1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
  
     | 
    
      ;;; gomoku.el --- Gomoku game between you and Emacs
;; Copyright (C) 1988, 1994, 1996 Free Software Foundation, Inc.
;; Author: Philippe Schnoebelen <phs@lifia.imag.fr>
;; Adapted-By: ESR, Daniel.Pfeiffer@Informatik.START.dbp.de
;; Keywords: games
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING.  If not, write to the
;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.
;;; Commentary:
;; RULES:
;;
;; Gomoku is a game played between two players on a rectangular board.	Each
;; player, in turn, marks a free square of its choice. The winner is the first
;; one to mark five contiguous squares in any direction (horizontally,
;; vertically or diagonally).
;;
;; I have been told that, in "The TRUE Gomoku", some restrictions are made
;; about the squares where one may play, or else there is a known forced win
;; for the first player. This program has no such restriction, but it does not
;; know about the forced win, nor do I.	 Furthermore, you probably do not know
;; it yourself :-).
;; There are two main places where you may want to customize the program: key
;; bindings and board display. These features are commented in the code. Go
;; and see.
;; HOW TO USE:
;;
;; The command "M-x gomoku" displays a
;; board, the size of which depends on the size of the current window. The
;; size of the board is easily modified by giving numeric arguments to the
;; gomoku command and/or by customizing the displaying parameters.
;;
;; Emacs plays when it is its turn. When it is your turn, just put the cursor
;; on the square where you want to play and hit RET, or X, or whatever key you
;; bind to the command gomoku-human-plays. When it is your turn, Emacs is
;; idle: you may switch buffers, read your mail, ... Just come back to the
;; *Gomoku* buffer and resume play.
;; ALGORITHM:
;;
;; The algorithm is briefly described in section "THE SCORE TABLE". Some
;; parameters may be modified if you want to change the style exhibited by the
;; program.
;;; Code:
;;;
;;; GOMOKU MODE AND KEYMAP.
;;;
(defvar gomoku-mode-hook nil
  "If non-nil, its value is called on entry to Gomoku mode.")
(defvar gomoku-mode-map nil
  "Local keymap to use in Gomoku mode.")
(if gomoku-mode-map nil
  (setq gomoku-mode-map (make-sparse-keymap))
  ;; Key bindings for cursor motion.
  (define-key gomoku-mode-map "y" 'gomoku-move-nw)		; y
  (define-key gomoku-mode-map "u" 'gomoku-move-ne)		; u
  (define-key gomoku-mode-map "b" 'gomoku-move-sw)		; b
  (define-key gomoku-mode-map "n" 'gomoku-move-se)		; n
  (define-key gomoku-mode-map "h" 'backward-char)		; h
  (define-key gomoku-mode-map "l" 'forward-char)		; l
  (define-key gomoku-mode-map "j" 'gomoku-move-down)		; j
  (define-key gomoku-mode-map "k" 'gomoku-move-up)		; k
  (define-key gomoku-mode-map [kp-7] 'gomoku-move-nw)
  (define-key gomoku-mode-map [kp-9] 'gomoku-move-ne)
  (define-key gomoku-mode-map [kp-1] 'gomoku-move-sw)
  (define-key gomoku-mode-map [kp-3] 'gomoku-move-se)
  (define-key gomoku-mode-map [kp-4] 'backward-char)
  (define-key gomoku-mode-map [kp-6] 'forward-char)
  (define-key gomoku-mode-map [kp-2] 'gomoku-move-down)
  (define-key gomoku-mode-map [kp-8] 'gomoku-move-up)
  (define-key gomoku-mode-map "\C-n" 'gomoku-move-down)		; C-n
  (define-key gomoku-mode-map "\C-p" 'gomoku-move-up)		; C-p
  ;; Key bindings for entering Human moves.
  (define-key gomoku-mode-map "X" 'gomoku-human-plays)		; X
  (define-key gomoku-mode-map "x" 'gomoku-human-plays)		; x
  (define-key gomoku-mode-map " " 'gomoku-human-plays)		; SPC
  (define-key gomoku-mode-map "\C-m" 'gomoku-human-plays)	; RET
  (define-key gomoku-mode-map "\C-c\C-p" 'gomoku-human-plays)	; C-c C-p
  (define-key gomoku-mode-map "\C-c\C-b" 'gomoku-human-takes-back) ; C-c C-b
  (define-key gomoku-mode-map "\C-c\C-r" 'gomoku-human-resigns)	; C-c C-r
  (define-key gomoku-mode-map "\C-c\C-e" 'gomoku-emacs-plays)	; C-c C-e
  (define-key gomoku-mode-map [kp-enter] 'gomoku-human-plays)
  (define-key gomoku-mode-map [insert] 'gomoku-human-plays)
  (define-key gomoku-mode-map [down-mouse-1] 'gomoku-click)
  (define-key gomoku-mode-map [drag-mouse-1] 'gomoku-click)
  (define-key gomoku-mode-map [mouse-1] 'gomoku-click)
  (define-key gomoku-mode-map [down-mouse-2] 'gomoku-click)
  (define-key gomoku-mode-map [mouse-2] 'gomoku-mouse-play)
  (define-key gomoku-mode-map [drag-mouse-2] 'gomoku-mouse-play)
  (substitute-key-definition 'previous-line 'gomoku-move-up
			     gomoku-mode-map (current-global-map))
  (substitute-key-definition 'next-line 'gomoku-move-down
			     gomoku-mode-map (current-global-map))
  (substitute-key-definition 'beginning-of-line 'gomoku-beginning-of-line
			     gomoku-mode-map (current-global-map))
  (substitute-key-definition 'end-of-line 'gomoku-end-of-line
			     gomoku-mode-map (current-global-map))
  (substitute-key-definition 'undo 'gomoku-human-takes-back
			     gomoku-mode-map (current-global-map))
  (substitute-key-definition 'advertised-undo 'gomoku-human-takes-back
			     gomoku-mode-map (current-global-map)))
(defvar gomoku-emacs-won ()
  "*For making font-lock use the winner's face for the line.")
