1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
;;; cl-lib-tests.el --- tests for emacs-lisp/cl-lib.el -*- lexical-binding:t -*-
;; Copyright (C) 2013-2025 Free Software Foundation, Inc.
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; Extracted from ert-tests.el, back when ert used to reimplement some
;; cl functions.
;;; Code:
(require 'cl-lib)
(require 'ert)
(ert-deftest cl-lib-test-remprop ()
(let ((x (cl-gensym)))
(should (equal (symbol-plist x) '()))
;; Remove nonexistent property on empty plist.
(cl-remprop x 'b)
(should (equal (symbol-plist x) '()))
(put x 'a 1)
(should (equal (symbol-plist x) '(a 1)))
;; Remove nonexistent property on nonempty plist.
(cl-remprop x 'b)
(should (equal (symbol-plist x) '(a 1)))
(put x 'b 2)
(put x 'c 3)
(put x 'd 4)
(should (equal (symbol-plist x) '(a 1 b 2 c 3 d 4)))
;; Remove property that is neither first nor last.
(cl-remprop x 'c)
(should (equal (symbol-plist x) '(a 1 b 2 d 4)))
;; Remove last property from a plist of length >1.
(cl-remprop x 'd)
(should (equal (symbol-plist x) '(a 1 b 2)))
;; Remove first property from a plist of length >1.
(cl-remprop x 'a)
(should (equal (symbol-plist x) '(b 2)))
;; Remove property when there is only one.
(cl-remprop x 'b)
(should (equal (symbol-plist x) '()))))
(ert-deftest cl-lib-test-remove-if-not ()
(let ((list (list 'a 'b 'c 'd))
(i 0))
(let ((result (cl-remove-if-not (lambda (x)
(should (eql x (nth i list)))
(cl-incf i)
(member i '(2 3)))
list)))
(should (equal i 4))
(should (equal result '(b c)))
(should (equal list '(a b c d)))))
(should (equal '()
(cl-remove-if-not (lambda (_x) (should nil)) '()))))
(ert-deftest cl-lib-test-remove ()
(let ((list (list 'a 'b 'c 'd))
(key-index 0)
(test-index 0))
(let ((result
(cl-remove 'foo list
:key (lambda (x)
(should (eql x (nth key-index list)))
(prog1
(list key-index x)
(cl-incf key-index)))
:test
(lambda (a b)
(should (eql a 'foo))
(should (equal b (list test-index
(nth test-index list))))
(cl-incf test-index)
(member test-index '(2 3))))))
(should (equal key-index 4))
(should (equal test-index 4))
(should (equal result '(a d)))
(should (equal list '(a b c d)))))
(let ((x (cons nil nil))
(y (cons nil nil)))
(should (equal (cl-remove x (list x y))
;; or (list x), since we use `equal' -- the
;; important thing is that only one element got
;; removed, this proves that the default test is
;; `eql', not `equal'
(list y)))))
(ert-deftest cl-lib-test-set-functions ()
(let ((c1 (cons nil nil))
(c2 (cons nil nil))
(sym (make-symbol "a")))
(let ((e '())
(a (list 'a 'b sym nil "" "x" c1 c2))
(b (list c1 'y 'b sym 'x)))
(should (equal (cl-set-difference e e) e))
(should (equal (cl-set-difference a e) a))
(should (equal (cl-set-difference e a) e))
(should (equal (cl-set-difference a a) e))
(should (equal (cl-set-difference b e) b))
(should (equal (cl-set-difference e b) e))
(should (equal (cl-set-difference b b) e))
;; Note: this test (and others) is sensitive to the order of the
;; result, which is not documented.
(should (equal (cl-set-difference a b) (list 'a nil "" "x" c2)))
(should (equal (cl-set-difference b a) (list 'y 'x)))
;; We aren't testing whether this is really using `eq' rather than `eql'.
