1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
|
;;; lisp.el --- Lisp editing commands for Emacs -*- lexical-binding:t -*-
;; Copyright (C) 1985-1986, 1994, 2000-2025 Free Software Foundation,
;; Inc.
;; Maintainer: emacs-devel@gnu.org
;; Keywords: lisp, languages
;; Package: emacs
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; Lisp editing commands to go with Lisp major mode. More-or-less
;; applicable in other modes too.
;;; Code:
;; Note that this variable is used by non-lisp modes too.
(defcustom defun-prompt-regexp nil
"If non-nil, a regexp to ignore before a defun.
This is only necessary if the opening paren or brace is not in column 0.
See function `beginning-of-defun'."
:type '(choice (const nil)
regexp)
:group 'lisp)
(make-variable-buffer-local 'defun-prompt-regexp)
(defcustom parens-require-spaces t
"If non-nil, add whitespace as needed when inserting parentheses.
This affects `insert-parentheses' and `insert-pair'."
:type 'boolean
:group 'lisp)
(defun forward-sexp-default-function (&optional arg)
"Default function for `forward-sexp-function'."
(goto-char (or (scan-sexps (point) arg) (buffer-end arg)))
(if (< arg 0) (backward-prefix-chars)))
(defvar forward-sexp-function nil
;; FIXME:
;; - for some uses, we may want a "sexp-only" version, which only
;; jumps over a well-formed sexp, rather than some dwimish thing
;; like jumping from an "else" back up to its "if".
;; - for up-list, we could use the "sexp-only" behavior as well
;; to treat the dwimish halfsexp as a form of "up-list" step.
"If non-nil, `forward-sexp' delegates to this function.
Should take the same arguments and behave similarly to `forward-sexp'.")
(defun forward-sexp (&optional arg interactive)
"Move forward across one balanced expression (sexp).
With ARG, do it that many times. Negative arg -N means move
backward across N balanced expressions. This command assumes
point is not in a string or comment. Calls
`forward-sexp-function' to do the work, if that is non-nil.
If unable to move over a sexp, signal `scan-error' with three
arguments: a message, the start of the obstacle (usually a
parenthesis or list marker of some kind), and end of the
obstacle. If INTERACTIVE is non-nil, as it is interactively,
report errors as appropriate for this kind of usage."
(interactive "^p\nd")
(if interactive
(condition-case _
(forward-sexp arg nil)
(scan-error (user-error (if (> arg 0)
"No next sexp"
"No previous sexp"))))
(or arg (setq arg 1))
(if forward-sexp-function
(funcall forward-sexp-function arg)
(forward-sexp-default-function arg))))
(defun backward-sexp (&optional arg interactive)
"Move backward across one balanced expression (sexp).
With ARG, do it that many times. Negative arg -N means
move forward across N balanced expressions.
This command assumes point is not in a string or comment.
Uses `forward-sexp' to do the work.
If INTERACTIVE is non-nil, as it is interactively,
report errors as appropriate for this kind of usage."
(interactive "^p\nd")
(or arg (setq arg 1))
(forward-sexp (- arg) interactive))
(defun mark-sexp (&optional arg allow-extend)
"Set mark ARG sexps from point or move mark one sexp.
When called from Lisp with ALLOW-EXTEND omitted or nil, mark is
set ARG sexps from point.
With ARG and ALLOW-EXTEND both non-nil (interactively, with prefix
argument), the place to which mark goes is the same place \\[forward-sexp]
would move to with the same argument; if the mark is active, it moves
ARG sexps from its current position, otherwise it is set ARG sexps
from point.
When invoked interactively without a prefix argument and no active
region, mark moves one sexp forward.
When invoked interactively without a prefix argument, and region
is active, mark moves one sexp away of point (i.e., forward
if mark is at or after point, back if mark is before point), thus
extending the region by one sexp. Since the direction of region
extension depends on the relative position of mark and point, you
can change the direction by \\[exchange-point-and-mark].
This command assumes point is not in a string or comment."