(defvar gomoku-font-lock-O-face
  (if window-system
      (list (facemenu-get-face 'fg:red) 'bold))
  "*Face to use for Emacs' O.")
(defvar gomoku-font-lock-X-face
  (if window-system
      (list (facemenu-get-face 'fg:green) 'bold))
  "*Face to use for your X.")
(defvar gomoku-font-lock-keywords
  '(("O" . gomoku-font-lock-O-face)
    ("X" . gomoku-font-lock-X-face)
    ("[-|/\\]" 0 (if gomoku-emacs-won
		     gomoku-font-lock-O-face
		   gomoku-font-lock-X-face)))
  "*Font lock rules for Gomoku.")
(put 'gomoku-mode 'front-sticky
     (put 'gomoku-mode 'rear-nonsticky '(intangible)))
(put 'gomoku-mode 'intangible 1)
(defun gomoku-mode ()
  "Major mode for playing Gomoku against Emacs.
You and Emacs play in turn by marking a free square.  You mark it with X
and Emacs marks it with O.  The winner is the first to get five contiguous
marks horizontally, vertically or in diagonal.
You play by moving the cursor over the square you choose and hitting \\[gomoku-human-plays].
Other useful commands:
\\{gomoku-mode-map}
Entry to this mode calls the value of `gomoku-mode-hook' if that value
is non-nil.  One interesting value is `turn-on-font-lock'."
  (interactive)
  (setq major-mode 'gomoku-mode
	mode-name "Gomoku")
  (gomoku-display-statistics)
  (use-local-map gomoku-mode-map)
  (make-local-variable 'font-lock-defaults)
  (setq font-lock-defaults '(gomoku-font-lock-keywords t))
  (toggle-read-only t)
  (run-hooks 'gomoku-mode-hook))
;;;
;;; THE BOARD.
;;;
;; The board is a rectangular grid. We code empty squares with 0, X's with 1
;; and O's with 6. The rectangle is recorded in a one dimensional vector
;; containing padding squares (coded with -1). These squares allow us to
;; detect when we are trying to move out of the board.	We denote a square by
;; its (X,Y) coords, or by the INDEX corresponding to them in the vector.  The
;; leftmost topmost square has coords (1,1) and index gomoku-board-width + 2.
;; Similarly, vectors between squares may be given by two DX, DY coords or by
;; one DEPL (the difference between indexes).
(defvar gomoku-board-width nil
  "Number of columns on the Gomoku board.")
(defvar gomoku-board-height nil
  "Number of lines on the Gomoku board.")
(defvar gomoku-board nil
  "Vector recording the actual state of the Gomoku board.")
(defvar gomoku-vector-length nil
  "Length of gomoku-board vector.")
(defvar gomoku-draw-limit nil
  ;; This is usually set to 70% of the number of squares.
  "After how many moves will Emacs offer a draw?")
(defun gomoku-xy-to-index (x y)
  "Translate X, Y cartesian coords into the corresponding board index."
  (+ (* y gomoku-board-width) x y))
(defun gomoku-index-to-x (index)
  "Return corresponding x-coord of board INDEX."
  (% index (1+ gomoku-board-width)))
(defun gomoku-index-to-y (index)
  "Return corresponding y-coord of board INDEX."
  (/ index (1+ gomoku-board-width)))
(defun gomoku-init-board ()
  "Create the gomoku-board vector and fill it with initial values."
  (setq gomoku-board (make-vector gomoku-vector-length 0))
  ;; Every square is 0 (i.e. empty) except padding squares:
  (let ((i 0) (ii (1- gomoku-vector-length)))
    (while (<= i gomoku-board-width)	; The squares in [0..width] and in
      (aset gomoku-board i  -1)		;    [length - width - 1..length - 1]
      (aset gomoku-board ii -1)		;    are padding squares.
      (setq i  (1+ i)
	    ii (1- ii))))
  (let ((i 0))
    (while (< i gomoku-vector-length)
      (aset gomoku-board i -1)		; and also all k*(width+1)
      (setq i (+ i gomoku-board-width 1)))))
;;;
;;; THE SCORE TABLE.
;;;
;; Every (free) square has a score associated to it, recorded in the
;; GOMOKU-SCORE-TABLE vector. The program always plays in the square having
;; the highest score.
(defvar gomoku-score-table nil
  "Vector recording the actual score of the free squares.")
;; The key point point about the algorithm is that, rather than considering
;; the board as just a set of squares, we prefer to see it as a "space" of
;; internested 5-tuples of contiguous squares (called qtuples).
;;
;; The aim of the program is to fill one qtuple with its O's while preventing
;; you from filling another one with your X's. To that effect, it computes a
;; score for every qtuple, with better qtuples having better scores. Of
;; course, the score of a qtuple (taken in isolation) is just determined by
;; its contents as a set, i.e. not considering the order of its elements. The
;; highest score is given to the "OOOO" qtuples because playing in such a
;; qtuple is winning the game. Just after this comes the "XXXX" qtuple because
;; not playing in it is just loosing the game, and so on. Note that a
;; "polluted" qtuple, i.e. one containing at least one X and at least one O,
;; has score zero because there is no more any point in playing in it, from
;; both an attacking and a defending point of view.
;;
;; Given the score of every qtuple, the score of a given free square on the
;; board is just the sum of the scores of all the qtuples to which it belongs,
;; because playing in that square is playing in all its containing qtuples at
;; once. And it is that function which takes into account the internesting of
;; the qtuples.
;;
;; This algorithm is rather simple but anyway it gives a not so dumb level of
;; play. It easily extends to "n-dimensional Gomoku", where a win should not
;; be obtained with as few as 5 contiguous marks: 6 or 7 (depending on n !)
;; should be preferred.
;; Here are the scores of the nine "non-polluted" configurations.  Tuning
;; these values will change (hopefully improve) the strength of the program
;; and may change its style (rather aggressive here).
(defconst nil-score	  7  "Score of an empty qtuple.")
(defconst Xscore	 15  "Score of a qtuple containing one X.")
(defconst XXscore	400  "Score of a qtuple containing two X's.")
