1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
|
;;; ebnf-otz.el --- syntactic chart OpTimiZer -*- lexical-binding: t; -*-
;; Copyright (C) 1999-2025 Free Software Foundation, Inc.
;; Author: Vinicius Jose Latorre <viniciusjl.gnu@gmail.com>
;; Keywords: text, ebnf, PostScript
;; Old-Version: 1.0
;; Package: ebnf2ps
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;;
;; This is part of ebnf2ps package.
;;
;; This package defines an optimizer for ebnf2ps.
;;
;; See ebnf2ps.el for documentation.
;;
;;
;; Optimizations
;; -------------
;;
;;
;; *To be implemented*:
;; left recursion:
;; A = B | A C B | A C D. ==> A = B {C (B | D)}*.
;;
;; right recursion:
;; A = B | C A. ==> A = {C}* B.
;; A = B | D | C A | E A. ==> A = { C | E }* ( B | D ).
;;
;; optional:
;; A = B | C B. ==> A = [C] B.
;; A = B | B C. ==> A = B [C].
;; A = D | B D | B C D. ==> A = [B [C]] D.
;;
;;
;; *Already implemented*:
;; left recursion:
;; A = B | A C. ==> A = B {C}*.
;; A = B | A B. ==> A = {B}+.
;; A = | A B. ==> A = {B}*.
;; A = B | A C B. ==> A = {B || C}+.
;; A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
;;
;; optional:
;; A = B | . ==> A = [B].
;; A = | B . ==> A = [B].
;;
;; factorization:
;; A = B C | B D. ==> A = B (C | D).
;; A = C B | D B. ==> A = (C | D) B.
;; A = B C E | B D E. ==> A = B (C | D) E.
;;
;; none:
;; A = B | C | . ==> A = B | C | .
;; A = B | C A D. ==> A = B | C A D.
;;
;;
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Code:
(require 'ebnf2ps)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defvar ebnf-empty-rule-list nil
"List of empty rule name.")
(defun ebnf-add-empty-rule-list (rule)
"Add empty RULE in `ebnf-empty-rule-list'."
(and ebnf-ignore-empty-rule
(eq (ebnf-node-kind (ebnf-node-production rule))
'ebnf-generate-empty)
(setq ebnf-empty-rule-list (cons (ebnf-node-name rule)
ebnf-empty-rule-list))))
(defun ebnf-otz-initialize ()
"Initialize optimizer."
(setq ebnf-empty-rule-list nil))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Eliminate empty rules
(defun ebnf-eliminate-empty-rules (syntax-list)
"Eliminate empty rules."
(while ebnf-empty-rule-list
(let ((ebnf-total (length syntax-list))
(ebnf-nprod 0)
(prod-list syntax-list)
new-list before)
(while prod-list
(ebnf-message-info "Eliminating empty rules")
(let ((rule (car prod-list)))
;; if any non-terminal pertains to ebnf-empty-rule-list
;; then eliminate non-terminal from rule
(if (ebnf-eliminate-empty rule)
(setq before prod-list)
;; eliminate empty rule from syntax-list
(setq new-list (cons (ebnf-node-name rule) new-list))
(if before
(setcdr before (cdr prod-list))
(setq syntax-list (cdr syntax-list)))))
(setq prod-list (cdr prod-list)))
(setq ebnf-empty-rule-list new-list)))
syntax-list)
;; [production width-func entry height width name production action]
;; [sequence width-func entry height width list]
;; [alternative width-func entry height width list]
;; [non-terminal width-func entry height width name default]
;; [empty width-func entry height width]
;; [terminal width-func entry height width name default]
;; [special width-func entry height width name default]
(defun ebnf-eliminate-empty (rule)