(should (equal (cl-set-difference e e :test 'eq) e))
(should (equal (cl-set-difference a e :test 'eq) a))
(should (equal (cl-set-difference e a :test 'eq) e))
(should (equal (cl-set-difference a a :test 'eq) e))
(should (equal (cl-set-difference b e :test 'eq) b))
(should (equal (cl-set-difference e b :test 'eq) e))
(should (equal (cl-set-difference b b :test 'eq) e))
(should (equal (cl-set-difference a b :test 'eq) (list 'a nil "" "x" c2)))
(should (equal (cl-set-difference b a :test 'eq) (list 'y 'x)))
(should (equal (cl-union e e) e))
(should (equal (cl-union a e) a))
(should (equal (cl-union e a) a))
(should (equal (cl-union a a) a))
(should (equal (cl-union b e) b))
(should (equal (cl-union e b) b))
(should (equal (cl-union b b) b))
(should (equal (cl-union a b) (list 'x 'y 'a 'b sym nil "" "x" c1 c2)))
(should (equal (cl-union b a) (list 'x 'y 'a 'b sym nil "" "x" c1 c2)))
(should (equal (cl-intersection e e) e))
(should (equal (cl-intersection a e) e))
(should (equal (cl-intersection e a) e))
(should (equal (cl-intersection a a) a))
(should (equal (cl-intersection b e) e))
(should (equal (cl-intersection e b) e))
(should (equal (cl-intersection b b) b))
(should (equal (cl-intersection a b) (list sym 'b c1)))
(should (equal (cl-intersection b a) (list sym 'b c1))))))
(ert-deftest cl-lib-test-gensym ()
;; Since the expansion of `should' calls `cl-gensym' and thus has a
;; side-effect on `cl--gensym-counter', we have to make sure all
;; macros in our test body are expanded before we rebind
;; `cl--gensym-counter' and run the body. Otherwise, the test would
;; fail if run interpreted.
(let ((body (byte-compile
'(lambda ()
(should (equal (symbol-name (cl-gensym)) "G0"))
(should (equal (symbol-name (cl-gensym)) "G1"))
(should (equal (symbol-name (cl-gensym)) "G2"))
(should (equal (symbol-name (cl-gensym "foo")) "foo3"))
(should (equal (symbol-name (cl-gensym "bar")) "bar4"))
(should (equal cl--gensym-counter 5))))))
(let ((cl--gensym-counter 0))
(funcall body))))
(ert-deftest cl-lib-test-coerce-to-vector ()
(let* ((a (vector))
(b (vector 1 a 3))
(c (list))
(d (list b a)))
(should (eql (cl-coerce a 'vector) a))
(should (eql (cl-coerce b 'vector) b))
(should (equal (cl-coerce c 'vector) (vector)))
(should (equal (cl-coerce d 'vector) (vector b a)))))
(ert-deftest cl-lib-test-string-position ()
(should (eql (cl-position ?x "") nil))
(should (eql (cl-position ?a "abc") 0))
(should (eql (cl-position ?b "abc") 1))
(should (eql (cl-position ?c "abc") 2))
(should (eql (cl-position ?d "abc") nil))
(should (eql (cl-position ?A "abc") nil)))
(ert-deftest cl-lib-test-mismatch ()
(should (eql (cl-mismatch "" "") nil))
(should (eql (cl-mismatch "" "a") 0))
(should (eql (cl-mismatch "a" "a") nil))
(should (eql (cl-mismatch "ab" "a") 1))
(should (eql (cl-mismatch "Aa" "aA") 0))
(should (eql (cl-mismatch '(a b c) '(a b d)) 2)))
(ert-deftest cl-lib-keyword-names-versus-values ()
(should (equal
(funcall (cl-function (lambda (&key a b) (list a b)))
:b :a :a 42)
'(42 :a))))
(ert-deftest cl-lib-empty-keyargs ()
(should-error (funcall (cl-function (lambda (&key) 1))
:b 1)))
(cl-defstruct (mystruct
(:constructor cl-lib--con-1 (&aux (abc 1)))
(:constructor cl-lib--con-2 (&optional def) "Constructor docstring."))
"General docstring."