(defconst XXXscore     1800  "Score of a qtuple containing three X's.")
(defconst XXXXscore  100000  "Score of a qtuple containing four X's.")
(defconst Oscore	 35  "Score of a qtuple containing one O.")
(defconst OOscore	800  "Score of a qtuple containing two O's.")
(defconst OOOscore    15000  "Score of a qtuple containing three O's.")
(defconst OOOOscore  800000  "Score of a qtuple containing four O's.")
;; These values are not just random: if, given the following situation:
;;
;;			  . . . . . . . O .
;;			  . X X a . . . X .
;;			  . . . X . . . X .
;;			  . . . X . . . X .
;;			  . . . . . . . b .
;;
;; you want Emacs to play in "a" and not in "b", then the parameters must
;; satisfy the inequality:
;;
;;		   6 * XXscore > XXXscore + XXscore
;;
;; because "a" mainly belongs to six "XX" qtuples (the others are less
;; important) while "b" belongs to one "XXX" and one "XX" qtuples.  Other
;; conditions are required to obtain sensible moves, but the previous example
;; should illustrate the point. If you manage to improve on these values,
;; please send me a note. Thanks.
;; As we chose values 0, 1 and 6 to denote empty, X and O squares, the
;; contents of a qtuple are uniquely determined by the sum of its elements and
;; we just have to set up a translation table.
(defconst gomoku-score-trans-table
  (vector nil-score Xscore XXscore XXXscore XXXXscore 0
	  Oscore    0	   0	   0	    0	      0
	  OOscore   0	   0	   0	    0	      0
	  OOOscore  0	   0	   0	    0	      0
	  OOOOscore 0	   0	   0	    0	      0
	  0)
  "Vector associating qtuple contents to their score.")
;; If you do not modify drastically the previous constants, the only way for a
;; square to have a score higher than OOOOscore is to belong to a "OOOO"
;; qtuple, thus to be a winning move. Similarly, the only way for a square to
;; have a score between XXXXscore and OOOOscore is to belong to a "XXXX"
;; qtuple. We may use these considerations to detect when a given move is
;; winning or loosing.
(defconst gomoku-winning-threshold OOOOscore
  "Threshold score beyond which an Emacs move is winning.")
(defconst gomoku-loosing-threshold XXXXscore
  "Threshold score beyond which a human move is winning.")
(defun gomoku-strongest-square ()
  "Compute index of free square with highest score, or nil if none."
  ;; We just have to loop other all squares. However there are two problems:
  ;; 1/ The SCORE-TABLE only gives correct scores to free squares. To speed
  ;;	up future searches, we set the score of padding or occupied squares
  ;;	to -1 whenever we meet them.
  ;; 2/ We want to choose randomly between equally good moves.
  (let ((score-max 0)
	(count	   0)			; Number of equally good moves
	(square	   (gomoku-xy-to-index 1 1)) ; First square
	(end	   (gomoku-xy-to-index gomoku-board-width gomoku-board-height))
	best-square score)
    (while (<= square end)
      (cond
       ;; If score is lower (i.e. most of the time), skip to next:
       ((< (aref gomoku-score-table square) score-max))
       ;; If score is better, beware of non free squares:
       ((> (setq score (aref gomoku-score-table square)) score-max)
	(if (zerop (aref gomoku-board square)) ; is it free ?
	    (setq count 1		       ; yes: take it !
		  best-square square
		  score-max   score)
	    (aset gomoku-score-table square -1))) ; no: kill it !
       ;; If score is equally good, choose randomly. But first check freeness:
       ((not (zerop (aref gomoku-board square)))
	(aset gomoku-score-table square -1))
       ((zerop (random (setq count (1+ count))))
	(setq best-square square
	      score-max	  score)))
      (setq square (1+ square)))	; try next square
    best-square))
;;;
;;; INITIALIZING THE SCORE TABLE.
;;;
;; At initialization the board is empty so that every qtuple amounts for
;; nil-score. Therefore, the score of any square is nil-score times the number
;; of qtuples that pass through it. This number is 3 in a corner and 20 if you
;; are sufficiently far from the sides. As computing the number is time
;; consuming, we initialize every square with 20*nil-score and then only
;; consider squares at less than 5 squares from one side. We speed this up by
;; taking symmetry into account.
;; Also, as it is likely that successive games will be played on a board with
;; same size, it is a good idea to save the initial SCORE-TABLE configuration.
(defvar gomoku-saved-score-table nil
  "Recorded initial value of previous score table.")
(defvar gomoku-saved-board-width nil
  "Recorded value of previous board width.")
(defvar gomoku-saved-board-height nil
  "Recorded value of previous board height.")
(defun gomoku-init-score-table ()
  "Create the score table vector and fill it with initial values."
  (if (and gomoku-saved-score-table	; Has it been stored last time ?
	   (= gomoku-board-width  gomoku-saved-board-width)
	   (= gomoku-board-height gomoku-saved-board-height))
      (setq gomoku-score-table (copy-sequence gomoku-saved-score-table))
      ;; No, compute it:
      (setq gomoku-score-table
	    (make-vector gomoku-vector-length (* 20 nil-score)))
      (let (i j maxi maxj maxi2 maxj2)
	(setq maxi  (/ (1+ gomoku-board-width) 2)
	      maxj  (/ (1+ gomoku-board-height) 2)
	      maxi2 (min 4 maxi)
	      maxj2 (min 4 maxj))
	;; We took symmetry into account and could use it more if the board
	;; would have been square and not rectangular !
	;; In our case we deal with all (i,j) in the set [1..maxi2]*[1..maxj] U
	;; [maxi2+1..maxi]*[1..maxj2]. Maxi2 and maxj2 are used because the
	;; board may well be less than 8 by 8 !
