2 (nth 2 math-fact-expr))))))
(let* ((p (math-is-polynomial math-fact-expr x 30 'gen))
(math-poly-modulus (math-poly-modulus math-fact-expr))
res)
(and (cdr p)
(setq res (let ((math-fet-x x)) (math-factor-poly-coefs p)))
(throw 'factor res)))))
(defun math-accum-factors (fac pow facs)
(if math-to-list
(if (math-vectorp fac)
(progn
(while (setq fac (cdr fac))
(setq facs (math-accum-factors (nth 1 (car fac))
(* pow (nth 2 (car fac)))
facs)))
facs)
(if (and (eq (car-safe fac) '^) (natnump (nth 2 fac)))
(setq pow (* pow (nth 2 fac))
fac (nth 1 fac)))
(if (eq fac 1)
facs
(or (math-vectorp facs)
(setq facs (if (eq facs 1) '(vec)
(list 'vec (list 'vec facs 1)))))
(let ((found facs))
(while (and (setq found (cdr found))
(not (equal fac (nth 1 (car found))))))
(if found
(progn
(setcar (cdr (cdr (car found))) (+ pow (nth 2 (car found))))
facs)
;; Put constant term first.
(if (and (cdr facs) (Math-ratp (nth 1 (nth 1 facs))))
(cons 'vec (cons (nth 1 facs) (cons (list 'vec fac pow)
(cdr (cdr facs)))))
(cons 'vec (cons (list 'vec fac pow) (cdr facs))))))))
(math-mul (math-pow fac pow) (math-factor-protect facs))))
(defun math-factor-poly-coefs (p &optional square-free) ; uses "x"
(let (t1 t2 temp)
(cond ((not (cdr p))
(or (car p) 0))
;; Strip off multiples of math-fet-x.
((Math-zerop (car p))
(let ((z 0))
(while (and p (Math-zerop (car p)))
(setq z (1+ z) p (cdr p)))
(if (cdr p)
(setq p (math-factor-poly-coefs p square-free))
(setq p (math-sort-terms (math-factor-expr (car p)))))
(math-accum-factors math-fet-x z (math-factor-protect p))))
;; Factor out content.
((and (not square-free)
(not (eq 1 (setq t1 (math-mul (math-poly-gcd-list p)
(if (math-guess-if-neg
(nth (1- (length p)) p))
-1 1))))))
(math-accum-factors t1 1 (math-factor-poly-coefs
(math-poly-div-list p t1) 'cont)))
;; Check if linear in math-fet-x.
((not (cdr (cdr p)))
(math-sort-terms
(math-add (math-factor-protect
(math-sort-terms
(math-factor-expr (car p))))
(math-mul math-fet-x (math-factor-protect
(math-sort-terms
(math-factor-expr (nth 1 p))))))))
;; If symbolic coefficients, use FactorRules.
((let ((pp p))
(while (and pp (or (Math-ratp (car pp))
(and (eq (car (car pp)) 'mod)
(Math-integerp (nth 1 (car pp)))
(Math-integerp (nth 2 (car pp))))))
(setq pp (cdr pp)))
pp)
(let ((res (math-rewrite
(list 'calcFunc-thecoefs math-fet-x (cons 'vec p))
'(var FactorRules var-FactorRules))))
(or (and (eq (car-safe res) 'calcFunc-thefactors)
(= (length res) 3)
(math-vectorp (nth 2 res))
(let ((facs 1)
(vec (nth 2 res)))
(while (setq vec (cdr vec))
(setq facs (math-accum-factors (car vec) 1 facs)))
facs))
(math-build-polynomial-expr p math-fet-x))))
;; Check if rational coefficients (i.e., not modulo a prime).
((eq math-poly-modulus 1)
;; Check if there are any squared terms, or a content not = 1.
(if (or (eq square-free t)
(equal (setq t1 (math-poly-gcd-coefs
p (setq t2 (math-poly-deriv-coefs p))))
'(1)))
;; We now have a square-free polynomial with integer coefs.
;; For now, we use a kludgy method that finds linear and
;; quadratic terms using floating-point root-finding.
