1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
|
/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
Copyright (C) 1988, 1993, 1994, 1999, 2001, 2002, 2003, 2004,
2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
/* ANSI C requires only these float functions:
acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
Define HAVE_CBRT if you have cbrt.
Define HAVE_RINT if you have a working rint.
If you don't define these, then the appropriate routines will be simulated.
Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
(This should happen automatically.)
Define FLOAT_CHECK_ERRNO if the float library routines set errno.
This has no effect if HAVE_MATHERR is defined.
Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
(What systems actually do this? Please let us know.)
Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
range checking will happen before calling the float routines. This has
no effect if HAVE_MATHERR is defined (since matherr will be called when
a domain error occurs.)
*/
#include <config.h>
#include <signal.h>
#include "lisp.h"
#include "syssignal.h"
#if STDC_HEADERS
#include <float.h>
#endif
/* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
#ifndef IEEE_FLOATING_POINT
#if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
&& FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
#define IEEE_FLOATING_POINT 1
#else
#define IEEE_FLOATING_POINT 0
#endif
#endif
/* Work around a problem that happens because math.h on hpux 7
defines two static variables--which, in Emacs, are not really static,
because `static' is defined as nothing. The problem is that they are
defined both here and in lread.c.
These macros prevent the name conflict. */
#if defined (HPUX) && !defined (HPUX8)
#define _MAXLDBL floatfns_maxldbl
#define _NMAXLDBL floatfns_nmaxldbl
#endif
#include <math.h>
/* This declaration is omitted on some systems, like Ultrix. */
#if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
extern double logb ();
#endif /* not HPUX and HAVE_LOGB and no logb macro */
#if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
/* If those are defined, then this is probably a `matherr' machine. */
# ifndef HAVE_MATHERR
# define HAVE_MATHERR
# endif
#endif
#ifdef NO_MATHERR
#undef HAVE_MATHERR
#endif
#ifdef HAVE_MATHERR
# ifdef FLOAT_CHECK_ERRNO
# undef FLOAT_CHECK_ERRNO
# endif
# ifdef FLOAT_CHECK_DOMAIN
# undef FLOAT_CHECK_DOMAIN
# endif
#endif
#ifndef NO_FLOAT_CHECK_ERRNO
#define FLOAT_CHECK_ERRNO
#endif
#ifdef FLOAT_CHECK_ERRNO
# include <errno.h>
#ifndef USE_CRT_DLL
extern int errno;
#endif
#endif
/* Avoid traps on VMS from sinh and cosh.
All the other functions set errno instead. */
#ifdef VMS
#undef cosh
#undef sinh
#define cosh(x) ((exp(x)+exp(-x))*0.5)
#define sinh(x) ((exp(x)-exp(-x))*0.5)
#endif /* VMS */
#ifdef FLOAT_CATCH_SIGILL
static SIGTYPE float_error ();
#endif
/* Nonzero while executing in floating point.
This tells float_error what to do. */
static int in_float;
/* If an argument is out of range for a mathematical function,
here is the actual argument value to use in the error message.
These variables are used only across the floating point library call
so there is no need to staticpro them. */
static Lisp_Object float_error_arg, float_error_arg2;
static char *float_error_fn_name;
/* Evaluate the floating point expression D, recording NUM
as the original argument for error messages.
D is normally an assignment expression.
Handle errors which may result in signals or may set errno.