(interactive "P\np")
(cond ((and allow-extend
(or (and (eq last-command this-command) (mark t))
(and transient-mark-mode mark-active)))
(setq arg (if arg (prefix-numeric-value arg)
(if (< (mark) (point)) -1 1)))
(set-mark
(save-excursion
(goto-char (mark))
(condition-case error
(forward-sexp arg)
(scan-error
(user-error (if (equal (cadr error)
"Containing expression ends prematurely")
"No more sexp to select"
(cadr error)))))
(point))))
(t
(push-mark
(save-excursion
(condition-case error
(forward-sexp (prefix-numeric-value arg))
(scan-error
(user-error (if (equal (cadr error)
"Containing expression ends prematurely")
"No sexp to select"
(cadr error)))))
(point))
nil t))))
(defun forward-list (&optional arg interactive)
"Move forward across one balanced group of parentheses.
This command will also work on other parentheses-like expressions
defined by the current language mode.
With ARG, do it that many times.
Negative arg -N means move backward across N groups of parentheses.
This command assumes point is not in a string or comment.
If INTERACTIVE is non-nil, as it is interactively,
report errors as appropriate for this kind of usage."
(interactive "^p\nd")
(if interactive
(condition-case _
(forward-list arg nil)
(scan-error (user-error (if (> arg 0)
"No next group"
"No previous group"))))
(or arg (setq arg 1))
(goto-char (or (scan-lists (point) arg 0) (buffer-end arg)))))
(defun backward-list (&optional arg interactive)
"Move backward across one balanced group of parentheses.
This command will also work on other parentheses-like expressions
defined by the current language mode.
With ARG, do it that many times.
Negative arg -N means move forward across N groups of parentheses.
This command assumes point is not in a string or comment.
If INTERACTIVE is non-nil, as it is interactively,
report errors as appropriate for this kind of usage."
(interactive "^p\nd")
(or arg (setq arg 1))
(forward-list (- arg) interactive))
(defun down-list (&optional arg interactive)
"Move forward down one level of parentheses.
This command will also work on other parentheses-like expressions
defined by the current language mode.
With ARG, do this that many times.
A negative argument means move backward but still go down a level.
This command assumes point is not in a string or comment.
If INTERACTIVE is non-nil, as it is interactively,
report errors as appropriate for this kind of usage."
(interactive "^p\nd")
(when (ppss-comment-or-string-start (syntax-ppss))
(user-error "This command doesn't work in strings or comments"))
(if interactive
(condition-case _
(down-list arg nil)
(scan-error (user-error "At bottom level")))
(or arg (setq arg 1))
(let ((inc (if (> arg 0) 1 -1)))
(while (/= arg 0)
(goto-char (or (scan-lists (point) inc -1) (buffer-end arg)))
(setq arg (- arg inc))))))
(defun backward-up-list (&optional arg escape-strings no-syntax-crossing)
"Move backward out of one level of parentheses.
This command will also work on other parentheses-like expressions
defined by the current language mode. With ARG, do this that
many times. A negative argument means move forward but still to
a less deep spot.
If ESCAPE-STRINGS is non-nil (as it is interactively), move out
of enclosing strings as well.
If NO-SYNTAX-CROSSING is non-nil (as it is interactively), prefer
to break out of any enclosing string instead of moving to the
start of a list broken across multiple strings.
On error, location of point is unspecified."
(interactive "^p\nd\nd")
(up-list (- (or arg 1)) escape-strings no-syntax-crossing))
(defun up-list (&optional arg escape-strings no-syntax-crossing)
"Move forward out of one level of parentheses.
This command will also work on other parentheses-like expressions
defined by the current language mode. With ARG, do this that
many times. A negative argument means move backward but still to
a less deep spot.
If ESCAPE-STRINGS is non-nil (as it is interactively), move out
of enclosing strings as well.
If NO-SYNTAX-CROSSING is non-nil (as it is interactively), prefer
to break out of any enclosing string instead of moving to the
end of a list broken across multiple strings.
On error, location of point is unspecified."
(interactive "^p\nd\nd")
(or arg (setq arg 1))
(let ((inc (if (> arg 0) 1 -1))
(pos nil))
(while (/= arg 0)
(condition-case err
(save-restriction
;; If we've been asked not to cross string boundaries
;; and we're inside a string, narrow to that string so
;; that scan-lists doesn't find a match in a different
;; string.