(abc 5 :readonly t) (def nil))
(ert-deftest cl-lib-struct-accessors ()
(let ((x (make-mystruct :abc 1 :def 2)))
(should (eql (cl-struct-slot-value 'mystruct 'abc x) 1))
(should (eql (cl-struct-slot-value 'mystruct 'def x) 2))
(setf (cl-struct-slot-value 'mystruct 'def x) -1)
(should (eql (cl-struct-slot-value 'mystruct 'def x) -1))
(should (eql (cl-struct-slot-offset 'mystruct 'abc) 1))
(should-error (cl-struct-slot-offset 'mystruct 'marypoppins))
(should (pcase (cl-struct-slot-info 'mystruct)
(`((cl-tag-slot) (abc 5 :readonly t)
(def . ,(or 'nil '(nil))))
t)))))
(ert-deftest cl-lib-struct-constructors ()
(should (string-match "\\`Constructor docstring."
(documentation 'cl-lib--con-2 t)))
(should (mystruct-p (cl-lib--con-1)))
(should (mystruct-p (cl-lib--con-2))))
(ert-deftest cl-lib-arglist-performance ()
;; An `&aux' should not cause lambda's arglist to be turned into an &rest
;; that's parsed by hand.
(should (equal () (help-function-arglist 'cl-lib--con-1)))
(should (pcase (help-function-arglist 'cl-lib--con-2)
(`(&optional ,_) t))))
(ert-deftest cl-the ()
(should (eql (cl-the integer 42) 42))
(should-error (cl-the integer "abc"))
(let ((side-effect 0))
(should (= (cl-the integer (cl-incf side-effect)) 1))
(should (= side-effect 1))))
(ert-deftest cl-lib-test-incf ()
(let ((var 0))
(should (= (cl-incf var) 1))
(should (= var 1)))
(let ((alist))
(should (= (cl-incf (alist-get 'a alist 0)) 1))
(should (= (alist-get 'a alist 0) 1))))
(ert-deftest cl-lib-test-decf ()
(let ((var 1))
(should (= (cl-decf var) 0))
(should (= var 0)))
(let ((alist))
(should (= (cl-decf (alist-get 'a alist 0)) -1))
(should (= (alist-get 'a alist 0) -1))))
(ert-deftest cl-lib-test-plusp ()
(should-not (cl-plusp -1.0e+INF))
(should-not (cl-plusp -1.5e2))
(should-not (cl-plusp -3.14))
(should-not (cl-plusp -1))
(should-not (cl-plusp -0.0))
(should-not (cl-plusp 0))
(should-not (cl-plusp 0.0))
(should-not (cl-plusp -0.0e+NaN))
(should-not (cl-plusp 0.0e+NaN))
(should (cl-plusp 1))
(should (cl-plusp 3.14))
(should (cl-plusp 1.5e2))
(should (cl-plusp 1.0e+INF))
(should-error (cl-plusp "42") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-minusp ()
(should (cl-minusp -1.0e+INF))
(should (cl-minusp -1.5e2))
(should (cl-minusp -3.14))
(should (cl-minusp -1))
(should-not (cl-minusp -0.0))
(should-not (cl-minusp 0))
(should-not (cl-minusp 0.0))
(should-not (cl-minusp -0.0e+NaN))
(should-not (cl-minusp 0.0e+NaN))
(should-not (cl-minusp 1))
(should-not (cl-minusp 3.14))
(should-not (cl-minusp 1.5e2))
(should-not (cl-minusp 1.0e+INF))
(should-error (cl-minusp "-42") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-oddp ()
(should (cl-oddp -3))
(should (cl-oddp 3))
(should-not (cl-oddp -2))
(should-not (cl-oddp 0))
(should-not (cl-oddp 2))
(should-error (cl-oddp 3.0e+NaN) :type 'wrong-type-argument)
(should-error (cl-oddp 3.0) :type 'wrong-type-argument)
(should-error (cl-oddp "3") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-evenp ()
(should (cl-evenp -2))
(should (cl-evenp 0))
(should (cl-evenp 2))
(should-not (cl-evenp -3))
(should-not (cl-evenp 3))
(should-error (cl-evenp 2.0e+NaN) :type 'wrong-type-argument)
(should-error (cl-evenp 2.0) :type 'wrong-type-argument)
(should-error (cl-evenp "2") :type 'wrong-type-argument))
(ert-deftest cl-digit-char-p ()
(should (eql 3 (cl-digit-char-p ?3)))