Note that float_error may be declared to return void, so you can't
just cast the zero after the colon to (SIGTYPE) to make the types
check properly. */
#ifdef FLOAT_CHECK_ERRNO
#define IN_FLOAT(d, name, num) \
do { \
float_error_arg = num; \
float_error_fn_name = name; \
in_float = 1; errno = 0; (d); in_float = 0; \
switch (errno) { \
case 0: break; \
case EDOM: domain_error (float_error_fn_name, float_error_arg); \
case ERANGE: range_error (float_error_fn_name, float_error_arg); \
default: arith_error (float_error_fn_name, float_error_arg); \
} \
} while (0)
#define IN_FLOAT2(d, name, num, num2) \
do { \
float_error_arg = num; \
float_error_arg2 = num2; \
float_error_fn_name = name; \
in_float = 1; errno = 0; (d); in_float = 0; \
switch (errno) { \
case 0: break; \
case EDOM: domain_error (float_error_fn_name, float_error_arg); \
case ERANGE: range_error (float_error_fn_name, float_error_arg); \
default: arith_error (float_error_fn_name, float_error_arg); \
} \
} while (0)
#else
#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
#define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
#endif
/* Convert float to Lisp_Int if it fits, else signal a range error
using the given arguments. */
#define FLOAT_TO_INT(x, i, name, num) \
do \
{ \
if (FIXNUM_OVERFLOW_P (x)) \
range_error (name, num); \
XSETINT (i, (EMACS_INT)(x)); \
} \
while (0)
#define FLOAT_TO_INT2(x, i, name, num1, num2) \
do \
{ \
if (FIXNUM_OVERFLOW_P (x)) \
range_error2 (name, num1, num2); \
XSETINT (i, (EMACS_INT)(x)); \
} \
while (0)
#define arith_error(op,arg) \
xsignal2 (Qarith_error, build_string ((op)), (arg))
#define range_error(op,arg) \
xsignal2 (Qrange_error, build_string ((op)), (arg))
#define range_error2(op,a1,a2) \
xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
#define domain_error(op,arg) \
xsignal2 (Qdomain_error, build_string ((op)), (arg))
#define domain_error2(op,a1,a2) \
xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
/* Extract a Lisp number as a `double', or signal an error. */
double
extract_float (num)
Lisp_Object num;
{
CHECK_NUMBER_OR_FLOAT (num);
if (FLOATP (num))
return XFLOAT_DATA (num);
return (double) XINT (num);
}
/* Trig functions. */
DEFUN ("acos", Facos, Sacos, 1, 1, 0,
doc: /* Return the inverse cosine of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 1.0 || d < -1.0)
domain_error ("acos", arg);
#endif
IN_FLOAT (d = acos (d), "acos", arg);
return make_float (d);
}
DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
doc: /* Return the inverse sine of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 1.0 || d < -1.0)
domain_error ("asin", arg);
#endif
IN_FLOAT (d = asin (d), "asin", arg);
return make_float (d);
}
DEFUN ("atan", Fatan, Satan, 1, 2, 0,
doc: /* Return the inverse tangent of the arguments.
If only one argument Y is given, return the inverse tangent of Y.
If two arguments Y and X are given, return the inverse tangent of Y
divided by X, i.e. the angle in radians between the vector (X, Y)
and the x-axis. */)
(y, x)
register Lisp_Object y, x;
{
double d = extract_float (y);
if (NILP (x))
IN_FLOAT (d = atan (d), "atan", y);
else
{
double d2 = extract_float (x);
IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
}
return make_float (d);
}
DEFUN ("cos", Fcos, Scos, 1, 1, 0,
doc: /* Return the cosine of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = cos (d), "cos", arg);
return make_float (d);
}
DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
doc: /* Return the sine of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = sin (d), "sin", arg);
return make_float (d);
}
DEFUN ("tan", Ftan, Stan, 1, 1, 0,
doc: /* Return the tangent of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
double c = cos (d);
#ifdef FLOAT_CHECK_DOMAIN
if (c == 0.0)
domain_error ("tan", arg);
#endif
IN_FLOAT (d = sin (d) / c, "tan", arg);
return make_float (d);
}
#if 0 /* Leave these out unless we find there's a reason for them. */
DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
doc: /* Return the bessel function j0 of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = j0 (d), "bessel-j0", arg);
return make_float (d);
}
DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
doc: /* Return the bessel function j1 of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = j1 (d), "bessel-j1", arg);
return make_float (d);
}
DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
doc: /* Return the order N bessel function output jn of ARG.
The first arg (the order) is truncated to an integer. */)
(n, arg)
register Lisp_Object n, arg;
{
int i1 = extract_float (n);
double f2 = extract_float (arg);
IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
return make_float (f2);
}
DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
doc: /* Return the bessel function y0 of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = y0 (d), "bessel-y0", arg);
return make_float (d);
}
DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
doc: /* Return the bessel function y1 of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = y1 (d), "bessel-y0", arg);
return make_float (d);
}
DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
doc: /* Return the order N bessel function output yn of ARG.