(let ((kind (ebnf-node-kind rule)))
(cond
;; non-terminal
((eq kind 'ebnf-generate-non-terminal)
(if (member (ebnf-node-name rule) ebnf-empty-rule-list)
nil
rule))
;; sequence
((eq kind 'ebnf-generate-sequence)
(let ((seq (ebnf-node-list rule))
(header (ebnf-node-list rule))
before elt)
(while seq
(setq elt (car seq))
(if (ebnf-eliminate-empty elt)
(setq before seq)
(if before
(setcdr before (cdr seq))
(setq header (cdr header))))
(setq seq (cdr seq)))
(when header
(ebnf-node-list rule header)
rule)))
;; alternative
((eq kind 'ebnf-generate-alternative)
(let ((seq (ebnf-node-list rule))
(header (ebnf-node-list rule))
before elt)
(while seq
(setq elt (car seq))
(if (ebnf-eliminate-empty elt)
(setq before seq)
(if before
(setcdr before (cdr seq))
(setq header (cdr header))))
(setq seq (cdr seq)))
(when header
(if (= (length header) 1)
(car header)
(ebnf-node-list rule header)
rule))))
;; production
((eq kind 'ebnf-generate-production)
(let ((prod (ebnf-eliminate-empty (ebnf-node-production rule))))
(when prod
(ebnf-node-production rule prod)
rule)))
;; terminal, special and empty
(t
rule)
)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Optimizations
;; *To be implemented*:
;; left recursion:
;; A = B | A C B | A C D. ==> A = B {C (B | D)}*.
;; right recursion:
;; A = B | C A. ==> A = {C}* B.
;; A = B | D | C A | E A. ==> A = { C | E }* ( B | D ).
;; optional:
;; A = B | C B. ==> A = [C] B.
;; A = B | B C. ==> A = B [C].
;; A = D | B D | B C D. ==> A = [B [C]] D.
;; *Already implemented*:
;; left recursion:
;; A = B | A C. ==> A = B {C}*.
;; A = B | A B. ==> A = {B}+.
;; A = | A B. ==> A = {B}*.
;; A = B | A C B. ==> A = {B || C}+.
;; A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
;; optional:
;; A = B | . ==> A = [B].
;; A = | B . ==> A = [B].
;; factorization:
;; A = B C | B D. ==> A = B (C | D).
;; A = C B | D B. ==> A = (C | D) B.
;; A = B C E | B D E. ==> A = B (C | D) E.
;; none:
;; A = B | C | . ==> A = B | C | .
;; A = B | C A D. ==> A = B | C A D.
(defun ebnf-optimize (syntax-list)
"Syntactic chart optimizer."
(if (not ebnf-optimize)
syntax-list
(let ((ebnf-total (length syntax-list))
(ebnf-nprod 0)
new)
(while syntax-list
(setq new (cons (ebnf-optimize1 (car syntax-list)) new)
syntax-list (cdr syntax-list)))
(nreverse new))))
;; left recursion:
;; 1. A = B | A C. ==> A = B {C}*.
;; 2. A = B | A B. ==> A = {B}+.
;; 3. A = | A B. ==> A = {B}*.
;; 4. A = B | A C B. ==> A = {B || C}+.
;; 5. A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
;; optional:
;; 6. A = B | . ==> A = [B].
;; 7. A = | B . ==> A = [B].
;; factorization:
;; 8. A = B C | B D. ==> A = B (C | D).
;; 9. A = C B | D B. ==> A = (C | D) B.
;; 10. A = B C E | B D E. ==> A = B (C | D) E.
(defun ebnf-optimize1 (prod)
(ebnf-message-info "Optimizing syntactic chart")
(let ((production (ebnf-node-production prod)))
(and (eq (ebnf-node-kind production) 'ebnf-generate-alternative)
(let* ((hlist (ebnf-split-header-prefix
(ebnf-node-list production)
(ebnf-node-name prod)))
(nlist (car hlist))
(zlist (cdr hlist))
(elist (ebnf-split-header-suffix nlist zlist)))
(ebnf-node-production
prod
(cond
;; cases 2., 4.