	(setq i 1)
	(while (<= i maxi2)
	  (setq j 1)
	  (while (<= j maxj)
	    (gomoku-init-square-score i j)
	    (setq j (1+ j)))
	  (setq i (1+ i)))
	(while (<= i maxi)
	  (setq j 1)
	  (while (<= j maxj2)
	    (gomoku-init-square-score i j)
	    (setq j (1+ j)))
	  (setq i (1+ i))))
      (setq gomoku-saved-score-table  (copy-sequence gomoku-score-table)
	    gomoku-saved-board-width  gomoku-board-width
	    gomoku-saved-board-height gomoku-board-height)))
(defun gomoku-nb-qtuples (i j)
  "Return the number of qtuples containing square I,J."
  ;; This function is complicated because we have to deal
  ;; with ugly cases like 3 by 6 boards, but it works.
  ;; If you have a simpler (and correct) solution, send it to me. Thanks !
  (let ((left  (min 4 (1- i)))
	(right (min 4 (- gomoku-board-width i)))
	(up    (min 4 (1- j)))
	(down  (min 4 (- gomoku-board-height j))))
    (+ -12
       (min (max (+ left right) 3) 8)
       (min (max (+ up down) 3) 8)
       (min (max (+ (min left up) (min right down)) 3) 8)
       (min (max (+ (min right up) (min left down)) 3) 8))))
(defun gomoku-init-square-score (i j)
  "Give initial score to square I,J and to its mirror images."
  (let ((ii (1+ (- gomoku-board-width i)))
	(jj (1+ (- gomoku-board-height j)))
	(sc (* (gomoku-nb-qtuples i j) (aref gomoku-score-trans-table 0))))
    (aset gomoku-score-table (gomoku-xy-to-index i  j)	sc)
    (aset gomoku-score-table (gomoku-xy-to-index ii j)	sc)
    (aset gomoku-score-table (gomoku-xy-to-index i  jj) sc)
    (aset gomoku-score-table (gomoku-xy-to-index ii jj) sc)))
;;;
;;; MAINTAINING THE SCORE TABLE.
;;;
;; We do not provide functions for computing the SCORE-TABLE given the
;; contents of the BOARD. This would involve heavy nested loops, with time
;; proportional to the size of the board. It is better to update the
;; SCORE-TABLE after each move. Updating needs not modify more than 36
;; squares: it is done in constant time.
(defun gomoku-update-score-table (square dval)
  "Update score table after SQUARE received a DVAL increment."
  ;; The board has already been updated when this function is called.
  ;; Updating scores is done by looking for qtuples boundaries in all four
  ;; directions and then calling update-score-in-direction.
  ;; Finally all squares received the right increment, and then are up to
  ;; date, except possibly for SQUARE itself if we are taking a move back for
  ;; its score had been set to -1 at the time.
  (let* ((x    (gomoku-index-to-x square))
	 (y    (gomoku-index-to-y square))
	 (imin (max -4 (- 1 x)))
	 (jmin (max -4 (- 1 y)))
	 (imax (min 0 (- gomoku-board-width x 4)))
	 (jmax (min 0 (- gomoku-board-height y 4))))
    (gomoku-update-score-in-direction imin imax
				      square 1 0 dval)
    (gomoku-update-score-in-direction jmin jmax
				      square 0 1 dval)
    (gomoku-update-score-in-direction (max imin jmin) (min imax jmax)
				      square 1 1 dval)
    (gomoku-update-score-in-direction (max (- 1 y) -4
					   (- x gomoku-board-width))
				      (min 0 (- x 5)
					   (- gomoku-board-height y 4))
				      square -1 1 dval)))
(defun gomoku-update-score-in-direction (left right square dx dy dval)
  "Update scores for all squares in the qtuples starting between the LEFTth
square and the RIGHTth after SQUARE, along the DX, DY direction, considering
that DVAL has been added on SQUARE."
  ;; We always have LEFT <= 0, RIGHT <= 0 and DEPL > 0 but we may very well
  ;; have LEFT > RIGHT, indicating that no qtuple contains SQUARE along that
  ;; DX,DY direction.
  (cond
   ((> left right))			; Quit
   (t					; Else ..
    (let (depl square0 square1 square2 count delta)
      (setq depl    (gomoku-xy-to-index dx dy)
	    square0 (+ square (* left depl))
	    square1 (+ square (* right depl))
	    square2 (+ square0 (* 4 depl)))
      ;; Compute the contents of the first qtuple:
      (setq square square0
	    count  0)
      (while (<= square square2)
	(setq count  (+ count (aref gomoku-board square))
	      square (+ square depl)))
      (while (<= square0 square1)
	;; Update the squares of the qtuple beginning in SQUARE0 and ending
	;; in SQUARE2.
	(setq delta (- (aref gomoku-score-trans-table count)
		       (aref gomoku-score-trans-table (- count dval))))
	(cond ((not (zerop delta))	; or else nothing to update
	       (setq square square0)
	       (while (<= square square2)
		 (if (zerop (aref gomoku-board square)) ; only for free squares
		     (aset gomoku-score-table square
			   (+ (aref gomoku-score-table square) delta)))
		 (setq square (+ square depl)))))
	;; Then shift the qtuple one square along DEPL, this only requires
	;; modifying SQUARE0 and SQUARE2.
	(setq square2 (+ square2 depl)
	      count   (+ count (- (aref gomoku-board square0))
			 (aref gomoku-board square2))
	      square0 (+ square0 depl)))))))
;;;
;;; GAME CONTROL.
;;;
;; Several variables are used to monitor a game, including a GAME-HISTORY (the
;; list of all (SQUARE . PREVSCORE) played) that allows to take moves back
;; (anti-updating the score table) and to compute the table from scratch in
;; case of an interruption.
(defvar gomoku-game-in-progress nil
  "Non-nil if a game is in progress.")
(defvar gomoku-game-history nil
  "A record of all moves that have been played during current game.")
(defvar gomoku-number-of-moves nil
  "Number of moves already played in current game.")
(defvar gomoku-number-of-human-moves nil
  "Number of moves already played by human in current game.")
(defvar gomoku-emacs-played-first nil
  "Non-nil if Emacs played first.")
(defvar gomoku-human-took-back nil
  "Non-nil if Human took back a move during the game.")
(defvar gomoku-human-refused-draw nil
  "Non-nil if Human refused Emacs offer of a draw.")