(should (eql 10 (cl-digit-char-p ?a 11)))
(should (eql 10 (cl-digit-char-p ?A 11)))
(should-not (cl-digit-char-p ?a))
(should (eql 32 (cl-digit-char-p ?w 36)))
(should-error (cl-digit-char-p ?a 37) :type 'args-out-of-range)
(should-error (cl-digit-char-p ?a 1) :type 'args-out-of-range))
(ert-deftest cl-lib-test-first ()
(should (null (cl-first '())))
(should (= 4 (cl-first '(4))))
(should (= 4 (cl-first '(4 2))))
(should-error (cl-first "42") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-second ()
(should (null (cl-second '())))
(should (null (cl-second '(4))))
(should (= 2 (cl-second '(1 2))))
(should (= 2 (cl-second '(1 2 3))))
(should-error (cl-second "1 2 3") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-third ()
(should (null (cl-third '())))
(should (null (cl-third '(1 2))))
(should (= 3 (cl-third '(1 2 3))))
(should (= 3 (cl-third '(1 2 3 4))))
(should-error (cl-third "123") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-fourth ()
(should (null (cl-fourth '())))
(should (null (cl-fourth '(1 2 3))))
(should (= 4 (cl-fourth '(1 2 3 4))))
(should (= 4 (cl-fourth '(1 2 3 4 5))))
(should-error (cl-fourth "1234") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-fifth ()
(should (null (cl-fifth '())))
(should (null (cl-fifth '(1 2 3 4))))
(should (= 5 (cl-fifth '(1 2 3 4 5))))
(should (= 5 (cl-fifth '(1 2 3 4 5 6))))
(should-error (cl-fifth "12345") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-sixth ()
(should (null (cl-sixth '())))
(should (null (cl-sixth '(1 2 3 4 5))))
(should (= 6 (cl-sixth '(1 2 3 4 5 6))))
(should (= 6 (cl-sixth '(1 2 3 4 5 6 7))))
(should-error (cl-sixth "123456") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-seventh ()
(should (null (cl-seventh '())))
(should (null (cl-seventh '(1 2 3 4 5 6))))
(should (= 7 (cl-seventh '(1 2 3 4 5 6 7))))
(should (= 7 (cl-seventh '(1 2 3 4 5 6 7 8))))
(should-error (cl-seventh "1234567") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-eighth ()
(should (null (cl-eighth '())))
(should (null (cl-eighth '(1 2 3 4 5 6 7))))
(should (= 8 (cl-eighth '(1 2 3 4 5 6 7 8))))
(should (= 8 (cl-eighth '(1 2 3 4 5 6 7 8 9))))
(should-error (cl-eighth "12345678") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-ninth ()
(should (null (cl-ninth '())))
(should (null (cl-ninth '(1 2 3 4 5 6 7 8))))
(should (= 9 (cl-ninth '(1 2 3 4 5 6 7 8 9))))
(should (= 9 (cl-ninth '(1 2 3 4 5 6 7 8 9 10))))
(should-error (cl-ninth "123456789") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-tenth ()
(should (null (cl-tenth '())))
(should (null (cl-tenth '(1 2 3 4 5 6 7 8 9))))
(should (= 10 (cl-tenth '(1 2 3 4 5 6 7 8 9 10))))
(should (= 10 (cl-tenth '(1 2 3 4 5 6 7 8 9 10 11))))
(should-error (cl-tenth "1234567890") :type 'wrong-type-argument))
(ert-deftest cl-lib-test-endp ()
(should (cl-endp '()))
(should-not (cl-endp '(1)))
(should-error (cl-endp 1) :type 'wrong-type-argument)
(should-error (cl-endp [1]) :type 'wrong-type-argument))
(ert-deftest cl-lib-test-nth-value ()
(let ((vals (cl-values 2 3)))
(should (= (cl-nth-value 0 vals) 2))
(should (= (cl-nth-value 1 vals) 3))
(should (null (cl-nth-value 2 vals)))
(should-error (cl-nth-value 0.0 vals) :type 'wrong-type-argument)))
(ert-deftest cl-lib-nth-value-test-multiple-values ()
"While CL multiple values are an alias to list, these won't work."
