1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
;;; spam-stat.el --- detecting spam based on statistics -*- lexical-binding: t; -*-
;; Copyright (C) 2002-2025 Free Software Foundation, Inc.
;; Author: Alex Schroeder <alex@gnu.org>
;; Keywords: network
;; URL: https://www.emacswiki.org/cgi-bin/wiki.pl?SpamStat
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; This implements spam analysis according to Paul Graham in "A Plan
;; for Spam". The basis for all this is a statistical distribution of
;; words for your spam and non-spam mails. We need this information
;; in a hash-table so that the analysis can use the information when
;; looking at your mails. Therefore, before you begin, you need tons
;; of mails (Graham uses 4000 non-spam and 4000 spam mails for his
;; experiments).
;;
;; The main interface to using spam-stat, are the following functions:
;;
;; `spam-stat-buffer-is-spam' -- called in a buffer, that buffer is
;; considered to be a new spam mail; use this for new mail that has
;; not been processed before
;;
;; `spam-stat-buffer-is-non-spam' -- called in a buffer, that buffer
;; is considered to be a new non-spam mail; use this for new mail that
;; has not been processed before
;;
;; `spam-stat-buffer-change-to-spam' -- called in a buffer, that
;; buffer is no longer considered to be normal mail but spam; use this
;; to change the status of a mail that has already been processed as
;; non-spam
;;
;; `spam-stat-buffer-change-to-non-spam' -- called in a buffer, that
;; buffer is no longer considered to be spam but normal mail; use this
;; to change the status of a mail that has already been processed as
;; spam
;;
;; `spam-stat-save' -- save the hash table to the file; the filename
;; used is stored in the variable `spam-stat-file'
;;
;; `spam-stat-load' -- load the hash table from a file; the filename
;; used is stored in the variable `spam-stat-file'
;;
;; `spam-stat-score-word' -- return the spam score for a word
;;
;; `spam-stat-score-buffer' -- return the spam score for a buffer
;;
;; `spam-stat-split-fancy' -- for fancy mail splitting; add
;; the rule (: spam-stat-split-fancy) to `nnmail-split-fancy'
;;
;; This requires the following in your ~/.gnus file:
;;
;; (require 'spam-stat)
;; (spam-stat-load)
;;; Testing:
;; Typical test will involve calls to the following functions:
;;
;; Reset: (spam-stat-reset)
;; Learn spam: (spam-stat-process-spam-directory "~/Mail/mail/spam")
;; Learn non-spam: (spam-stat-process-non-spam-directory "~/Mail/mail/misc")
;; Save table: (spam-stat-save)
;; File size: (file-attribute-size (file-attributes spam-stat-file))
;; Number of words: (hash-table-count spam-stat)
;; Test spam: (spam-stat-test-directory "~/Mail/mail/spam")
;; Test non-spam: (spam-stat-test-directory "~/Mail/mail/misc")
;; Reduce table size: (spam-stat-reduce-size)
;; Save table: (spam-stat-save)
;; File size: (file-attribute-size (file-attributes spam-stat-file))
;; Number of words: (hash-table-count spam-stat)
;; Test spam: (spam-stat-test-directory "~/Mail/mail/spam")
;; Test non-spam: (spam-stat-test-directory "~/Mail/mail/misc")
;;; Dictionary Creation:
;; Typically, you will filter away mailing lists etc. using specific
;; rules in `nnmail-split-fancy'. Somewhere among these rules, you
;; will filter spam. Here is how you would create your dictionary:
;; Reset: (spam-stat-reset)
;; Learn spam: (spam-stat-process-spam-directory "~/Mail/mail/spam")
;; Learn non-spam: (spam-stat-process-non-spam-directory "~/Mail/mail/misc")
;; Repeat for any other non-spam group you need...
;; Reduce table size: (spam-stat-reduce-size)
;; Save table: (spam-stat-save)
;;; Todo:
;; Speed it up. Integrate with Gnus such that it uses spam and expiry
;; marks to call the appropriate functions when leaving the summary
;; buffer and saves the hash table when leaving Gnus. More testing:
;; More mails, disabling SpamAssassin, double checking algorithm, find
;; improved algorithm.