(defvar gomoku-emacs-is-computing nil
  ;; This is used to detect interruptions. Hopefully, it should not be needed.
  "Non-nil if Emacs is in the middle of a computation.")
(defun gomoku-start-game (n m)
  "Initialize a new game on an N by M board."
  (setq gomoku-emacs-is-computing t)	; Raise flag
  (setq gomoku-game-in-progress t)
  (setq gomoku-board-width   n
	gomoku-board-height  m
	gomoku-vector-length (1+ (* (+ m 2) (1+ n)))
	gomoku-draw-limit    (/ (* 7 n m) 10))
  (setq gomoku-emacs-won	     nil
	gomoku-game-history	     nil
	gomoku-number-of-moves	     0
	gomoku-number-of-human-moves 0
	gomoku-emacs-played-first    nil
	gomoku-human-took-back	     nil
	gomoku-human-refused-draw    nil)
  (gomoku-init-display n m)		; Display first: the rest takes time
  (gomoku-init-score-table)		; INIT-BOARD requires that the score
  (gomoku-init-board)			;   table be already created.
  (setq gomoku-emacs-is-computing nil))
(defun gomoku-play-move (square val &optional dont-update-score)
  "Go to SQUARE, play VAL and update everything."
  (setq gomoku-emacs-is-computing t)	; Raise flag
  (cond ((= 1 val)			; a Human move
	 (setq gomoku-number-of-human-moves (1+ gomoku-number-of-human-moves)))
	((zerop gomoku-number-of-moves)	; an Emacs move. Is it first ?
	 (setq gomoku-emacs-played-first t)))
  (setq gomoku-game-history
	(cons (cons square (aref gomoku-score-table square))
	      gomoku-game-history)
	gomoku-number-of-moves (1+ gomoku-number-of-moves))
  (gomoku-plot-square square val)
  (aset gomoku-board square val)	; *BEFORE* UPDATE-SCORE !
  (if dont-update-score nil
      (gomoku-update-score-table square val) ; previous val was 0: dval = val
      (aset gomoku-score-table square -1))
  (setq gomoku-emacs-is-computing nil))
(defun gomoku-take-back ()
  "Take back last move and update everything."
  (setq gomoku-emacs-is-computing t)
  (let* ((last-move (car gomoku-game-history))
	 (square (car last-move))
	 (oldval (aref gomoku-board square)))
    (if (= 1 oldval)
	(setq gomoku-number-of-human-moves (1- gomoku-number-of-human-moves)))
    (setq gomoku-game-history	 (cdr gomoku-game-history)
	  gomoku-number-of-moves (1- gomoku-number-of-moves))
    (gomoku-plot-square square 0)
    (aset gomoku-board square 0)	; *BEFORE* UPDATE-SCORE !
    (gomoku-update-score-table square (- oldval))
    (aset gomoku-score-table square (cdr last-move)))
  (setq gomoku-emacs-is-computing nil))
;;;
;;; SESSION CONTROL.
;;;
(defvar gomoku-number-of-emacs-wins 0
  "Number of games Emacs won in this session.")
(defvar gomoku-number-of-human-wins 0
  "Number of games you won in this session.")
(defvar gomoku-number-of-draws 0
  "Number of games already drawn in this session.")
(defun gomoku-terminate-game (result)
  "Terminate the current game with RESULT."
  (message
   (cond
    ((eq result 'emacs-won)
     (setq gomoku-number-of-emacs-wins (1+ gomoku-number-of-emacs-wins))
     (cond ((< gomoku-number-of-moves 20)
	    "This was a REALLY QUICK win.")
	   (gomoku-human-refused-draw
	    "I won... Too bad you refused my offer of a draw !")
	   (gomoku-human-took-back
	    "I won... Taking moves back will not help you !")
	   ((not gomoku-emacs-played-first)
	    "I won... Playing first did not help you much !")
	   ((and (zerop gomoku-number-of-human-wins)
		 (zerop gomoku-number-of-draws)
		 (> gomoku-number-of-emacs-wins 1))
	    "I'm becoming tired of winning...")
	   ("I won.")))
    ((eq result 'human-won)
     (setq gomoku-number-of-human-wins (1+ gomoku-number-of-human-wins))
     (concat "OK, you won this one."
	     (cond
	      (gomoku-human-took-back
	       "  I, for one, never take my moves back...")
	      (gomoku-emacs-played-first
	       ".. so what ?")
	      ("  Now, let me play first just once."))))
    ((eq result 'human-resigned)
     (setq gomoku-number-of-emacs-wins (1+ gomoku-number-of-emacs-wins))
     "So you resign.  That's just one more win for me.")
    ((eq result 'nobody-won)
     (setq gomoku-number-of-draws (1+ gomoku-number-of-draws))
     (concat "This is a draw.  "
	     (cond
	      (gomoku-human-took-back
	       "I, for one, never take my moves back...")
	      (gomoku-emacs-played-first
	       "Just chance, I guess.")
	      ("Now, let me play first just once."))))
    ((eq result 'draw-agreed)
     (setq gomoku-number-of-draws (1+ gomoku-number-of-draws))
     (concat "Draw agreed.  "
	     (cond
	      (gomoku-human-took-back
	       "I, for one, never take my moves back...")
	      (gomoku-emacs-played-first
	       "You were lucky.")
	      ("Now, let me play first just once."))))
    ((eq result 'crash-game)
     "Sorry, I have been interrupted and cannot resume that game...")))
  (gomoku-display-statistics)
  ;;(ding)
  (setq gomoku-game-in-progress nil))
(defun gomoku-crash-game ()
  "What to do when Emacs detects it has been interrupted."
  (setq gomoku-emacs-is-computing nil)
  (gomoku-terminate-game 'crash-game)
  (sit-for 4)				; Let's see the message
  (gomoku-prompt-for-other-game))
;;;
;;; INTERACTIVE COMMANDS.
;;;
;;;###autoload
(defun gomoku (&optional n m)
  "Start a Gomoku game between you and Emacs.
If a game is in progress, this command allow you to resume it.
If optional arguments N and M are given, an N by M board is used.