(when no-syntax-crossing
(let* ((syntax (syntax-ppss))
(string-comment-start (nth 8 syntax)))
(when string-comment-start
(save-excursion
(goto-char string-comment-start)
(narrow-to-region
(point)
(if (nth 3 syntax) ; in string
(condition-case nil
(progn (forward-sexp) (point))
(scan-error (point-max)))
(forward-comment 1)
(point)))))))
(if (null forward-sexp-function)
(goto-char (or (scan-lists (point) inc 1)
(buffer-end arg)))
(condition-case err
(while (progn (setq pos (point))
(forward-sexp inc)
(/= (point) pos)))
(scan-error (goto-char (nth (if (> arg 0) 3 2) err))))
(if (= (point) pos)
(signal 'scan-error
(list "Unbalanced parentheses" (point) (point))))))
(scan-error
(let ((syntax nil))
(or
;; If we bumped up against the end of a list, see whether
;; we're inside a string: if so, just go to the beginning
;; or end of that string.
(and escape-strings
(or syntax (setf syntax (syntax-ppss)))
(nth 3 syntax)
(goto-char (nth 8 syntax))
(progn (when (> inc 0)
(forward-sexp))
t))
;; If we narrowed to a comment above and failed to escape
;; it, the error might be our fault, not an indication
;; that we're out of syntax. Try again from beginning or
;; end of the comment.
(and no-syntax-crossing
(or syntax (setf syntax (syntax-ppss)))
(nth 4 syntax)
(goto-char (nth 8 syntax))
(or (< inc 0)
(forward-comment 1))
(setf arg (+ arg inc)))
(if no-syntax-crossing
;; Assume called interactively; don't signal an error.
(user-error "At top level")
(signal (car err) (cdr err)))))))
(setq arg (- arg inc)))))
(defun kill-sexp (&optional arg interactive)
"Kill the sexp (balanced expression) following point.
With ARG, kill that many sexps after point.
Negative arg -N means kill N sexps before point.
This command assumes point is not in a string or comment.
If INTERACTIVE is non-nil, as it is interactively,
report errors as appropriate for this kind of usage."
(interactive "p\nd")
(if interactive
(condition-case _
(kill-sexp arg nil)
(scan-error (user-error (if (> arg 0)
"No next sexp"
"No previous sexp"))))
(let ((opoint (point)))
(forward-sexp (or arg 1))
(kill-region opoint (point)))))
(defun backward-kill-sexp (&optional arg interactive)
"Kill the sexp (balanced expression) preceding point.
With ARG, kill that many sexps before point.
Negative arg -N means kill N sexps after point.
This command assumes point is not in a string or comment.
If INTERACTIVE is non-nil, as it is interactively,
report errors as appropriate for this kind of usage."
(interactive "p\nd")
(kill-sexp (- (or arg 1)) interactive))
;; After Zmacs:
(defun kill-backward-up-list (&optional arg)
"Kill the form containing the current sexp, leaving the sexp itself.
A prefix argument ARG causes the relevant number of surrounding
forms to be removed.
This command assumes point is not in a string or comment."
(interactive "*p")
(let ((current-sexp (thing-at-point 'sexp)))
(if current-sexp
(save-excursion
(backward-up-list arg)
(kill-sexp)
(insert current-sexp))
(user-error "Not at a sexp"))))
(defvar beginning-of-defun-function nil
"If non-nil, function for `beginning-of-defun-raw' to call.
This is used to find the beginning of the defun instead of using the
normal recipe (see `beginning-of-defun'). Major modes can define this
if defining `defun-prompt-regexp' is not sufficient to handle the mode's
needs.
The function takes the same argument as `beginning-of-defun' and should
behave similarly, returning non-nil if it found the beginning of a defun.
Ideally it should move to a point right before an open-paren which encloses
the body of the defun.")
(defun beginning-of-defun (&optional arg)
"Move backward to the beginning of a defun.
With ARG, do it that many times. Negative ARG means move forward
to the ARGth following beginning of defun.
If search is successful, return t; point ends up at the beginning
of the line where the search succeeded. Otherwise, return nil.
When `open-paren-in-column-0-is-defun-start' is non-nil, a defun
is assumed to start where there is a char with open-parenthesis
syntax at the beginning of a line. If `defun-prompt-regexp' is
non-nil, then a string which matches that regexp may also precede
the open-parenthesis. If `defun-prompt-regexp' and
`open-paren-in-column-0-is-defun-start' are both nil, this
function instead finds an open-paren at the outermost level.
If the variable `beginning-of-defun-function' is non-nil, its
value is called as a function, with argument ARG, to find the
defun's beginning.
Regardless of the values of `defun-prompt-regexp' and
`beginning-of-defun-function', point always moves to the
beginning of the line whenever the search is successful."