(elist
(and (eq elist t)
(setq elist nil))
(setq elist (or (ebnf-prefix-suffix elist)
elist))
(let* ((nl (ebnf-extract-empty nlist))
(el (or (ebnf-prefix-suffix (cdr nl))
(ebnf-create-alternative (cdr nl)))))
(if (car nl)
(ebnf-make-zero-or-more el elist)
(ebnf-make-one-or-more el elist))))
;; cases 1., 3., 5.
(zlist
(let* ((xlist (cdr (ebnf-extract-empty zlist)))
(znode (ebnf-make-zero-or-more
(or (ebnf-prefix-suffix xlist)
(ebnf-create-alternative xlist))))
(nnode (ebnf-map-list-to-optional nlist)))
(and nnode
(setq nlist (list nnode)))
(if (or (null nlist)
(and (= (length nlist) 1)
(eq (ebnf-node-kind (car nlist))
'ebnf-generate-empty)))
znode
(ebnf-make-sequence
(list (or (ebnf-prefix-suffix nlist)
(ebnf-create-alternative nlist))
znode)))))
;; cases 6., 7.
((ebnf-map-node-to-optional production)
)
;; cases 8., 9., 10.
((ebnf-prefix-suffix nlist)
)
;; none
(t
production)
))))
prod))
(defun ebnf-split-header-prefix (node-list header)
(let* ((hlist (ebnf-split-header-prefix1 node-list header))
(nlist (car hlist))
zlist empty-p)
(while (setq hlist (cdr hlist))
(let ((elt (car hlist)))
(if (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
(setq zlist (cons
(let ((seq (cdr (ebnf-node-list elt))))
(if (= (length seq) 1)
(car seq)
(ebnf-node-list elt seq)
elt))
zlist))
(setq empty-p t))))
(and empty-p
(setq zlist (cons (ebnf-make-empty)
zlist)))
(cons nlist (nreverse zlist))))
(defun ebnf-split-header-prefix1 (node-list header)
(let (hlist nlist)
(while node-list
(if (ebnf-node-equal-header (car node-list) header)
(setq hlist (cons (car node-list) hlist))
(setq nlist (cons (car node-list) nlist)))
(setq node-list (cdr node-list)))
(cons (nreverse nlist) (nreverse hlist))))
(defun ebnf-node-equal-header (node header)
(let ((kind (ebnf-node-kind node)))
(cond
((eq kind 'ebnf-generate-sequence)
(ebnf-node-equal-header (car (ebnf-node-list node)) header))
((eq kind 'ebnf-generate-non-terminal)
(string= (ebnf-node-name node) header))
(t
nil)
)))
(defun ebnf-map-node-to-optional (node)
(and (eq (ebnf-node-kind node) 'ebnf-generate-alternative)
(ebnf-map-list-to-optional (ebnf-node-list node))))
(defun ebnf-map-list-to-optional (nlist)
(and (= (length nlist) 2)
(let ((first (nth 0 nlist))
(second (nth 1 nlist)))
(cond
;; empty second
((eq (ebnf-node-kind first) 'ebnf-generate-empty)
(ebnf-make-optional second))
;; first empty
((eq (ebnf-node-kind second) 'ebnf-generate-empty)
(ebnf-make-optional first))
;; first second
(t
nil)
))))
(defun ebnf-extract-empty (elist)
(let ((now elist)
before empty-p)
(while now
(if (not (eq (ebnf-node-kind (car now)) 'ebnf-generate-empty))
(setq before now)
(setq empty-p t)
(if before
(setcdr before (cdr now))
(setq elist (cdr elist))))
(setq now (cdr now)))
(cons empty-p elist)))
(defun ebnf-split-header-suffix (nlist zlist)
(let (new empty-p)
(and (cond
((= (length nlist) 1)
(let ((ok t)
(elt (car nlist)))
(while (and ok zlist)
(setq ok (ebnf-split-header-suffix1 elt (car zlist))
zlist (cdr zlist))
(if (eq ok t)
(setq empty-p t)
(setq new (cons ok new))))
ok))
((= (length nlist) (length zlist))