;;; Thanks:
;; Ted Zlatanov <tzz@lifelogs.com>
;; Jesper Harder <harder@myrealbox.com>
;; Dan Schmidt <dfan@dfan.org>
;; Lasse Rasinen <lrasinen@iki.fi>
;; Milan Zamazal <pdm@zamazal.org>
;;; Code:
(require 'mail-parse)
(defvar gnus-original-article-buffer)
(defgroup spam-stat nil
"Statistical spam detection for Emacs.
Use the functions to build a dictionary of words and their statistical
distribution in spam and non-spam mails. Then use a function to determine
whether a buffer contains spam or not."
:version "22.1"
:group 'gnus)
(defcustom spam-stat-file "~/.spam-stat.el"
"File used to save and load the dictionary.
See `spam-stat-to-hash-table' for the format of the file."
:type 'file)
(defcustom spam-stat-unknown-word-score 0.2
"The score to use for unknown words.
Also used for words that don't appear often enough."
:type 'number)
(defcustom spam-stat-max-word-length 15
"Only words shorter than this will be considered."
:type 'integer)
(defcustom spam-stat-max-buffer-length 10240
"Only the beginning of buffers will be analyzed.
This variable says how many characters this will be."
:type 'integer)
(defcustom spam-stat-split-fancy-spam-group "mail.spam"
"Name of the group where spam should be stored.
If `spam-stat-split-fancy' is used in fancy splitting rules. Has
no effect when spam-stat is invoked through spam.el."
:type 'string)
(defcustom spam-stat-split-fancy-spam-threshold 0.9
"Spam score threshold in spam-stat-split-fancy."
:type 'number)
(defcustom spam-stat-washing-hook nil
"Hook applied to each message before analysis."
:type 'hook)
(defcustom spam-stat-score-buffer-user-functions nil
"List of additional scoring functions.
Called one by one on the buffer.
If all of these functions return non-nil answers, these numerical
answers are added to the computed spam stat score on the buffer. If
you defun such functions, make sure they don't return the buffer in a
narrowed state or such: use, for example, `save-excursion'. Each of
your functions is also passed the initial spam-stat score which might
aid in your scoring.
Also be careful when defining such functions. If they take a long
time, they will slow down your mail splitting. Thus, if the buffer is
large, don't forget to use smaller regions, by wrapping your work in,
say, `with-spam-stat-max-buffer-size'."
:type '(repeat sexp))
(defcustom spam-stat-process-directory-age 90
"Maximum age of files to be processed in directory, in days.
When using `spam-stat-process-spam-directory' or
`spam-stat-process-non-spam-directory', only files that have
been touched in this many days will be considered. Without
this filter, re-training spam-stat with several thousand messages
will start to take a very long time."
:type 'integer)
(defvar spam-stat-last-saved-at nil
"Time stamp of last change of `spam-stat-file' on this run.")
(defvar spam-stat-syntax-table
(let ((table (copy-syntax-table text-mode-syntax-table)))
(modify-syntax-entry ?- "w" table)
(modify-syntax-entry ?_ "w" table)
(modify-syntax-entry ?. "w" table)
(modify-syntax-entry ?! "w" table)
(modify-syntax-entry ?? "w" table)
(modify-syntax-entry ?+ "w" table)
table)
"Syntax table used when processing mails for statistical analysis.
The important part is which characters are word constituents.")
(defvar spam-stat-dirty nil
"Whether the spam-stat database needs saving.")
(defvar spam-stat-buffer nil
"Buffer to use for scoring while splitting.
This is set by hooking into Gnus.")
(defvar spam-stat-buffer-name " *spam stat buffer*"
"Name of the `spam-stat-buffer'.")
(defvar spam-stat-coding-system
(if (mm-coding-system-p 'emacs-mule) 'emacs-mule 'raw-text)
"Coding system used for `spam-stat-file'.")