(interactive "^p")
(or (not (eq this-command 'beginning-of-defun))
(eq last-command 'beginning-of-defun)
(and transient-mark-mode mark-active)
(push-mark))
(and (beginning-of-defun-raw arg)
(progn (beginning-of-line) t)))
(defun beginning-of-defun-raw (&optional arg)
"Move point to the character that starts a defun.
This is identical to function `beginning-of-defun', except that point
does not move to the beginning of the line when `defun-prompt-regexp'
is non-nil.
If variable `beginning-of-defun-function' is non-nil, its value
is called as a function to find the defun's beginning.
Return non-nil if this function successfully found the beginning
of a defun, nil if it failed to find one."
(interactive "^p") ; change this to "P", maybe, if we ever come to pass ARG
; to beginning-of-defun-function.
(unless arg (setq arg 1))
(cond
(beginning-of-defun-function
(condition-case nil
(funcall beginning-of-defun-function arg)
;; We used to define beginning-of-defun-function as taking no argument
;; but that makes it impossible to implement correct forward motion:
;; we used to use end-of-defun for that, but it's not supposed to do
;; the same thing (it moves to the end of a defun not to the beginning
;; of the next).
;; In case the beginning-of-defun-function uses the old calling
;; convention, fallback on the old implementation.
(wrong-number-of-arguments
(if (> arg 0)
(dotimes (_ arg)
(funcall beginning-of-defun-function))
(dotimes (_ (- arg))
(funcall end-of-defun-function))))))
((or defun-prompt-regexp open-paren-in-column-0-is-defun-start)
(and (< arg 0) (not (eobp)) (forward-char 1))
(and (let (found)
(while
(and (setq found
(re-search-backward
(if defun-prompt-regexp
(concat (if open-paren-in-column-0-is-defun-start
"^\\s(\\|" "")
"\\(?:" defun-prompt-regexp "\\)\\s(")
"^\\s(")
nil 'move arg))
(save-match-data
(nth 8 (syntax-ppss)))))
found)
(progn (goto-char (1- (match-end 0)))
t)))
;; If open-paren-in-column-0-is-defun-start and defun-prompt-regexp
;; are both nil, column 0 has no significance - so scan forward
;; from BOB to see how nested point is, then carry on from there.
;;
;; It is generally not a good idea to land up here, because the
;; call to scan-lists below can be extremely slow. This is because
;; back_comment in syntax.c may have to scan from bob to find the
;; beginning of each comment. Fixing this is not trivial -- cyd.
((eq arg 0))
(t
(let ((floor (point-min))
(ceiling (point-max))
(arg-+ve (> arg 0)))
(save-restriction
(widen)
(let ((ppss (with-suppressed-warnings ((obsolete syntax-begin-function))
(let (syntax-begin-function)
(syntax-ppss))))
;; position of least enclosing paren, or nil.
encl-pos)
;; Back out of any comment/string, so that encl-pos will always
;; become nil if we're at top-level.
(when (nth 8 ppss)
(goto-char (nth 8 ppss))
(setq ppss (syntax-ppss))) ; should be fast, due to cache.
(setq encl-pos (syntax-ppss-toplevel-pos ppss))
(if encl-pos (goto-char encl-pos))
(and encl-pos arg-+ve (setq arg (1- arg)))
(and (not encl-pos) (not arg-+ve) (not (looking-at "\\s("))
(setq arg (1+ arg)))
(condition-case nil ; to catch crazy parens.
(progn
(goto-char (scan-lists (point) (- arg) 0))
(if arg-+ve
(if (>= (point) floor)
t
(goto-char floor)
nil)
;; forward to next (, or trigger the c-c
(goto-char (1- (scan-lists (point) 1 -1)))
(if (<= (point) ceiling)
t
(goto-char ceiling)
nil)))
(error
(goto-char (if arg-+ve floor ceiling))
nil))))))))
(defun beginning-of-defun--in-emptyish-line-p ()
"Return non-nil if the point is in an \"emptyish\" line.
This means a line that consists entirely of comments and/or
whitespace."
;; See https://lists.gnu.org/r/help-gnu-emacs/2016-08/msg00141.html
(save-excursion
(forward-line 0)
(let ((ppss (syntax-ppss)))
(and (null (nth 3 ppss))
(< (line-end-position)
(progn (when (nth 4 ppss)
(goto-char (nth 8 ppss)))
(forward-comment (point-max))
(point)))))))
(defun beginning-of-defun-comments (&optional arg)
"Move to the beginning of ARGth defun, including comments."