If prefix arg is given for N, M is prompted for.
You and Emacs play in turn by marking a free square.  You mark it with X
and Emacs marks it with O. The winner is the first to get five contiguous
marks horizontally, vertically or in diagonal.
You play by moving the cursor over the square you choose and hitting
\\<gomoku-mode-map>\\[gomoku-human-plays].
Use \\[describe-mode] for more info."
  (interactive (if current-prefix-arg
		   (list (prefix-numeric-value current-prefix-arg)
			 (eval (read-minibuffer "Height: ")))))
  (gomoku-switch-to-window)
  (cond
   (gomoku-emacs-is-computing
    (gomoku-crash-game))
   ((or (not gomoku-game-in-progress)
	(<= gomoku-number-of-moves 2))
    (let ((max-width (gomoku-max-width))
	  (max-height (gomoku-max-height)))
      (or n (setq n max-width))
      (or m (setq m max-height))
      (cond ((< n 1)
	     (error "I need at least 1 column"))
	    ((< m 1)
	     (error "I need at least 1 row"))
	    ((> n max-width)
	     (error "I cannot display %d columns in that window" n)))
      (if (and (> m max-height)
	       (not (eq m gomoku-saved-board-height))
	       ;; Use EQ because SAVED-BOARD-HEIGHT may be nil
	       (not (y-or-n-p (format "Do you really want %d rows " m))))
	  (setq m max-height)))
    (message "One moment, please...")
    (gomoku-start-game n m)
    (if (y-or-n-p "Do you allow me to play first ")
	(gomoku-emacs-plays)
	(gomoku-prompt-for-move)))
   ((y-or-n-p "Shall we continue our game ")
    (gomoku-prompt-for-move))
   (t
    (gomoku-human-resigns))))
(defun gomoku-emacs-plays ()
  "Compute Emacs next move and play it."
  (interactive)
  (gomoku-switch-to-window)
  (cond
   (gomoku-emacs-is-computing
    (gomoku-crash-game))
   ((not gomoku-game-in-progress)
    (gomoku-prompt-for-other-game))
   (t
    (message "Let me think...")
    (let (square score)
      (setq square (gomoku-strongest-square))
      (cond ((null square)
	     (gomoku-terminate-game 'nobody-won))
	    (t
	     (setq score (aref gomoku-score-table square))
	     (gomoku-play-move square 6)
	     (cond ((>= score gomoku-winning-threshold)
		    (setq gomoku-emacs-won t) ; for font-lock
		    (gomoku-find-filled-qtuple square 6)
		    (gomoku-terminate-game 'emacs-won))
		   ((zerop score)
		    (gomoku-terminate-game 'nobody-won))
		   ((and (> gomoku-number-of-moves gomoku-draw-limit)
			 (not gomoku-human-refused-draw)
			 (gomoku-offer-a-draw))
		    (gomoku-terminate-game 'draw-agreed))
		   (t
		    (gomoku-prompt-for-move)))))))))
;; For small square dimensions this is approximate, since though measured in
;; pixels, event's (X . Y) is a character's top-left corner.
(defun gomoku-click (click)
  "Position at the square where you click."
  (interactive "e")
  (and (windowp (posn-window (setq click (event-end click))))
       (numberp (posn-point click))
       (select-window (posn-window click))
       (setq click (posn-col-row click))
       (gomoku-goto-xy
	(min (max (/ (+ (- (car click)
			   gomoku-x-offset
			   1)
			(window-hscroll)
			gomoku-square-width
			(% gomoku-square-width 2)
			(/ gomoku-square-width 2))
		     gomoku-square-width)
		  1)
	     gomoku-board-width)
	(min (max (/ (+ (- (cdr click)
			   gomoku-y-offset
			   1)
			(let ((inhibit-point-motion-hooks t))
			  (count-lines 1 (window-start)))
			gomoku-square-height
			(% gomoku-square-height 2)
			(/ gomoku-square-height 2))
		     gomoku-square-height)
		  1)
	     gomoku-board-height))))
  
(defun gomoku-mouse-play (click)
  "Play at the square where you click."
  (interactive "e")
  (if (gomoku-click click)
      (gomoku-human-plays)))
(defun gomoku-human-plays ()
  "Signal to the Gomoku program that you have played.
You must have put the cursor on the square where you want to play.
If the game is finished, this command requests for another game."
  (interactive)
  (gomoku-switch-to-window)
  (cond
   (gomoku-emacs-is-computing
    (gomoku-crash-game))
   ((not gomoku-game-in-progress)
    (gomoku-prompt-for-other-game))
   (t
    (let (square score)
      (setq square (gomoku-point-square))
      (cond ((null square)
	     (error "Your point is not on a square. Retry !"))
	    ((not (zerop (aref gomoku-board square)))
	     (error "Your point is not on a free square. Retry !"))
	    (t
	     (setq score (aref gomoku-score-table square))
	     (gomoku-play-move square 1)
	     (cond ((and (>= score gomoku-loosing-threshold)
			 ;; Just testing SCORE > THRESHOLD is not enough for
			 ;; detecting wins, it just gives an indication that
			 ;; we confirm with GOMOKU-FIND-FILLED-QTUPLE.
			 (gomoku-find-filled-qtuple square 1))
		    (gomoku-terminate-game 'human-won))
		   (t
		    (gomoku-emacs-plays)))))))))
(defun gomoku-human-takes-back ()
  "Signal to the Gomoku program that you wish to take back your last move."
  (interactive)
  (gomoku-switch-to-window)
  (cond
   (gomoku-emacs-is-computing
    (gomoku-crash-game))
   ((not gomoku-game-in-progress)
    (message "Too late for taking back...")
    (sit-for 4)
    (gomoku-prompt-for-other-game))
   ((zerop gomoku-number-of-human-moves)
    (message "You have not played yet... Your move ?"))
   (t
    (message "One moment, please...")