:expected-result :failed
(should (equal (cl-nth-value 0 '(2 3)) '(2 3)))
(should (= (cl-nth-value 0 1) 1))
(should (null (cl-nth-value 1 1)))
(should-error (cl-nth-value -1 (cl-values 2 3)) :type 'args-out-of-range)
(should (string= (cl-nth-value 0 "only lists") "only lists")))
(ert-deftest cl-test-ldiff ()
(let ((l '(1 2 3)))
(should (null (cl-ldiff '() '())))
(should (null (cl-ldiff '() l)))
(should (null (cl-ldiff l l)))
(should (equal l (cl-ldiff l '())))
;; must be part of the list
(should (equal l (cl-ldiff l '(2 3))))
(should (equal '(1) (cl-ldiff l (nthcdr 1 l))))
;; should return a copy
(should-not (eq (cl-ldiff l '()) l))))
(ert-deftest cl-lib-adjoin-test ()
(let ((nums '(1 2))
(myfn-p '=))
;; add non-existing item to the front
(should (equal '(3 1 2) (cl-adjoin 3 nums)))
;; just add - don't copy rest
(should (eq nums (cdr (cl-adjoin 3 nums))))
;; add only when not already there
(should (eq nums (cl-adjoin 2 nums)))
(with-suppressed-warnings ((suspicious memql))
(should (equal '(2 1 (2)) (cl-adjoin 2 '(1 (2))))))
;; default test function is eql
(should (equal '(1.0 1 2) (cl-adjoin 1.0 nums)))
;; own :test function - returns true if match
(should (equal '(1.0 1 2) (cl-adjoin 1.0 nums :test nil))) ;defaults to eql
(should (eq nums (cl-adjoin 2 nums :test myfn-p))) ;match
(should (equal '(3 1 2) (cl-adjoin 3 nums :test myfn-p))) ;no match
;; own :test-not function - returns false if match
(should (equal '(1.0 1 2) (cl-adjoin 1.0 nums :test-not nil))) ;defaults to eql
(should (equal '(2 2) (cl-adjoin 2 '(2) :test-not myfn-p))) ; no match
(should (eq nums (cl-adjoin 2 nums :test-not myfn-p))) ; 1 matches
(should (eq nums (cl-adjoin 3 nums :test-not myfn-p))) ; 1 and 2 matches
;; according to CLtL2 passing both :test and :test-not should signal error
;;(should-error (cl-adjoin 3 nums :test 'myfn-p :test-not myfn-p))
;; own :key fn
(should (eq nums (cl-adjoin 3 nums :key (lambda (x) (if (cl-evenp x) (1+ x) x)))))
(should (equal '(3 1 2) (cl-adjoin 3 nums :key (lambda (x) (if (cl-evenp x) (+ 2 x) x)))))
;; convert using :key, then compare with :test
(should (eq nums (cl-adjoin 1 nums :key 'int-to-string :test 'string=)))
(should (equal '(3 1 2) (cl-adjoin 3 nums :key 'int-to-string :test 'string=)))
(should-error (cl-adjoin 3 nums :key 'int-to-string :test myfn-p)
:type 'wrong-type-argument)
;; convert using :key, then compare with :test-not
(should (eq nums (cl-adjoin 3 nums :key 'int-to-string :test-not 'string=)))
(should (equal '(1 1) (cl-adjoin 1 '(1) :key 'int-to-string :test-not 'string=)))
(should-error (cl-adjoin 1 nums :key 'int-to-string :test-not myfn-p)
:type 'wrong-type-argument)))
(ert-deftest cl-parse-integer ()
(should-error (cl-parse-integer "abc"))
(should (null (cl-parse-integer "abc" :junk-allowed t)))
(should (null (cl-parse-integer "" :junk-allowed t)))
(should (= 342391 (cl-parse-integer "0123456789" :radix 8 :junk-allowed t)))
(should-error (cl-parse-integer "0123456789" :radix 8))
(should (= -239 (cl-parse-integer "-efz" :radix 16 :junk-allowed t)))
(should-error (cl-parse-integer "efz" :radix 16))
(should (= 239 (cl-parse-integer "zzef" :radix 16 :start 2)))
(should (= -123 (cl-parse-integer " -123 "))))
(ert-deftest cl-flet-test ()
(should (equal (cl-flet ((f1 (x) x)) (let ((x #'f1)) (funcall x 5))) 5)))
(ert-deftest cl-lib-test-typep ()
(cl-deftype cl-lib-test-type (&optional x) `(member ,x))
;; Make sure we correctly implement the rule that deftype's optional args
;; default to `*' rather than to nil.