(interactive "^p")
(unless arg (setq arg 1))
(beginning-of-defun arg)
(let (first-line-p)
(while (let ((ppss (progn (setq first-line-p (= (forward-line -1) -1))
(syntax-ppss (line-end-position)))))
(while (and (nth 4 ppss) ; If eol is in a line-spanning comment,
(< (nth 8 ppss) (line-beginning-position)))
(goto-char (nth 8 ppss)) ; skip to comment start.
(setq ppss (syntax-ppss (line-end-position))))
(and (not first-line-p)
(progn (skip-syntax-backward
"-" (line-beginning-position))
(not (bolp))) ; Check for blank line.
(beginning-of-defun--in-emptyish-line-p)))) ; Check for non-comment text.
(forward-line (if first-line-p 0 1))))
(defvar end-of-defun-function
(lambda () (forward-sexp 1))
"Function for `end-of-defun' to call.
This is used to find the end of the defun at point.
It is called with no argument, right after calling `beginning-of-defun-raw'.
So the function can assume that point is at the beginning of the defun body.
It should move point to the first position after the defun.")
(defvar end-of-defun-moves-to-eol t
"Whether `end-of-defun' moves to eol before doing anything else.
Set this to nil if this movement adversely affects the buffer's
major mode's decisions about context.")
(defun buffer-end (arg)
"Return the \"far end\" position of the buffer, in direction ARG.
If ARG is positive, that's the end of the buffer.
Otherwise, that's the beginning of the buffer."
(declare (ftype (function ((or number marker)) integer))
(side-effect-free error-free))
(if (> arg 0) (point-max) (point-min)))
(defun end-of-defun (&optional arg interactive)
"Move forward to next end of defun.
With argument, do it that many times.
Negative argument -N means move back to Nth preceding end of defun.
An end of a defun occurs right after the close-parenthesis that
matches the open-parenthesis that starts a defun; see function
`beginning-of-defun'.
If variable `end-of-defun-function' is non-nil, its value
is called as a function to find the defun's end.
If INTERACTIVE is non-nil, as it is interactively,
report errors as appropriate for this kind of usage."
(interactive "^p\nd")
(if interactive
(condition-case e
(end-of-defun arg nil)
(scan-error (user-error (cadr e))))
(or (not (eq this-command 'end-of-defun))
(eq last-command 'end-of-defun)
(and transient-mark-mode mark-active)
(push-mark))
(if (or (null arg) (= arg 0)) (setq arg 1))
(let ((pos (point))
(success nil)
(beg (progn (when end-of-defun-moves-to-eol
(end-of-line 1))
(beginning-of-defun-raw 1) (point)))
(skip (lambda ()
;; When comparing point against pos, we want to consider that
;; if point was right after the end of the function, it's
;; still considered as "in that function".
;; E.g. `eval-defun' from right after the last close-paren.
(unless (bolp)
(skip-chars-forward " \t")
(if (looking-at "\\s<\\|\n")
(forward-line 1))))))
(funcall end-of-defun-function)
(when (<= arg 1)
(funcall skip))
(cond
((> arg 0)
;; Moving forward.
(if (> (point) pos)
;; We already moved forward by one because we started from
;; within a function.
(setq arg (1- arg))
;; We started from after the end of the previous function.
(goto-char pos))
;; At this point, point either didn't move (because we started
;; in between two defun's), or is at the end of a defun
;; (because we started in the middle of a defun).
(unless (zerop arg)
(when (setq success (beginning-of-defun-raw (- arg)))
(funcall end-of-defun-function))))
((< arg 0)
;; Moving backward.
(if (< (point) pos)
;; We already moved backward because we started from between
;; two functions.
(setq arg (1+ arg))
;; We started from inside a function.
(goto-char beg))
(unless (zerop arg)
(when (setq success (beginning-of-defun-raw (- arg)))
(setq beg (point))
(funcall end-of-defun-function)))))
(funcall skip)
(while (and (< arg 0) (>= (point) pos) success)
;; We intended to move backward, but this ended up not doing so:
;; Try harder!
(goto-char beg)
(setq success (beginning-of-defun-raw (- arg)))
;; If we successfully moved pass point, or there is no further
;; defun beginnings anymore, stop.
(if (or (>= (point) beg) (not success))
(setq arg 0)
(setq beg (point))
(funcall end-of-defun-function)
(funcall skip))))))
(defun mark-defun (&optional arg interactive)
"Put mark at end of this defun, point at beginning.