;; Hooking into Gnus
(defun spam-stat-store-current-buffer ()
"Store a copy of the current buffer in `spam-stat-buffer'."
(let ((buf (current-buffer)))
(with-current-buffer (get-buffer-create spam-stat-buffer-name)
(erase-buffer)
(insert-buffer-substring buf)
(setq spam-stat-buffer (current-buffer)))))
(defun spam-stat-store-gnus-article-buffer ()
"Store a copy of the current article in `spam-stat-buffer'.
This uses `gnus-article-buffer'."
(with-current-buffer gnus-original-article-buffer
(spam-stat-store-current-buffer)))
;; Data -- not using defstruct in order to save space and time
(defvar spam-stat (make-hash-table :test 'equal)
"Hash table used to store the statistics.
Use `spam-stat-load' to load the file.
Every word is used as a key in this table. The value is a vector.
Use `spam-stat-ngood', `spam-stat-nbad', `spam-stat-good',
`spam-stat-bad', and `spam-stat-score' to access this vector.")
(defvar spam-stat-ngood 0
"The number of good mails in the dictionary.")
(defvar spam-stat-nbad 0
"The number of bad mails in the dictionary.")
(defsubst spam-stat-good (entry)
"Return the number of times this word belongs to good mails."
(aref entry 0))
(defsubst spam-stat-bad (entry)
"Return the number of times this word belongs to bad mails."
(aref entry 1))
(defsubst spam-stat-score (entry)
"Set the score of this word."
(if entry
(aref entry 2)
spam-stat-unknown-word-score))
(defsubst spam-stat-set-good (entry value)
"Set the number of times this word belongs to good mails."
(aset entry 0 value))
(defsubst spam-stat-set-bad (entry value)
"Set the number of times this word belongs to bad mails."
(aset entry 1 value))
(defsubst spam-stat-set-score (entry value)
"Set the score of this word."
(aset entry 2 value))
(defsubst spam-stat-make-entry (good bad)
"Return a vector with the given properties."
(let ((entry (vector good bad nil)))
(spam-stat-set-score entry (spam-stat-compute-score entry))
entry))
;; Computing
(defun spam-stat-compute-score (entry)
"Compute the score of this word. 1.0 means spam."
;; promote all numbers to floats for the divisions
(let* ((g (* 2.0 (spam-stat-good entry)))
(b (float (spam-stat-bad entry))))
(cond ((< (+ g b) 5)
.2)
((= 0 spam-stat-ngood)
.99)
((= 0 spam-stat-nbad)
.01)
(t
(max .01
(min .99 (/ (/ b spam-stat-nbad)
(+ (/ g spam-stat-ngood)
(/ b spam-stat-nbad)))))))))
;; Parsing
(defmacro with-spam-stat-max-buffer-size (&rest body)
"Narrow the buffer down to the first 4k characters, then evaluate BODY."
`(save-restriction
(when (> (- (point-max)
(point-min))
spam-stat-max-buffer-length)
(narrow-to-region (point-min)
(+ (point-min) spam-stat-max-buffer-length)))
,@body))
(defun spam-stat-buffer-words ()
"Return a hash table of words and number of occurrences in the buffer."
(run-hooks 'spam-stat-washing-hook)
(with-spam-stat-max-buffer-size
(with-syntax-table spam-stat-syntax-table
(goto-char (point-min))
(let ((result (make-hash-table :test 'equal))
word count)
(while (re-search-forward "\\w+" nil t)
(setq word (match-string-no-properties 0)
count (1+ (gethash word result 0)))
(when (< (length word) spam-stat-max-word-length)
(puthash word count result)))
result))))
(defun spam-stat-buffer-is-spam ()
"Consider current buffer to be a new spam mail."