(let ((ok t))
(while (and ok zlist)
(setq ok (ebnf-split-header-suffix1 (car nlist) (car zlist))
nlist (cdr nlist)
zlist (cdr zlist))
(if (eq ok t)
(setq empty-p t)
(setq new (cons ok new))))
ok))
(t
nil)
)
(let* ((lis (ebnf-unique-list new))
(len (length lis)))
(cond
((zerop len)
t)
((= len 1)
(setq lis (car lis))
(if empty-p
(ebnf-make-optional lis)
lis))
(t
(and empty-p
(setq lis (cons (ebnf-make-empty) lis)))
(ebnf-create-alternative (nreverse lis)))
)))))
(defun ebnf-split-header-suffix1 (ne ze)
(cond
((eq (ebnf-node-kind ne) 'ebnf-generate-sequence)
(and (eq (ebnf-node-kind ze) 'ebnf-generate-sequence)
(let ((nl (ebnf-node-list ne))
(zl (ebnf-node-list ze))
len z)
(and (>= (length zl) (length nl))
(let ((ok t))
(setq len (- (length zl) (length nl))
z (nthcdr len zl))
(while (and ok z)
(setq ok (ebnf-node-equal (car z) (car nl))
z (cdr z)
nl (cdr nl)))
ok)
(if (zerop len)
t
(setcdr (nthcdr (1- len) zl) nil)
ze)))))
((eq (ebnf-node-kind ze) 'ebnf-generate-sequence)
(let* ((zl (ebnf-node-list ze))
(len (length zl)))
(and (ebnf-node-equal ne (car (nthcdr (1- len) zl)))
(cond
((= len 1)
t)
((= len 2)
(car zl))
(t
(setcdr (nthcdr (- len 2) zl) nil)
ze)
))))
(t
(ebnf-node-equal ne ze))
))
(defun ebnf-prefix-suffix (lis)
(and lis (listp lis)
(let* ((prefix (ebnf-split-prefix lis))
(suffix (ebnf-split-suffix (cdr prefix)))
(middle (cdr suffix)))
(setq prefix (car prefix)
suffix (car suffix))
(and (or prefix suffix)
(ebnf-make-sequence
(nconc prefix
(and middle
(list (or (ebnf-map-list-to-optional middle)
(ebnf-create-alternative middle))))
suffix))))))
(defun ebnf-split-prefix (lis)
(let* ((len (length lis))
(tail lis)
(head (if (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence)
(ebnf-node-list (car lis))
(list (car lis))))
(ipre (1+ len)))
;; determine prefix length
(while (and (> ipre 0) (setq tail (cdr tail)))
(let ((cur head)
(this (if (eq (ebnf-node-kind (car tail)) 'ebnf-generate-sequence)
(ebnf-node-list (car tail))
(list (car tail))))
(i 0))
(while (and cur this
(ebnf-node-equal (car cur) (car this)))
(setq cur (cdr cur)
this (cdr this)
i (1+ i)))
(setq ipre (min ipre i))))
(if (or (zerop ipre) (> ipre len))
;; no prefix at all
(cons nil lis)
(let* ((tail (nthcdr ipre head))
;; get prefix
(prefix (progn
(and tail
(setcdr (nthcdr (1- ipre) head) nil))
head))
empty-p before)
;; adjust first element
(if (or (not (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence))
(null tail))
(setq lis (cdr lis)
tail lis
empty-p t)
(if (= (length tail) 1)
(setcar lis (car tail))
(ebnf-node-list (car lis) tail))
(setq tail (cdr lis)))
;; eliminate prefix from lis based on ipre
(while tail
(let ((elt (car tail))
rest)
(if (and (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
(setq rest (nthcdr ipre (ebnf-node-list elt))))
(progn
(if (= (length rest) 1)
(setcar tail (car rest))
(ebnf-node-list elt rest))
(setq before tail))
(setq empty-p t)
(if before
(setcdr before (cdr tail))
(setq lis (cdr lis))))
(setq tail (cdr tail))))
(cons prefix (ebnf-unique-list
(if empty-p
(nconc lis (list (ebnf-make-empty)))
lis)))))))
(defun ebnf-split-suffix (lis)