The defun marked is the one that contains point or follows point.
With positive ARG, mark this and that many next defuns; with negative
ARG, change the direction of marking.
If the mark is active, it marks the next or previous defun(s) after
the one(s) already marked.
If INTERACTIVE is non-nil, as it is interactively,
report errors as appropriate for this kind of usage."
(interactive "p\nd")
(if interactive
(condition-case e
(mark-defun arg nil)
(scan-error (user-error (cadr e))))
(setq arg (or arg 1))
;; There is no `mark-defun-back' function - see
;; https://lists.gnu.org/r/bug-gnu-emacs/2016-11/msg00079.html
;; for explanation
(when (eq last-command 'mark-defun-back)
(setq arg (- arg)))
(when (< arg 0)
(setq this-command 'mark-defun-back))
(cond ((use-region-p)
(if (>= arg 0)
(set-mark
(save-excursion
(goto-char (mark))
;; change the dotimes below to (end-of-defun arg)
;; once bug #24427 is fixed
(dotimes (_ignore arg)
(end-of-defun))
(point)))
(beginning-of-defun-comments (- arg))))
(t
(let ((opoint (point))
beg end)
(push-mark opoint)
;; Try first in this order for the sake of languages with nested
;; functions where several can end at the same place as with the
;; offside rule, e.g. Python.
(beginning-of-defun-comments)
(setq beg (point))
(end-of-defun)
(setq end (point))
(when (or (and (<= (point) opoint)
(> arg 0))
(= beg (point-min))) ; we were before the first defun!
;; beginning-of-defun moved back one defun so we got the wrong
;; one. If ARG < 0, however, we actually want to go back.
(goto-char opoint)
(end-of-defun)
(setq end (point))
(beginning-of-defun-comments)
(setq beg (point)))
(goto-char beg)
(cond ((> arg 0)
;; change the dotimes below to (end-of-defun arg)
;; once bug #24427 is fixed
(dotimes (_ignore arg)
(end-of-defun))
(setq end (point))
(push-mark end nil t)
(goto-char beg))
(t
(goto-char beg)
(unless (= arg -1)
;; beginning-of-defun behaves strange with zero arg - see
;; lists.gnu.org/r/bug-gnu-emacs/2017-02/msg00196.html
(beginning-of-defun (1- (- arg))))
(push-mark end nil t))))))
(skip-chars-backward "[:space:]\n")
(unless (bobp)
(forward-line 1))))
(defvar narrow-to-defun-include-comments nil
"If non-nil, `narrow-to-defun' will also show comments preceding the defun.")
(defun narrow-to-defun (&optional include-comments)
"Make text outside current defun invisible.
The current defun is the one that contains point or follows point.
Preceding comments are included if INCLUDE-COMMENTS is non-nil.
Interactively, the behavior depends on `narrow-to-defun-include-comments'."
(interactive (list narrow-to-defun-include-comments))
(save-excursion
(widen)
(let ((opoint (point))
beg end)
;; Try first in this order for the sake of languages with nested
;; functions where several can end at the same place as with
;; the offside rule, e.g. Python.
;; Finding the start of the function is a bit problematic since
;; `beginning-of-defun' when we are on the first character of
;; the function might go to the previous function.
;;
;; Therefore we first move one character forward and then call
;; `beginning-of-defun'. However now we must check that we did
;; not move into the next function.
(let ((here (point)))
(unless (eolp)
(forward-char))
(beginning-of-defun)
(when (< (point) here)
(goto-char here)
(beginning-of-defun)))
(setq beg (point))
(end-of-defun)
(setq end (point))
(while (looking-at "^\n")
(forward-line 1))
(unless (> (point) opoint)
;; beginning-of-defun moved back one defun
;; so we got the wrong one.
(goto-char opoint)
(end-of-defun)
(setq end (point))
(beginning-of-defun)
(setq beg (point)))
(when include-comments
(goto-char beg)
;; Move back past all preceding comments (and whitespace).
(when (forward-comment -1)
(while (forward-comment -1))
;; Move forwards past any page breaks within these comments.
(when (and page-delimiter (not (string= page-delimiter "")))
(while (re-search-forward page-delimiter beg t)))
;; Lastly, move past any empty lines.