(setq spam-stat-nbad (1+ spam-stat-nbad))
(maphash
(lambda (word count)
(let ((entry (gethash word spam-stat)))
(if entry
(spam-stat-set-bad entry (+ count (spam-stat-bad entry)))
(setq entry (spam-stat-make-entry 0 count)))
(spam-stat-set-score entry (spam-stat-compute-score entry))
(puthash word entry spam-stat)))
(spam-stat-buffer-words))
(setq spam-stat-dirty t))
(defun spam-stat-buffer-is-non-spam ()
"Consider current buffer to be a new non-spam mail."
(setq spam-stat-ngood (1+ spam-stat-ngood))
(maphash
(lambda (word count)
(let ((entry (gethash word spam-stat)))
(if entry
(spam-stat-set-good entry (+ count (spam-stat-good entry)))
(setq entry (spam-stat-make-entry count 0)))
(spam-stat-set-score entry (spam-stat-compute-score entry))
(puthash word entry spam-stat)))
(spam-stat-buffer-words))
(setq spam-stat-dirty t))
(autoload 'gnus-message "gnus-util")
(defun spam-stat-buffer-change-to-spam ()
"Consider current buffer no longer normal mail but spam."
(setq spam-stat-nbad (1+ spam-stat-nbad)
spam-stat-ngood (1- spam-stat-ngood))
(maphash
(lambda (word count)
(let ((entry (gethash word spam-stat)))
(if (not entry)
(gnus-message 8 "This buffer has unknown words in it")
(spam-stat-set-good entry (- (spam-stat-good entry) count))
(spam-stat-set-bad entry (+ (spam-stat-bad entry) count))
(spam-stat-set-score entry (spam-stat-compute-score entry))
(puthash word entry spam-stat))))
(spam-stat-buffer-words))
(setq spam-stat-dirty t))
(defun spam-stat-buffer-change-to-non-spam ()
"Consider current buffer no longer spam but normal mail."
(setq spam-stat-nbad (1- spam-stat-nbad)
spam-stat-ngood (1+ spam-stat-ngood))
(maphash
(lambda (word count)
(let ((entry (gethash word spam-stat)))
(if (not entry)
(gnus-message 8 "This buffer has unknown words in it")
(spam-stat-set-good entry (+ (spam-stat-good entry) count))
(spam-stat-set-bad entry (- (spam-stat-bad entry) count))
(spam-stat-set-score entry (spam-stat-compute-score entry))
(puthash word entry spam-stat))))
(spam-stat-buffer-words))
(setq spam-stat-dirty t))
;; Saving and Loading
(defun spam-stat-save (&optional force)
"Save the `spam-stat' hash table as Lisp file.
With a prefix argument save unconditionally."
(interactive "P")
(when (or force spam-stat-dirty)
(let ((coding-system-for-write spam-stat-coding-system))
(with-temp-file spam-stat-file
(let ((standard-output (current-buffer)))
(insert (format ";-*- coding: %s; -*-\n" spam-stat-coding-system))
(insert (format "(setq spam-stat-ngood %d spam-stat-nbad %d
spam-stat (spam-stat-to-hash-table '(" spam-stat-ngood spam-stat-nbad))
(maphash (lambda (word entry)
(prin1 (list word
(spam-stat-good entry)
(spam-stat-bad entry))))
spam-stat)
(insert ")))"))))
(message "Saved %s." spam-stat-file)
(setq spam-stat-dirty nil
spam-stat-last-saved-at (file-attribute-modification-time
(file-attributes spam-stat-file)))))
(defun spam-stat-load ()
"Read the `spam-stat' hash table from disk."
;; TODO: maybe we should warn the user if spam-stat-dirty is t?
(let ((coding-system-for-read spam-stat-coding-system))
(cond (spam-stat-dirty (message "Spam stat not loaded: spam-stat-dirty t"))
((or (not (boundp 'spam-stat-last-saved-at))
(null spam-stat-last-saved-at)
(not (time-equal-p
spam-stat-last-saved-at
(file-attribute-modification-time
(file-attributes spam-stat-file)))))
(progn
(load-file spam-stat-file)
(setq spam-stat-dirty nil
spam-stat-last-saved-at
(file-attribute-modification-time
(file-attributes spam-stat-file)))))
(t (message "Spam stat file not loaded: no change in disk.")))))