(if (setq t1 (let ((calc-symbolic-mode nil))
(math-poly-all-roots nil p t)))
(let ((roots (car t1))
(csign (if (math-negp (nth (1- (length p)) p)) -1 1))
(expr 1)
(scale (nth 2 t1)))
(while roots
(let ((coef0 (car (car roots)))
(coef1 (cdr (car roots))))
(setq expr (math-accum-factors
(if coef1
(let ((den (math-lcm-denoms
coef0 coef1)))
(setq scale (math-div scale den))
(math-add
(math-add
(math-mul den (math-pow math-fet-x 2))
(math-mul (math-mul coef1 den)
math-fet-x))
(math-mul coef0 den)))
(let ((den (math-lcm-denoms coef0)))
(setq scale (math-div scale den))
(math-add (math-mul den math-fet-x)
(math-mul coef0 den))))
1 expr)
roots (cdr roots))))
(setq expr (math-accum-factors
expr 1
(math-mul csign
(math-build-polynomial-expr
(math-mul-list (nth 1 t1) scale)
math-fet-x)))))
(math-build-polynomial-expr p math-fet-x)) ; can't factor it.
;; Separate out the squared terms (Knuth exercise 4.6.2-34).
;; This step also divides out the content of the polynomial.
(let* ((cabs (math-poly-gcd-list p))
(csign (if (math-negp (nth (1- (length p)) p)) -1 1))
(t1s (math-mul-list t1 csign))
(uu nil)
(v (car (math-poly-div-coefs p t1s)))
(w (car (math-poly-div-coefs t2 t1s))))
(while
(not (math-poly-zerop
(setq t2 (math-poly-simplify
(math-poly-mix
w 1 (math-poly-deriv-coefs v) -1)))))
(setq t1 (math-poly-gcd-coefs v t2)
uu (cons t1 uu)
v (car (math-poly-div-coefs v t1))
w (car (math-poly-div-coefs t2 t1))))
(setq t1 (length uu)
t2 (math-accum-factors (math-factor-poly-coefs v t)
(1+ t1) 1))
(while uu
(setq t2 (math-accum-factors (math-factor-poly-coefs
(car uu) t)
t1 t2)
t1 (1- t1)
uu (cdr uu)))
(math-accum-factors (math-mul cabs csign) 1 t2))))
;; Factoring modulo a prime.
((and (= (length (setq temp (math-poly-gcd-coefs
p (math-poly-deriv-coefs p))))
(length p)))
(setq p (car temp))
(while (cdr temp)
(setq temp (nthcdr (nth 2 math-poly-modulus) temp)
p (cons (car temp) p)))
(and (setq temp (math-factor-poly-coefs p))
(math-pow temp (nth 2 math-poly-modulus))))
(t
(math-reject-arg nil "*Modulo factorization not yet implemented")))))
(defun math-poly-deriv-coefs (p)
(let ((n 1)
(dp nil))
(while (setq p (cdr p))
(setq dp (cons (math-mul (car p) n) dp)
n (1+ n)))
(nreverse dp)))
(defun math-factor-contains (x a)
(if (equal x a)
1
(if (memq (car-safe x) '(+ - * / neg))
(let ((sum 0))
(while (setq x (cdr x))
(setq sum (+ sum (math-factor-contains (car x) a))))
sum)
(if (and (eq (car-safe x) '^)
(natnump (nth 2 x)))
(* (math-factor-contains (nth 1 x) a) (nth 2 x))
0))))
;;; Merge all quotients and expand/simplify the numerator
(defun calcFunc-nrat (expr)
(if (math-any-floats expr)
(setq expr (calcFunc-pfrac expr)))
(if (or (math-vectorp expr)
(assq (car-safe expr) calc-tweak-eqn-table))
(cons (car expr) (mapcar 'calcFunc-nrat (cdr expr)))
(let* ((calc-prefer-frac t)
(res (math-to-ratpoly expr))
(num (math-simplify (math-sort-terms (calcFunc-expand (car res)))))
(den (math-simplify (math-sort-terms (calcFunc-expand (cdr res)))))
(g (math-poly-gcd num den)))
(or (eq g 1)
(let ((num2 (math-poly-div num g))
(den2 (math-poly-div den g)))
(and (eq (cdr num2) 0) (eq (cdr den2) 0)
(setq num (car num2) den (car den2)))))
(math-simplify (math-div num den)))))
;;; Returns expressions (num . denom).