(skip-chars-forward "[:space:]\n")
(beginning-of-line)
(setq beg (point))))
(goto-char end)
(re-search-backward "^\n" (- (point) 1) t)
(narrow-to-region beg end))))
(defcustom insert-pair-alist
'((?\( ?\)) (?\[ ?\]) (?\{ ?\}) (?\< ?\>) (?\" ?\") (?\' ?\') (?\` ?\'))
"Alist of paired characters inserted by `insert-pair'.
Each element looks like (OPEN-CHAR CLOSE-CHAR) or (COMMAND-CHAR
OPEN-CHAR CLOSE-CHAR). The characters OPEN-CHAR and CLOSE-CHAR
of the pair whose key is equal to the last input character with
or without modifiers, are inserted by `insert-pair'.
If COMMAND-CHAR is specified, it is a character that triggers the
insertion of the open/close pair, and COMMAND-CHAR itself isn't
inserted."
:type '(repeat (choice (list :tag "Pair"
(character :tag "Open")
(character :tag "Close"))
(list :tag "Triple"
(character :tag "Command")
(character :tag "Open")
(character :tag "Close"))))
:group 'lisp
:version "27.1")
(defun insert-pair (&optional arg open close)
"Enclose following ARG sexps in a pair of OPEN and CLOSE characters.
Leave point after the first character.
A negative ARG encloses the preceding ARG sexps instead.
No argument is equivalent to zero: just insert characters
and leave point between.
If `parens-require-spaces' is non-nil, this command also inserts a space
before and after, depending on the surrounding characters.
If region is active, insert enclosing characters at region boundaries.
If arguments OPEN and CLOSE are nil, the character pair is found
from the variable `insert-pair-alist' according to the last input
character with or without modifiers. If no character pair is
found in the variable `insert-pair-alist', then the last input
character is inserted ARG times.
This command assumes point is not in a string or comment."
(interactive "P")
(if (not (and open close))
(let ((pair (or (assq last-command-event insert-pair-alist)
(assq (event-basic-type last-command-event)
insert-pair-alist))))
(if pair
(if (nth 2 pair)
(setq open (nth 1 pair) close (nth 2 pair))
(setq open (nth 0 pair) close (nth 1 pair))))))
(if (and open close)
(if (and transient-mark-mode mark-active)
(progn
(save-excursion
(goto-char (region-end))
(insert close))
(goto-char (region-beginning))
(insert open))
(if arg (setq arg (prefix-numeric-value arg))
(setq arg 0))
(cond ((> arg 0) (skip-chars-forward " \t"))
((< arg 0) (forward-sexp arg) (setq arg (- arg))))
(and parens-require-spaces
(not (bobp))
(memq (char-syntax (preceding-char)) (list ?w ?_ (char-syntax close)))
(insert " "))
(insert open)
(save-excursion
(or (eq arg 0) (forward-sexp arg))
(insert close)
(and parens-require-spaces
(not (eobp))
(memq (char-syntax (following-char)) (list ?w ?_ (char-syntax open)))
(insert " "))))
(insert-char (event-basic-type last-command-event)
(prefix-numeric-value arg))))
(defun insert-parentheses (&optional arg)
"Enclose following ARG sexps in parentheses.
Leave point after open-paren.
A negative ARG encloses the preceding ARG sexps instead.
No argument is equivalent to zero: just insert `()' and leave point between.
If `parens-require-spaces' is non-nil, this command also inserts a space
before and after, depending on the surrounding characters.
If region is active, insert enclosing characters at region boundaries.
This command assumes point is not in a string or comment."
(interactive "P")
(insert-pair arg ?\( ?\)))
(defcustom delete-pair-blink-delay blink-matching-delay
"Time in seconds to delay after showing a paired character to delete.
It's used by the command `delete-pair'. The value 0 disables blinking."
:type 'number
:group 'lisp
:version "28.1")
(defun delete-pair (&optional arg)
"Delete a pair of characters enclosing ARG sexps that follow point.
A negative ARG deletes a pair around the preceding ARG sexps instead.
The option `delete-pair-blink-delay' can disable blinking."