(let* ((len (length lis))
(tail lis)
(head (nreverse
(if (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence)
(ebnf-node-list (car lis))
(list (car lis)))))
(isuf (1+ len)))
;; determine suffix length
(while (and (> isuf 0) (setq tail (cdr tail)))
(let* ((cur head)
(tlis (reverse
(if (eq (ebnf-node-kind (car tail)) 'ebnf-generate-sequence)
(ebnf-node-list (car tail))
(list (car tail)))))
(this tlis)
(i 0))
(while (and cur this
(ebnf-node-equal (car cur) (car this)))
(setq cur (cdr cur)
this (cdr this)
i (1+ i)))
(setq isuf (min isuf i))))
(setq head (nreverse head))
(if (or (zerop isuf) (> isuf len))
;; no suffix at all
(cons nil lis)
(let* ((n (- (length head) isuf))
;; get suffix
(suffix (nthcdr n head))
(tail (and (> n 0)
(progn
(setcdr (nthcdr (1- n) head) nil)
head)))
before empty-p)
;; adjust first element
(if (or (not (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence))
(null tail))
(setq lis (cdr lis)
tail lis
empty-p t)
(if (= (length tail) 1)
(setcar lis (car tail))
(ebnf-node-list (car lis) tail))
(setq tail (cdr lis)))
;; eliminate suffix from lis based on isuf
(while tail
(let ((elt (car tail))
rest)
(if (and (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
(setq rest (ebnf-node-list elt)
n (- (length rest) isuf))
(> n 0))
(progn
(if (= n 1)
(setcar tail (car rest))
(setcdr (nthcdr (1- n) rest) nil)
(ebnf-node-list elt rest))
(setq before tail))
(setq empty-p t)
(if before
(setcdr before (cdr tail))
(setq lis (cdr lis))))
(setq tail (cdr tail))))
(cons suffix (ebnf-unique-list
(if empty-p
(nconc lis (list (ebnf-make-empty)))
lis)))))))
(defun ebnf-unique-list (nlist)
(let ((current nlist)
before)
(while current
(let ((tail (cdr current))
(head (car current))
remove-p)
(while tail
(if (not (ebnf-node-equal head (car tail)))
(setq tail (cdr tail))
(setq remove-p t
tail nil)
(if before
(setcdr before (cdr current))
(setq nlist (cdr nlist)))))
(or remove-p
(setq before current))
(setq current (cdr current))))
nlist))
(defun ebnf-node-equal (A B)
(let ((kindA (ebnf-node-kind A))
(kindB (ebnf-node-kind B)))
(and (eq kindA kindB)
(cond
;; empty
((eq kindA 'ebnf-generate-empty)
t)
;; non-terminal, terminal, special
((memq kindA '(ebnf-generate-non-terminal
ebnf-generate-terminal
ebnf-generate-special))
(string= (ebnf-node-name A) (ebnf-node-name B)))
;; alternative, sequence
((memq kindA '(ebnf-generate-alternative ; any order
ebnf-generate-sequence)) ; order is important
(let ((listA (ebnf-node-list A))
(listB (ebnf-node-list B)))
(and (= (length listA) (length listB))
(let ((ok t))
(while (and ok listA)
(setq ok (ebnf-node-equal (car listA) (car listB))
listA (cdr listA)
listB (cdr listB)))
ok))))
;; production
((eq kindA 'ebnf-generate-production)
(and (string= (ebnf-node-name A) (ebnf-node-name B))
(ebnf-node-equal (ebnf-node-production A)
(ebnf-node-production B))))
;; otherwise
(t
nil)
))))
(defun ebnf-create-alternative (alt)
(if (> (length alt) 1)
(ebnf-make-alternative alt)
(car alt)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(provide 'ebnf-otz)
;;; ebnf-otz.el ends here
|