(defun math-to-ratpoly (expr)
(let ((res (math-to-ratpoly-rec expr)))
(cons (math-simplify (car res)) (math-simplify (cdr res)))))
(defun math-to-ratpoly-rec (expr)
(cond ((Math-primp expr)
(cons expr 1))
((memq (car expr) '(+ -))
(let ((r1 (math-to-ratpoly-rec (nth 1 expr)))
(r2 (math-to-ratpoly-rec (nth 2 expr))))
(if (equal (cdr r1) (cdr r2))
(cons (list (car expr) (car r1) (car r2)) (cdr r1))
(if (eq (cdr r1) 1)
(cons (list (car expr)
(math-mul (car r1) (cdr r2))
(car r2))
(cdr r2))
(if (eq (cdr r2) 1)
(cons (list (car expr)
(car r1)
(math-mul (car r2) (cdr r1)))
(cdr r1))
(let ((g (math-poly-gcd (cdr r1) (cdr r2))))
(let ((d1 (and (not (eq g 1)) (math-poly-div (cdr r1) g)))
(d2 (and (not (eq g 1)) (math-poly-div
(math-mul (car r1) (cdr r2))
g))))
(if (and (eq (cdr d1) 0) (eq (cdr d2) 0))
(cons (list (car expr) (car d2)
(math-mul (car r2) (car d1)))
(math-mul (car d1) (cdr r2)))
(cons (list (car expr)
(math-mul (car r1) (cdr r2))
(math-mul (car r2) (cdr r1)))
(math-mul (cdr r1) (cdr r2)))))))))))
((eq (car expr) '*)
(let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
(r2 (math-to-ratpoly-rec (nth 2 expr)))
(g (math-mul (math-poly-gcd (car r1) (cdr r2))
(math-poly-gcd (cdr r1) (car r2)))))
(if (eq g 1)
(cons (math-mul (car r1) (car r2))
(math-mul (cdr r1) (cdr r2)))
(cons (math-poly-div-exact (math-mul (car r1) (car r2)) g)
(math-poly-div-exact (math-mul (cdr r1) (cdr r2)) g)))))
((eq (car expr) '/)
(let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
(r2 (math-to-ratpoly-rec (nth 2 expr))))
(if (and (eq (cdr r1) 1) (eq (cdr r2) 1))
(cons (car r1) (car r2))
(let ((g (math-mul (math-poly-gcd (car r1) (car r2))
(math-poly-gcd (cdr r1) (cdr r2)))))
(if (eq g 1)
(cons (math-mul (car r1) (cdr r2))
(math-mul (cdr r1) (car r2)))
(cons (math-poly-div-exact (math-mul (car r1) (cdr r2)) g)
(math-poly-div-exact (math-mul (cdr r1) (car r2))
g)))))))
((and (eq (car expr) '^) (integerp (nth 2 expr)))
(let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
(if (> (nth 2 expr) 0)
(cons (math-pow (car r1) (nth 2 expr))
(math-pow (cdr r1) (nth 2 expr)))
(cons (math-pow (cdr r1) (- (nth 2 expr)))
(math-pow (car r1) (- (nth 2 expr)))))))
((eq (car expr) 'neg)
(let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
(cons (math-neg (car r1)) (cdr r1))))
(t (cons expr 1))))
(defun math-ratpoly-p (expr &optional var)
(cond ((equal expr var) 1)
((Math-primp expr) 0)
((memq (car expr) '(+ -))
(let ((p1 (math-ratpoly-p (nth 1 expr) var))
p2)
(and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
(max p1 p2))))
((eq (car expr) '*)
(let ((p1 (math-ratpoly-p (nth 1 expr) var))
p2)
(and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
(+ p1 p2))))
((eq (car expr) 'neg)
(math-ratpoly-p (nth 1 expr) var))
((eq (car expr) '/)
(let ((p1 (math-ratpoly-p (nth 1 expr) var))
p2)
(and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
(- p1 p2))))
((and (eq (car expr) '^)
(integerp (nth 2 expr)))
(let ((p1 (math-ratpoly-p (nth 1 expr) var)))
(and p1 (* p1 (nth 2 expr)))))
((not var) 1)
((math-poly-depends expr var) nil)
(t 0)))
(defun calcFunc-apart (expr &optional var)
(cond ((Math-primp expr) expr)
((eq (car expr) '+)
(math-add (calcFunc-apart (nth 1 expr) var)
(calcFunc-apart (nth 2 expr) var)))
((eq (car expr) '-)
(math-sub (calcFunc-apart (nth 1 expr) var)
(calcFunc-apart (nth 2 expr) var)))
((and var (not (math-ratpoly-p expr var)))
(math-reject-arg expr "Expected a rational function"))
(t
(let* ((calc-prefer-frac t)
(rat (math-to-ratpoly expr))
(num (car rat))
(den (cdr rat)))
(or var
(setq var (math-polynomial-base den)))
(if (not (math-ratpoly-p expr var))
(math-reject-arg expr "Expected a rational function")
(let* ((qr (math-poly-div num den))
(q (car qr))
(r (cdr qr)))
(math-add q (or (and var
(math-expr-contains den var)
(math-partial-fractions r den var))
(math-div r den)))))))))
(defun math-padded-polynomial (expr var deg)
"Return a polynomial as list of coefficients.