(should (cl-typep '* 'cl-lib-test-type))
(should-not (cl-typep 1 'cl-lib-test-type)))
(ert-deftest cl-lib-symbol-macrolet ()
;; bug#26325
(should (equal (cl-flet ((f (x) (+ x 5)))
(let ((x 5))
(f (+ x 6))))
;; Go through `eval', otherwise the macro-expansion
;; error prevents running the whole test suite :-(
(eval '(cl-symbol-macrolet ((f (+ x 6)))
(cl-flet ((f (x) (+ x 5)))
(let ((x 5))
(f f))))
t))))
(defmacro cl-lib-symbol-macrolet-4+5 ()
;; bug#26068
(let* ((sname "x")
(s1 (make-symbol sname))
(s2 (make-symbol sname)))
`(cl-symbol-macrolet ((,s1 4)
(,s2 5))
(+ ,s1 ,s2))))
(ert-deftest cl-lib-symbol-macrolet-2 ()
(should (equal (cl-lib-symbol-macrolet-4+5) (+ 4 5))))
(ert-deftest cl-lib-symbol-macrolet-hide ()
;; bug#26325, bug#26073
(should (equal (let ((y 5))
(cl-symbol-macrolet ((x y))
(list x
(let ((x 6)) (list x y))
(cl-letf ((x 6)) (list x y))
(apply (lambda (x) (+ x 1)) (list 8)))))
'(5 (6 5) (6 6) 9))))
(ert-deftest cl-lib-defstruct-record ()
(cl-defstruct foo x)
(let ((x (make-foo :x 42)))
(should (recordp x))
(should (eq (type-of x) 'foo))
(should (eql (foo-x x) 42))))
(ert-deftest old-struct ()
(cl-defstruct foo x)
(with-suppressed-warnings ((obsolete cl-old-struct-compat-mode))
(let ((x (vector 'cl-struct-foo))
(saved cl-old-struct-compat-mode))
(cl-old-struct-compat-mode -1)
(should (eq (type-of x) 'vector))
(cl-old-struct-compat-mode 1)
(defvar cl-struct-foo)
(let ((cl-struct-foo (cl--struct-get-class 'foo)))
(setf (symbol-function 'cl-struct-foo) :quick-object-witness-check)
(should (eq (type-of x) 'foo))
(should (eq (type-of (vector 'foo)) 'vector)))
(cl-old-struct-compat-mode (if saved 1 -1)))))
(ert-deftest cl-lib-old-struct ()
(with-suppressed-warnings ((obsolete cl-old-struct-compat-mode))
(let ((saved cl-old-struct-compat-mode))
(cl-old-struct-compat-mode -1)
(cl-struct-define 'foo "" 'cl-structure-object nil nil nil
'cl-struct-foo-tags 'cl-struct-foo t)
(should cl-old-struct-compat-mode)
(cl-old-struct-compat-mode (if saved 1 -1)))))
(ert-deftest cl-constantly ()
(should (equal (mapcar (cl-constantly 3) '(a b c d))
'(3 3 3 3))))
;;; cl-lib-tests.el ends here
|