    ;; It is possible for the user to let Emacs play several consecutive
    ;; moves, so that the best way to know when to stop taking back moves is
    ;; to count the number of human moves:
    (setq gomoku-human-took-back t)
    (let ((number gomoku-number-of-human-moves))
      (while (= number gomoku-number-of-human-moves)
	(gomoku-take-back)))
    (gomoku-prompt-for-move))))
(defun gomoku-human-resigns ()
  "Signal to the Gomoku program that you may want to resign."
  (interactive)
  (gomoku-switch-to-window)
  (cond
   (gomoku-emacs-is-computing
    (gomoku-crash-game))
   ((not gomoku-game-in-progress)
    (message "There is no game in progress"))
   ((y-or-n-p "You mean, you resign ")
    (gomoku-terminate-game 'human-resigned))
   ((y-or-n-p "You mean, we continue ")
    (gomoku-prompt-for-move))
   (t
    (gomoku-terminate-game 'human-resigned)))) ; OK. Accept it
;;;
;;; PROMPTING THE HUMAN PLAYER.
;;;
(defun gomoku-prompt-for-move ()
  "Display a message asking for Human's move."
  (message (if (zerop gomoku-number-of-human-moves)
	       "Your move ? (move to a free square and hit X, RET ...)"
	       "Your move ?"))
  ;; This may seem silly, but if one omits the following line (or a similar
  ;; one), the cursor may very well go to some place where POINT is not.
  (save-excursion (set-buffer (other-buffer))))
(defun gomoku-prompt-for-other-game ()
  "Ask for another game, and start it."
  (if (y-or-n-p "Another game ")
      (gomoku gomoku-board-width gomoku-board-height)
    (message "Chicken !")))
(defun gomoku-offer-a-draw ()
  "Offer a draw and return T if Human accepted it."
  (or (y-or-n-p "I offer you a draw. Do you accept it ")
      (not (setq gomoku-human-refused-draw t))))
;;;
;;; DISPLAYING THE BOARD.
;;;
;; You may change these values if you have a small screen or if the squares
;; look rectangular, but spacings SHOULD be at least 2 (MUST BE at least 1).
(defconst gomoku-square-width 4
  "*Horizontal spacing between squares on the Gomoku board.")
(defconst gomoku-square-height 2
  "*Vertical spacing between squares on the Gomoku board.")
(defconst gomoku-x-offset 3
  "*Number of columns between the Gomoku board and the side of the window.")
(defconst gomoku-y-offset 1
  "*Number of lines between the Gomoku board and the top of the window.")
(defun gomoku-max-width ()
  "Largest possible board width for the current window."
  (1+ (/ (- (window-width (selected-window))
	    gomoku-x-offset gomoku-x-offset 1)
	 gomoku-square-width)))
(defun gomoku-max-height ()
  "Largest possible board height for the current window."
  (1+ (/ (- (window-height (selected-window))
	    gomoku-y-offset gomoku-y-offset 2)
	 ;; 2 instead of 1 because WINDOW-HEIGHT includes the mode line !
	 gomoku-square-height)))
(defun gomoku-point-y ()
  "Return the board row where point is."
  (let ((inhibit-point-motion-hooks t))
    (1+ (/ (- (count-lines 1 (point)) gomoku-y-offset (if (bolp) 0 1))
	   gomoku-square-height))))
(defun gomoku-point-square ()
  "Return the index of the square point is on."
  (let ((inhibit-point-motion-hooks t))
    (gomoku-xy-to-index (1+ (/ (- (current-column) gomoku-x-offset)
			       gomoku-square-width))
			(gomoku-point-y))))
(defun gomoku-goto-square (index)
  "Move point to square number INDEX."
  (gomoku-goto-xy (gomoku-index-to-x index) (gomoku-index-to-y index)))
(defun gomoku-goto-xy (x y)
  "Move point to square at X, Y coords."
  (let ((inhibit-point-motion-hooks t))
    (goto-line (+ 1 gomoku-y-offset (* gomoku-square-height (1- y)))))
  (move-to-column (+ gomoku-x-offset (* gomoku-square-width (1- x)))))
(defun gomoku-plot-square (square value)
  "Draw 'X', 'O' or '.' on SQUARE depending on VALUE, leave point there."
  (or (= value 1)
      (gomoku-goto-square square))
  (let ((inhibit-read-only t)
	(inhibit-point-motion-hooks t))
    (insert-and-inherit (cond ((= value 1) ?X)
			      ((= value 6) ?O)
			      (?.)))
    (and window-system
	 (zerop value)
	 (put-text-property (1- (point)) (point) 'mouse-face 'highlight))
    (delete-char 1)
    (backward-char 1))
  (sit-for 0))	; Display NOW
(defun gomoku-init-display (n m)
  "Display an N by M Gomoku board."
  (buffer-disable-undo (current-buffer))
  (let ((inhibit-read-only t)
	(point 1) opoint
	(intangible t)
	(i m) j x)
    ;; Try to minimize number of chars (because of text properties)
    (setq tab-width
	  (if (zerop (% gomoku-x-offset gomoku-square-width))
	      gomoku-square-width
	    (max (/ (+ (% gomoku-x-offset gomoku-square-width)
		       gomoku-square-width 1) 2) 2)))
    (erase-buffer)
    (newline gomoku-y-offset)
    (while (progn
	     (setq j n
		   x (- gomoku-x-offset gomoku-square-width))
	     (while (>= (setq j (1- j)) 0)
	       (insert-char ?\t (/ (- (setq x (+ x gomoku-square-width))
				      (current-column))
				   tab-width))
	       (insert-char ?  (- x (current-column)))
	       (if (setq intangible (not intangible))
		   (put-text-property point (point) 'intangible 2))
	       (and (zerop j)
		    (= i (- m 2))
		    (progn
		      (while (>= i 3)
			(append-to-buffer (current-buffer) opoint (point))
			(setq i (- i 2)))
		      (goto-char (point-max))))
	       (setq point (point))
	       (insert ?.)
	       (if window-system
		   (put-text-property point (point)
				      'mouse-face 'highlight)))
	     (> (setq i (1- i)) 0))
      (if (= i (1- m))
	  (setq opoint point))
      (insert-char ?\n gomoku-square-height))
    (or (eq (char-after 1) ?.)