If EXPR is of the form \"a + bx + cx^2 + ...\" in the variable VAR, return
the list (a b c ...) with at least DEG elements, else return NIL."
(let ((p (math-is-polynomial expr var deg)))
(append p (make-list (- deg (length p)) 0))))
(defun math-partial-fractions (r den var)
"Return R divided by DEN expressed in partial fractions of VAR.
All whole factors of DEN have already been split off from R.
If no partial fraction representation can be found, return nil."
(let* ((fden (calcFunc-factors den var))
(tdeg (math-polynomial-p den var))
(fp fden)
(dlist nil)
(eqns 0)
(lz nil)
(tz (make-list (1- tdeg) 0))
(calc-matrix-mode 'scalar))
(and (not (and (= (length fden) 2) (eq (nth 2 (nth 1 fden)) 1)))
(progn
(while (setq fp (cdr fp))
(let ((rpt (nth 2 (car fp)))
(deg (math-polynomial-p (nth 1 (car fp)) var))
dnum dvar deg2)
(while (> rpt 0)
(setq deg2 deg
dnum 0)
(while (> deg2 0)
(setq dvar (append '(vec) lz '(1) tz)
lz (cons 0 lz)
tz (cdr tz)
deg2 (1- deg2)
dnum (math-add dnum (math-mul dvar
(math-pow var deg2)))
dlist (cons (and (= deg2 (1- deg))
(math-pow (nth 1 (car fp)) rpt))
dlist)))
(let ((fpp fden)
(mult 1))
(while (setq fpp (cdr fpp))
(or (eq fpp fp)
(setq mult (math-mul mult
(math-pow (nth 1 (car fpp))
(nth 2 (car fpp)))))))
(setq dnum (math-mul dnum mult)))
(setq eqns (math-add eqns (math-mul dnum
(math-pow
(nth 1 (car fp))
(- (nth 2 (car fp))
rpt))))
rpt (1- rpt)))))
(setq eqns (math-div (cons 'vec (math-padded-polynomial r var tdeg))
(math-transpose
(cons 'vec
(mapcar
(lambda (x)
(cons 'vec (math-padded-polynomial
x var tdeg)))
(cdr eqns))))))
(and (math-vectorp eqns)
(let ((res 0)
(num nil))
(setq eqns (nreverse eqns))
(while eqns
(setq num (cons (car eqns) num)
eqns (cdr eqns))
(if (car dlist)
(setq num (math-build-polynomial-expr
(nreverse num) var)
res (math-add res (math-div num (car dlist)))
num nil))
(setq dlist (cdr dlist)))
(math-normalize res)))))))
(defun math-expand-term (expr)
(cond ((and (eq (car-safe expr) '*)
(memq (car-safe (nth 1 expr)) '(+ -)))
(math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 2 expr))
(list '* (nth 2 (nth 1 expr)) (nth 2 expr))
nil (eq (car (nth 1 expr)) '-)))
((and (eq (car-safe expr) '*)
(memq (car-safe (nth 2 expr)) '(+ -)))
(math-add-or-sub (list '* (nth 1 expr) (nth 1 (nth 2 expr)))
(list '* (nth 1 expr) (nth 2 (nth 2 expr)))
nil (eq (car (nth 2 expr)) '-)))
((and (eq (car-safe expr) '/)
(memq (car-safe (nth 1 expr)) '(+ -)))
(math-add-or-sub (list '/ (nth 1 (nth 1 expr)) (nth 2 expr))
(list '/ (nth 2 (nth 1 expr)) (nth 2 expr))
nil (eq (car (nth 1 expr)) '-)))
((and (eq (car-safe expr) '^)
(memq (car-safe (nth 1 expr)) '(+ -))