The first arg (the order) is truncated to an integer. */)
(n, arg)
register Lisp_Object n, arg;
{
int i1 = extract_float (n);
double f2 = extract_float (arg);
IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
return make_float (f2);
}
#endif
#if 0 /* Leave these out unless we see they are worth having. */
DEFUN ("erf", Ferf, Serf, 1, 1, 0,
doc: /* Return the mathematical error function of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = erf (d), "erf", arg);
return make_float (d);
}
DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
doc: /* Return the complementary error function of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = erfc (d), "erfc", arg);
return make_float (d);
}
DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
doc: /* Return the log gamma of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = lgamma (d), "log-gamma", arg);
return make_float (d);
}
DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
doc: /* Return the cube root of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef HAVE_CBRT
IN_FLOAT (d = cbrt (d), "cube-root", arg);
#else
if (d >= 0.0)
IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
else
IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
#endif
return make_float (d);
}
#endif
DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
doc: /* Return the exponential base e of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 709.7827) /* Assume IEEE doubles here */
range_error ("exp", arg);
else if (d < -709.0)
return make_float (0.0);
else
#endif
IN_FLOAT (d = exp (d), "exp", arg);
return make_float (d);
}
DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
doc: /* Return the exponential ARG1 ** ARG2. */)
(arg1, arg2)
register Lisp_Object arg1, arg2;
{
double f1, f2;
CHECK_NUMBER_OR_FLOAT (arg1);
CHECK_NUMBER_OR_FLOAT (arg2);
if (INTEGERP (arg1) /* common lisp spec */
&& INTEGERP (arg2) /* don't promote, if both are ints, and */
&& 0 <= XINT (arg2)) /* we are sure the result is not fractional */
{ /* this can be improved by pre-calculating */
EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
Lisp_Object val;
x = XINT (arg1);
y = XINT (arg2);
acc = 1;
if (y < 0)
{
if (x == 1)
acc = 1;
else if (x == -1)
acc = (y & 1) ? -1 : 1;
else
acc = 0;
}
else
{
while (y > 0)
{
if (y & 1)
acc *= x;
x *= x;
y = (unsigned)y >> 1;
}
}
XSETINT (val, acc);
return val;
}
f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
/* Really should check for overflow, too */
if (f1 == 0.0 && f2 == 0.0)
f1 = 1.0;
#ifdef FLOAT_CHECK_DOMAIN
else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
domain_error2 ("expt", arg1, arg2);
#endif
IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
return make_float (f1);
}
DEFUN ("log", Flog, Slog, 1, 2, 0,
doc: /* Return the natural logarithm of ARG.
If the optional argument BASE is given, return log ARG using that base. */)
(arg, base)
register Lisp_Object arg, base;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d <= 0.0)
domain_error2 ("log", arg, base);
#endif
if (NILP (base))
IN_FLOAT (d = log (d), "log", arg);
else
{
double b = extract_float (base);
#ifdef FLOAT_CHECK_DOMAIN
if (b <= 0.0 || b == 1.0)
domain_error2 ("log", arg, base);
#endif
if (b == 10.0)
IN_FLOAT2 (d = log10 (d), "log", arg, base);
else
IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
}
return make_float (d);
}
DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
doc: /* Return the logarithm base 10 of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d <= 0.0)
domain_error ("log10", arg);
#endif
IN_FLOAT (d = log10 (d), "log10", arg);
return make_float (d);
}
DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
doc: /* Return the square root of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d < 0.0)
domain_error ("sqrt", arg);
#endif
IN_FLOAT (d = sqrt (d), "sqrt", arg);
return make_float (d);
}
#if 0 /* Not clearly worth adding. */
DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
doc: /* Return the inverse hyperbolic cosine of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d < 1.0)
domain_error ("acosh", arg);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
IN_FLOAT (d = acosh (d), "acosh", arg);
#else
IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
#endif
return make_float (d);
}
DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
doc: /* Return the inverse hyperbolic sine of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef HAVE_INVERSE_HYPERBOLIC
IN_FLOAT (d = asinh (d), "asinh", arg);
#else
IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
#endif
return make_float (d);
}
DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
doc: /* Return the inverse hyperbolic tangent of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d >= 1.0 || d <= -1.0)
domain_error ("atanh", arg);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
IN_FLOAT (d = atanh (d), "atanh", arg);
#else
IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
#endif
return make_float (d);
}
DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
doc: /* Return the hyperbolic cosine of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 710.0 || d < -710.0)
range_error ("cosh", arg);
#endif
IN_FLOAT (d = cosh (d), "cosh", arg);
return make_float (d);
}
DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
doc: /* Return the hyperbolic sine of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 710.0 || d < -710.0)
range_error ("sinh", arg);
#endif
IN_FLOAT (d = sinh (d), "sinh", arg);
return make_float (d);
}
DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
doc: /* Return the hyperbolic tangent of ARG. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = tanh (d), "tanh", arg);
return make_float (d);
}
#endif
DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
doc: /* Return the absolute value of ARG. */)
(arg)
register Lisp_Object arg;
{
CHECK_NUMBER_OR_FLOAT (arg);
if (FLOATP (arg))
IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
else if (XINT (arg) < 0)
XSETINT (arg, - XINT (arg));
return arg;
}
DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
doc: /* Return the floating point number equal to ARG. */)
(arg)
register Lisp_Object arg;
{
CHECK_NUMBER_OR_FLOAT (arg);
if (INTEGERP (arg))
return make_float ((double) XINT (arg));
else /* give 'em the same float back */
return arg;
}
DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
This is the same as the exponent of a float. */)
(arg)
Lisp_Object arg;
{
Lisp_Object val;
EMACS_INT value;
double f = extract_float (arg);
if (f == 0.0)
value = MOST_NEGATIVE_FIXNUM;
else
{
#ifdef HAVE_LOGB
IN_FLOAT (value = logb (f), "logb", arg);
#else
#ifdef HAVE_FREXP
int ivalue;
IN_FLOAT (frexp (f, &ivalue), "logb", arg);
value = ivalue - 1;
#else
int i;
double d;
if (f < 0.0)
f = -f;
value = -1;
while (f < 0.5)
{
for (i = 1, d = 0.5; d * d >= f; i += i)
d *= d;
f /= d;
value -= i;
}
while (f >= 1.0)
{
for (i = 1, d = 2.0; d * d <= f; i += i)
d *= d;
f /= d;
value += i;
}
#endif
#endif
}
XSETINT (val, value);
return val;
}
/* the rounding functions */
static Lisp_Object
rounding_driver (arg, divisor, double_round, int_round2, name)
register Lisp_Object arg, divisor;
double (*double_round) ();
EMACS_INT (*int_round2) ();
char *name;
{
CHECK_NUMBER_OR_FLOAT (arg);
if (! NILP (divisor))
{
EMACS_INT i1, i2;
CHECK_NUMBER_OR_FLOAT (divisor);
if (FLOATP (arg) || FLOATP (divisor))
{
double f1, f2;
f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
if (! IEEE_FLOATING_POINT && f2 == 0)
xsignal0 (Qarith_error);
IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
return arg;
}
i1 = XINT (arg);
i2 = XINT (divisor);
if (i2 == 0)
xsignal0 (Qarith_error);
XSETINT (arg, (*int_round2) (i1, i2));
return arg;
}
if (FLOATP (arg))
{
double d;
IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
FLOAT_TO_INT (d, arg, name, arg);
}
return arg;
}
/* With C's /, the result is implementation-defined if either operand
is negative, so take care with negative operands in the following
integer functions. */
static EMACS_INT
ceiling2 (i1, i2)
EMACS_INT i1, i2;
{
return (i2 < 0
? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
: (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
}
static EMACS_INT
floor2 (i1, i2)
EMACS_INT i1, i2;
{
return (i2 < 0
? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
: (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
}
static EMACS_INT
truncate2 (i1, i2)
EMACS_INT i1, i2;
{
return (i2 < 0
? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
: (i1 < 0 ? - (-i1 / i2) : i1 / i2));
}
static EMACS_INT
round2 (i1, i2)
EMACS_INT i1, i2;
{
/* The C language's division operator gives us one remainder R, but
we want the remainder R1 on the other side of 0 if R1 is closer
to 0 than R is; because we want to round to even, we also want R1
if R and R1 are the same distance from 0 and if C's quotient is
odd. */
EMACS_INT q = i1 / i2;
EMACS_INT r = i1 % i2;
EMACS_INT abs_r = r < 0 ? -r : r;
EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
}
/* The code uses emacs_rint, so that it works to undefine HAVE_RINT
if `rint' exists but does not work right. */
#ifdef HAVE_RINT
#define emacs_rint rint
#else
static double
emacs_rint (d)
double d;
{
return floor (d + 0.5);
}
#endif
static double
double_identity (d)
double d;
{
return d;
}
DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
doc: /* Return the smallest integer no less than ARG.
This rounds the value towards +inf.
With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
(arg, divisor)
Lisp_Object arg, divisor;
{
return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
}
DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
doc: /* Return the largest integer no greater than ARG.
This rounds the value towards -inf.
With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
(arg, divisor)
Lisp_Object arg, divisor;
{
return rounding_driver (arg, divisor, floor, floor2, "floor");
}
DEFUN ("round", Fround, Sround, 1, 2, 0,
doc: /* Return the nearest integer to ARG.
With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
Rounding a value equidistant between two integers may choose the
integer closer to zero, or it may prefer an even integer, depending on
your machine. For example, \(round 2.5\) can return 3 on some
systems, but 2 on others. */)
(arg, divisor)
Lisp_Object arg, divisor;
{
return rounding_driver (arg, divisor, emacs_rint, round2, "round");
}
DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
doc: /* Truncate a floating point number to an int.
Rounds ARG toward zero.