(defun spam-stat-to-hash-table (entries)
"Turn list ENTRIES into a hash table and store as `spam-stat'.
Every element in ENTRIES has the form \(WORD GOOD BAD) where WORD is
the word string, NGOOD is the number of good mails it has appeared in,
NBAD is the number of bad mails it has appeared in, GOOD is the number
of times it appeared in good mails, and BAD is the number of times it
has appeared in bad mails."
(let ((table (make-hash-table :size (length entries)
:test 'equal)))
(mapc (lambda (l)
(puthash (car l)
(spam-stat-make-entry (nth 1 l) (nth 2 l))
table))
entries)
table))
(defun spam-stat-reset ()
"Reset `spam-stat' to an empty hash-table.
This deletes all the statistics."
(interactive)
(setq spam-stat (make-hash-table :test 'equal)
spam-stat-ngood 0
spam-stat-nbad 0)
(setq spam-stat-dirty t))
;; Scoring buffers
(defvar spam-stat-score-data nil
"Raw data used in the last run of `spam-stat-score-buffer'.")
(defsubst spam-stat-score-word (word)
"Return score for WORD.
The default score for unknown words is stored in
`spam-stat-unknown-word-score'."
(spam-stat-score (gethash word spam-stat)))
(defun spam-stat-buffer-words-with-scores ()
"Process current buffer, return the 15 most conspicuous words.
These are the words whose spam-stat differs the most from 0.5.
The list returned contains elements of the form \(WORD SCORE DIFF),
where DIFF is the difference between SCORE and 0.5."
(let (result score) ;; word
(maphash (lambda (word _ignore)
(setq score (spam-stat-score-word word)
result (cons (list word score (abs (- score 0.5)))
result)))
(spam-stat-buffer-words))
(setq result (sort result (lambda (a b) (< (nth 2 b) (nth 2 a)))))
(setcdr (nthcdr 14 result) nil)
result))
(defun spam-stat-score-buffer ()
"Return a score describing the spam-probability for this buffer.
Add user supplied modifications if supplied."
(interactive) ; helps in debugging.
(setq spam-stat-score-data (spam-stat-buffer-words-with-scores))
(let* ((probs (mapcar #'cadr spam-stat-score-data))
(prod (apply #'* probs))
(score0
(/ prod (+ prod (apply #'* (mapcar (lambda (x) (- 1 x))
probs)))))
(score1s
(condition-case nil
(spam-stat-score-buffer-user score0)
(error nil)))
(ans
(if score1s (+ score0 score1s) score0)))
(when (called-interactively-p 'any)
(message "%S" ans))
ans))
(defun spam-stat-score-buffer-user (&rest args)
(let* ((scores
(mapcar
(lambda (fn)
(apply fn args))
spam-stat-score-buffer-user-functions)))
(if (memq nil scores) nil
(apply #'+ scores))))
(defun spam-stat-split-fancy ()
"Return the name of the spam group if the current mail is spam.
Use this function on `nnmail-split-fancy'. If you are interested in
the raw data used for the last run of `spam-stat-score-buffer',
check the variable `spam-stat-score-data'."
(condition-case err
(progn
(set-buffer spam-stat-buffer)
(goto-char (point-min))
(when (> (spam-stat-score-buffer) spam-stat-split-fancy-spam-threshold)
(when (boundp 'nnmail-split-trace)
(mapc (lambda (entry)
(push entry nnmail-split-trace))
spam-stat-score-data))
spam-stat-split-fancy-spam-group))
(error (message "Error in spam-stat-split-fancy: %S" err)
nil)))
;; Testing
(defun spam-stat-strip-xref ()
"Strip the Xref header."
(save-restriction
(mail-narrow-to-head)
(when (re-search-forward "^Xref:.*\n" nil t)
(delete-region (match-beginning 0) (match-end 0)))))
(autoload 'time-to-number-of-days "time-date")
(defun spam-stat-process-directory (dir func)
"Process all the regular files in directory DIR using function FUNC."