(integerp (nth 2 expr))
(if (and
(or (math-known-matrixp (nth 1 (nth 1 expr)))
(math-known-matrixp (nth 2 (nth 1 expr)))
(and
calc-matrix-mode
(not (eq calc-matrix-mode 'scalar))
(not (and (math-known-scalarp (nth 1 (nth 1 expr)))
(math-known-scalarp (nth 2 (nth 1 expr)))))))
(> (nth 2 expr) 1))
(if (= (nth 2 expr) 2)
(math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 1 expr))
(list '* (nth 2 (nth 1 expr)) (nth 1 expr))
nil (eq (car (nth 1 expr)) '-))
(math-add-or-sub (list '* (nth 1 (nth 1 expr))
(list '^ (nth 1 expr)
(1- (nth 2 expr))))
(list '* (nth 2 (nth 1 expr))
(list '^ (nth 1 expr)
(1- (nth 2 expr))))
nil (eq (car (nth 1 expr)) '-)))
(if (> (nth 2 expr) 0)
(or (and (or (> math-mt-many 500000) (< math-mt-many -500000))
(math-expand-power (nth 1 expr) (nth 2 expr)
nil t))
(list '*
(nth 1 expr)
(list '^ (nth 1 expr) (1- (nth 2 expr)))))
(if (< (nth 2 expr) 0)
(list '/ 1 (list '^ (nth 1 expr) (- (nth 2 expr)))))))))
(t expr)))
(defun calcFunc-expand (expr &optional many)
(math-normalize (math-map-tree #'math-expand-term expr many)))
(defun math-expand-power (x n &optional var else-nil)
(or (and (natnump n)
(memq (car-safe x) '(+ -))
(let ((terms nil)
(cterms nil))
(while (memq (car-safe x) '(+ -))
(setq terms (cons (if (eq (car x) '-)
(math-neg (nth 2 x))
(nth 2 x))
terms)
x (nth 1 x)))
(setq terms (cons x terms))
(if var
(let ((p terms))
(while p
(or (math-expr-contains (car p) var)
(setq terms (delq (car p) terms)
cterms (cons (car p) cterms)))
(setq p (cdr p)))
(if cterms
(setq terms (cons (apply 'calcFunc-add cterms)
terms)))))
(if (= (length terms) 2)
(let ((i 0)
(accum 0))
(while (<= i n)
(setq accum (list '+ accum
(list '* (calcFunc-choose n i)
(list '*
(list '^ (nth 1 terms) i)
(list '^ (car terms)
(- n i)))))
i (1+ i)))
accum)
(if (= n 2)
(let ((accum 0)
(p1 terms)
p2)
(while p1
(setq accum (list '+ accum
(list '^ (car p1) 2))
p2 p1)
(while (setq p2 (cdr p2))
(setq accum (list '+ accum
(list '* 2 (list '*
(car p1)
(car p2))))))
(setq p1 (cdr p1)))
accum)
(if (= n 3)
(let ((accum 0)
(p1 terms)
p2 p3)
(while p1
(setq accum (list '+ accum (list '^ (car p1) 3))
p2 p1)
(while (setq p2 (cdr p2))
(setq accum (list '+
(list '+
accum
(list '* 3
(list
'*
(list '^ (car p1) 2)
(car p2))))
(list '* 3
(list
'* (car p1)
(list '^ (car p2) 2))))
p3 p2)
(while (setq p3 (cdr p3))
(setq accum (list '+ accum
(list '* 6
(list '*
(car p1)
(list
'* (car p2)
(car p3))))))))
(setq p1 (cdr p1)))
accum))))))
(and (not else-nil)
(list '^ x n))))
(defun calcFunc-expandpow (x n)
(math-normalize (math-expand-power x n)))
(provide 'calc-poly)
;;; calc-poly.el ends here
|