(interactive "P")
(if arg
(setq arg (prefix-numeric-value arg))
(setq arg 1))
(if (< arg 0)
(save-excursion
(skip-chars-backward " \t")
(save-excursion
(let ((close-char (char-before)))
(forward-sexp arg)
(unless (member (list (char-after) close-char)
(mapcar (lambda (p)
(if (= (length p) 3) (cdr p) p))
insert-pair-alist))
(error "Not after matching pair"))
(when (and (numberp delete-pair-blink-delay)
(> delete-pair-blink-delay 0))
(sit-for delete-pair-blink-delay))
(delete-char 1)))
(delete-char -1))
(save-excursion
(skip-chars-forward " \t")
(save-excursion
(let ((open-char (char-after)))
(forward-sexp arg)
(unless (member (list open-char (char-before))
(mapcar (lambda (p)
(if (= (length p) 3) (cdr p) p))
insert-pair-alist))
(error "Not before matching pair"))
(when (and (numberp delete-pair-blink-delay)
(> delete-pair-blink-delay 0))
(sit-for delete-pair-blink-delay))
(delete-char -1)))
(delete-char 1))))
(defun raise-sexp (&optional n)
"Raise N sexps one level higher up the tree.
This function removes the sexp enclosing the form which follows
point, and then re-inserts N sexps that originally followed point,
thus raising those N sexps one level up.
Interactively, N is the numeric prefix argument, and defaults to 1.
For instance, if you have:
(let ((foo 2))
(progn
(setq foo 3)
(zot)
(+ foo 2)))
and point is before (zot), \\[raise-sexp] will give you
(let ((foo 2))
(zot))"
(interactive "p")
(let ((s (if (and transient-mark-mode mark-active)
(buffer-substring (region-beginning) (region-end))
(buffer-substring
(point)
(save-excursion (forward-sexp n) (point))))))
(backward-up-list 1)
(delete-region (point) (save-excursion (forward-sexp 1) (point)))
(save-excursion (insert s))))
(defun move-past-close-and-reindent ()
"Move past next `)', delete indentation before it, then indent after it."
(interactive)
(up-list 1)
(forward-char -1)
(while (save-excursion ; this is my contribution
(let ((before-paren (point)))
(back-to-indentation)
(and (= (point) before-paren)
(progn
;; Move to end of previous line.
(beginning-of-line)
(forward-char -1)
;; Verify it doesn't end within a string or comment.
(let ((end (point))
state)
(beginning-of-line)
;; Get state at start of line.
(setq state (list 0 nil nil
(null (calculate-lisp-indent))
nil nil nil nil
nil))
;; Parse state across the line to get state at end.
(setq state (parse-partial-sexp (point) end nil nil
state))
;; Check not in string or comment.
(and (not (elt state 3)) (not (elt state 4))))))))
(delete-indentation))
(forward-char 1)
(newline-and-indent))
(defun check-parens () ; lame name?
"Check for unbalanced parentheses in the current buffer.
More accurately, check the narrowed part of the buffer for unbalanced
expressions (\"sexps\") in general. This is done according to the
current syntax table and will find unbalanced brackets or quotes as
appropriate. (See Info node `(emacs)Parentheses'.) If imbalance is
found, an error is signaled and point is left at the first unbalanced
character."
(interactive)
(condition-case data
;; Buffer can't have more than (point-max) sexps.
(scan-sexps (point-min) (point-max))
(scan-error (push-mark)
(goto-char (nth 2 data))
;; Could print (nth 1 data), which is either
;; "Containing expression ends prematurely" or
;; "Unbalanced parentheses", but those may not be so
;; accurate/helpful, e.g. quotes may actually be
;; mismatched.
(user-error "Unmatched bracket or quote"))))
(defun field-complete (table &optional predicate)
(declare (obsolete completion-in-region "24.4"))
(let ((minibuffer-completion-table table)
(minibuffer-completion-predicate predicate))
(call-interactively 'minibuffer-complete)))
(defun lisp-complete-symbol (&optional _predicate)
"Perform completion on Lisp symbol preceding point.
Compare that symbol against the known Lisp symbols.
If no characters can be completed, display a list of possible completions.
Repeating the command at that point scrolls the list.
The context determines which symbols are considered. If the
symbol starts just after an open-parenthesis, only symbols with
function definitions are considered. Otherwise, all symbols with
function definitions, values or properties are considered."
(declare (obsolete completion-at-point "24.4")
(advertised-calling-convention () "25.1"))
(interactive)
(let* ((data (elisp-completion-at-point))
(plist (nthcdr 3 data)))
(if (null data)
(minibuffer-message "Nothing to complete")
(let ((completion-extra-properties plist))
(completion-in-region (nth 0 data) (nth 1 data) (nth 2 data)
(plist-get plist :predicate))))))
;;; lisp.el ends here
|