	(put-text-property 1 2 'point-entered
			   (lambda (x x) (if (bobp) (forward-char)))))
    (or intangible
	(put-text-property point (point) 'intangible 2))
    (put-text-property point (point) 'point-entered
		       (lambda (x x) (if (eobp) (backward-char))))
    (put-text-property (point-min) (point) 'category 'gomoku-mode))
  (gomoku-goto-xy (/ (1+ n) 2) (/ (1+ m) 2)) ; center of the board
  (sit-for 0))				; Display NOW
(defun gomoku-display-statistics ()
  "Obnoxiously display some statistics about previous games in mode line."
  ;; We store this string in the mode-line-process local variable.
  ;; This is certainly not the cleanest way out ...
  (setq mode-line-process
	(format ": Won %d, lost %d%s"
		gomoku-number-of-human-wins
		gomoku-number-of-emacs-wins
		(if (zerop gomoku-number-of-draws)
		    ""
		  (format ", drew %d" gomoku-number-of-draws))))
  (force-mode-line-update))
(defun gomoku-switch-to-window ()
  "Find or create the Gomoku buffer, and display it."
  (interactive)
  (let ((buff (get-buffer "*Gomoku*")))
    (if buff				; Buffer exists:
	(switch-to-buffer buff)		;   no problem.
      (if gomoku-game-in-progress
	  (gomoku-crash-game))		;   buffer has been killed or something
      (switch-to-buffer "*Gomoku*")	; Anyway, start anew.
      (gomoku-mode))))
;;;
;;; CROSSING WINNING QTUPLES.
;;;
;; When someone succeeds in filling a qtuple, we draw a line over the five
;; corresponding squares. One problem is that the program does not know which
;; squares ! It only knows the square where the last move has been played and
;; who won. The solution is to scan the board along all four directions.
(defun gomoku-find-filled-qtuple (square value)
  "Return T if SQUARE belongs to a qtuple filled with VALUEs."
  (or (gomoku-check-filled-qtuple square value 1 0)
      (gomoku-check-filled-qtuple square value 0 1)
      (gomoku-check-filled-qtuple square value 1 1)
      (gomoku-check-filled-qtuple square value -1 1)))
(defun gomoku-check-filled-qtuple (square value dx dy)
  "Return T if SQUARE belongs to a qtuple filled  with VALUEs along DX, DY."
  (let ((a 0) (b 0)
	(left square) (right square)
	(depl (gomoku-xy-to-index dx dy)))
    (while (and (> a -4)		; stretch tuple left
		(= value (aref gomoku-board (setq left (- left depl)))))
      (setq a (1- a)))
    (while (and (< b (+ a 4))		; stretch tuple right
		(= value (aref gomoku-board (setq right (+ right depl)))))
      (setq b (1+ b)))
    (cond ((= b (+ a 4))		; tuple length = 5 ?
	   (gomoku-cross-qtuple (+ square (* a depl)) (+ square (* b depl))
				dx dy)
	   t))))
(defun gomoku-cross-qtuple (square1 square2 dx dy)
  "Cross every square between SQUARE1 and SQUARE2 in the DX, DY direction."
  (save-excursion			; Not moving point from last square
    (let ((depl (gomoku-xy-to-index dx dy))
	  (inhibit-read-only t)
	  (inhibit-point-motion-hooks t))
      ;; WARNING: this function assumes DEPL > 0 and SQUARE2 > SQUARE1
      (while (/= square1 square2)
	(gomoku-goto-square square1)
	(setq square1 (+ square1 depl))
	(cond
	  ((= dy 0)			; Horizontal
	   (forward-char 1)
	   (insert-char ?- (1- gomoku-square-width) t)
	   (delete-region (point) (progn
				    (skip-chars-forward " \t")
				    (point))))
	  ((= dx 0)			; Vertical
	   (let ((n 1)
		 (column (current-column)))
	     (while (< n gomoku-square-height)
	       (setq n (1+ n))
	       (forward-line 1)
	       (indent-to column)
	       (insert-and-inherit ?|))))
	  ((= dx -1)			; 1st Diagonal
	   (indent-to (prog1 (- (current-column) (/ gomoku-square-width 2))
			(forward-line (/ gomoku-square-height 2))))
	   (insert-and-inherit ?/))
	  (t				; 2nd Diagonal
	   (indent-to (prog1 (+ (current-column) (/ gomoku-square-width 2))
			(forward-line (/ gomoku-square-height 2))))
	   (insert-and-inherit ?\\))))))
  (sit-for 0))				; Display NOW
;;;
;;; CURSOR MOTION.
;;;
;; previous-line and next-line don't work right with intangible newlines
(defun gomoku-move-down ()
  "Move point down one row on the Gomoku board."
  (interactive)
  (if (< (gomoku-point-y) gomoku-board-height)
      (next-line gomoku-square-height)))
(defun gomoku-move-up ()
  "Move point up one row on the Gomoku board."
  (interactive)
  (if (> (gomoku-point-y) 1)
      (previous-line gomoku-square-height)))
(defun gomoku-move-ne ()
  "Move point North East on the Gomoku board."
  (interactive)
  (gomoku-move-up)
  (forward-char))
(defun gomoku-move-se ()
  "Move point South East on the Gomoku board."
  (interactive)
  (gomoku-move-down)
  (forward-char))
(defun gomoku-move-nw ()
  "Move point North West on the Gomoku board."
  (interactive)
  (gomoku-move-up)
  (backward-char))
(defun gomoku-move-sw ()
  "Move point South West on the Gomoku board."
  (interactive)
  (gomoku-move-down)
  (backward-char))
(defun gomoku-beginning-of-line ()
  "Move point to first square on the Gomoku board row."
  (interactive)
  (move-to-column gomoku-x-offset))
(defun gomoku-end-of-line ()
  "Move point to last square on the Gomoku board row."
  (interactive)
  (move-to-column (+ gomoku-x-offset
		     (* gomoku-square-width (1- gomoku-board-width)))))
(provide 'gomoku)
;;; gomoku.el ends here
 
     |