(let* ((files (directory-files dir t "\\`[^.]"))
(max (/ (length files) 100.0))
(count 0))
(with-temp-buffer
(dolist (f files)
(when (and (file-readable-p f)
(file-regular-p f)
(> (file-attribute-size (file-attributes f)) 0)
(< (time-to-number-of-days
(time-since (file-attribute-modification-time
(file-attributes f))))
spam-stat-process-directory-age))
(setq count (1+ count))
(message "Reading %s: %.2f%%" dir (/ count max))
(insert-file-contents-literally f)
(spam-stat-strip-xref)
(funcall func)
(erase-buffer))))))
(defun spam-stat-process-spam-directory (dir)
"Process all the regular files in directory DIR as spam."
(interactive "D")
(spam-stat-process-directory dir 'spam-stat-buffer-is-spam))
(defun spam-stat-process-non-spam-directory (dir)
"Process all the regular files in directory DIR as non-spam."
(interactive "D")
(spam-stat-process-directory dir 'spam-stat-buffer-is-non-spam))
(defun spam-stat-count ()
"Return size of `spam-stat'."
(hash-table-count spam-stat))
(defun spam-stat-test-directory (dir &optional verbose)
"Test all the regular files in directory DIR for spam.
If the result is 1.0, then all files are considered spam.
If the result is 0.0, non of the files is considered spam.
You can use this to determine error rates.
If VERBOSE is non-nil display names of files detected as spam or
non-spam in a temporary buffer. If it is the symbol `ham',
display non-spam files; otherwise display spam files."
(interactive "DDirectory: ")
(let* ((files (directory-files dir t "\\`[^.]"))
display-files
buffer-score
(total (length files))
(score 0.0); float
(max (/ total 100.0)); float
(count 0))
(with-temp-buffer
(dolist (f files)
(when (and (file-readable-p f)
(file-regular-p f)
(> (file-attribute-size (file-attributes f)) 0))
(setq count (1+ count))
(message "Reading %.2f%%, score %.2f"
(/ count max) (/ score count))
(insert-file-contents-literally f)
(setq buffer-score (spam-stat-score-buffer))
(when (> buffer-score 0.9)
(setq score (1+ score)))
(when verbose
(if (> buffer-score 0.9)
(unless (eq verbose 'ham) (push f display-files))
(when (eq verbose 'ham) (push f display-files))))
(erase-buffer))))
(when display-files
(with-output-to-temp-buffer "*spam-stat results*"
(dolist (file display-files)
(princ file)
(terpri))))
(message "Final score: %d / %d = %f" score total (/ score total))))
;; Shrinking the dictionary
(defun spam-stat-reduce-size (&optional count)
"Reduce the size of `spam-stat'.
This removes all words that occur less than COUNT from the dictionary.
COUNT defaults to 5"
(interactive)
(setq count (or count 5))
(maphash (lambda (key entry)
(when (< (+ (spam-stat-good entry)
(spam-stat-bad entry))
count)
(remhash key spam-stat)))
spam-stat)
(setq spam-stat-dirty t))
(defun spam-stat-install-hooks-function ()
"Install the spam-stat function hooks."
(interactive)
(add-hook 'nnmail-prepare-incoming-message-hook
#'spam-stat-store-current-buffer)
(add-hook 'gnus-select-article-hook
#'spam-stat-store-gnus-article-buffer))
(defun spam-stat-unload-hook ()
"Uninstall the spam-stat function hooks."
(interactive)
(remove-hook 'nnmail-prepare-incoming-message-hook
#'spam-stat-store-current-buffer)
(remove-hook 'gnus-select-article-hook
#'spam-stat-store-gnus-article-buffer))
(add-hook 'spam-stat-unload-hook #'spam-stat-unload-hook)
(provide 'spam-stat)
;;; spam-stat.el ends here
|