With optional DIVISOR, truncate ARG/DIVISOR. */)
(arg, divisor)
Lisp_Object arg, divisor;
{
return rounding_driver (arg, divisor, double_identity, truncate2,
"truncate");
}
Lisp_Object
fmod_float (x, y)
register Lisp_Object x, y;
{
double f1, f2;
f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
if (! IEEE_FLOATING_POINT && f2 == 0)
xsignal0 (Qarith_error);
/* If the "remainder" comes out with the wrong sign, fix it. */
IN_FLOAT2 ((f1 = fmod (f1, f2),
f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
"mod", x, y);
return make_float (f1);
}
/* It's not clear these are worth adding. */
DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
doc: /* Return the smallest integer no less than ARG, as a float.
\(Round toward +inf.\) */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = ceil (d), "fceiling", arg);
return make_float (d);
}
DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
doc: /* Return the largest integer no greater than ARG, as a float.
\(Round towards -inf.\) */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = floor (d), "ffloor", arg);
return make_float (d);
}
DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
doc: /* Return the nearest integer to ARG, as a float. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = emacs_rint (d), "fround", arg);
return make_float (d);
}
DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
doc: /* Truncate a floating point number to an integral float value.
Rounds the value toward zero. */)
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
if (d >= 0.0)
IN_FLOAT (d = floor (d), "ftruncate", arg);
else
IN_FLOAT (d = ceil (d), "ftruncate", arg);
return make_float (d);
}
#ifdef FLOAT_CATCH_SIGILL
static SIGTYPE
float_error (signo)
int signo;
{
if (! in_float)
fatal_error_signal (signo);
#ifdef BSD_SYSTEM
#ifdef BSD4_1
sigrelse (SIGILL);
#else /* not BSD4_1 */
sigsetmask (SIGEMPTYMASK);
#endif /* not BSD4_1 */
#else
/* Must reestablish handler each time it is called. */
signal (SIGILL, float_error);
#endif /* BSD_SYSTEM */
SIGNAL_THREAD_CHECK (signo);
in_float = 0;
xsignal1 (Qarith_error, float_error_arg);
}
/* Another idea was to replace the library function `infnan'
where SIGILL is signaled. */
#endif /* FLOAT_CATCH_SIGILL */
#ifdef HAVE_MATHERR
int
matherr (x)
struct exception *x;
{
Lisp_Object args;
if (! in_float)
/* Not called from emacs-lisp float routines; do the default thing. */
return 0;
if (!strcmp (x->name, "pow"))
x->name = "expt";
args
= Fcons (build_string (x->name),
Fcons (make_float (x->arg1),
((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
? Fcons (make_float (x->arg2), Qnil)
: Qnil)));
switch (x->type)
{
case DOMAIN: xsignal (Qdomain_error, args); break;
case SING: xsignal (Qsingularity_error, args); break;
case OVERFLOW: xsignal (Qoverflow_error, args); break;
case UNDERFLOW: xsignal (Qunderflow_error, args); break;
default: xsignal (Qarith_error, args); break;
}
return (1); /* don't set errno or print a message */
}
#endif /* HAVE_MATHERR */
void
init_floatfns ()
{
#ifdef FLOAT_CATCH_SIGILL
signal (SIGILL, float_error);
#endif
in_float = 0;
}
void
syms_of_floatfns ()
{
defsubr (&Sacos);
defsubr (&Sasin);
defsubr (&Satan);
defsubr (&Scos);
defsubr (&Ssin);
defsubr (&Stan);
#if 0
defsubr (&Sacosh);
defsubr (&Sasinh);
defsubr (&Satanh);
defsubr (&Scosh);
defsubr (&Ssinh);
defsubr (&Stanh);
defsubr (&Sbessel_y0);
defsubr (&Sbessel_y1);
defsubr (&Sbessel_yn);
defsubr (&Sbessel_j0);
defsubr (&Sbessel_j1);
defsubr (&Sbessel_jn);
defsubr (&Serf);
defsubr (&Serfc);
defsubr (&Slog_gamma);
defsubr (&Scube_root);
#endif
defsubr (&Sfceiling);
defsubr (&Sffloor);
defsubr (&Sfround);
defsubr (&Sftruncate);
defsubr (&Sexp);
defsubr (&Sexpt);
defsubr (&Slog);
defsubr (&Slog10);
defsubr (&Ssqrt);
defsubr (&Sabs);
defsubr (&Sfloat);
defsubr (&Slogb);
defsubr (&Sceiling);
defsubr (&Sfloor);
defsubr (&Sround);
defsubr (&Struncate);
}
/* arch-tag: be05bf9d-049e-4e31-91b9-e6153d483ae7
(do not change this comment) */
|