1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
;;; sregex.el --- symbolic regular expressions
;; Copyright (C) 1997, 1998, 2000, 2001, 2002, 2003, 2004,
;; 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
;; Author: Bob Glickstein <bobg+sregex@zanshin.com>
;; Maintainer: Bob Glickstein <bobg+sregex@zanshin.com>
;; Keywords: extensions
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
;;; Commentary:
;; This package allows you to write regular expressions using a
;; totally new, Lisp-like syntax.
;; A "symbolic regular expression" (sregex for short) is a Lisp form
;; that, when evaluated, produces the string form of the specified
;; regular expression. Here's a simple example:
;; (sregexq (or "Bob" "Robert")) => "Bob\\|Robert"
;; As you can see, an sregex is specified by placing one or more
;; special clauses in a call to `sregexq'. The clause in this case is
;; the `or' of two strings (not to be confused with the Lisp function
;; `or'). The list of allowable clauses appears below.
;; With sregex, it is never necessary to "escape" magic characters
;; that are meant to be taken literally; that happens automatically.
;; For example:
;; (sregexq "M*A*S*H") => "M\\*A\\*S\\*H"
;; It is also unnecessary to "group" parts of the expression together
;; to overcome operator precedence; that also happens automatically.
;; For example:
;; (sregexq (opt (or "Bob" "Robert"))) => "\\(?:Bob\\|Robert\\)?"
;; It *is* possible to group parts of the expression in order to refer
;; to them with numbered backreferences:
;; (sregexq (group (or "Go" "Run"))
;; ", Spot, "
;; (backref 1)) => "\\(Go\\|Run\\), Spot, \\1"
;; `sregexq' is a macro. Each time it is used, it constructs a simple
;; Lisp expression that then invokes a moderately complex engine to
;; interpret the sregex and render the string form. Because of this,
;; I don't recommend sprinkling calls to `sregexq' throughout your
;; code, the way one normally does with string regexes (which are
;; cheap to evaluate). Instead, it's wiser to precompute the regexes
;; you need wherever possible instead of repeatedly constructing the
;; same ones over and over. Example:
;; (let ((field-regex (sregexq (opt "resent-")
;; (or "to" "cc" "bcc"))))
;; ...
;; (while ...
;; ...
;; (re-search-forward field-regex ...)
;; ...))
;; The arguments to `sregexq' are automatically quoted, but the
;; flipside of this is that it is not straightforward to include
;; computed (i.e., non-constant) values in `sregexq' expressions. So
;; `sregex' is a function that is like `sregexq' but which does not
;; automatically quote its values. Literal sregex clauses must be
;; explicitly quoted like so:
;; (sregex '(or "Bob" "Robert")) => "Bob\\|Robert"
;; but computed clauses can be included easily, allowing for the reuse
;; of common clauses:
;; (let ((dotstar '(0+ any))
;; (whitespace '(1+ (syntax ?-)))
;; (digits '(1+ (char (?0 . ?9)))))
;; (sregex 'bol dotstar ":" whitespace digits)) => "^.*:\\s-+[0-9]+"
;; To use this package in a Lisp program, simply (require 'sregex).
;; Here are the clauses allowed in an `sregex' or `sregexq'
;; expression:
;; - a string
;; This stands for the literal string. If it contains
;; metacharacters, they will be escaped in the resulting regex
;; (using `regexp-quote').
;; - the symbol `any'
;; This stands for ".", a regex matching any character except
;; newline.
;; - the symbol `bol'
;; Stands for "^", matching the empty string at the beginning of a line
;; - the symbol `eol'
;; Stands for "$", matching the empty string at the end of a line
;; - (group CLAUSE ...)
;; Groups the given CLAUSEs using "\\(" and "\\)".
;; - (sequence CLAUSE ...)
;; Groups the given CLAUSEs; may or may not use "\\(?:" and "\\)".
;; Clauses grouped by `sequence' do not count for purposes of
;; numbering backreferences. Use `sequence' in situations like
;; this:
;; (sregexq (or "dog" "cat"
;; (sequence (opt "sea ") "monkey")))
;; => "dog\\|cat\\|\\(?:sea \\)?monkey"
;; where a single `or' alternate needs to contain multiple
;; subclauses.
;; - (backref N)
;; Matches the same string previously matched by the Nth "group" in
;; the same sregex. N is a positive integer.
;; - (or CLAUSE ...)
;; Matches any one of the CLAUSEs by separating them with "\\|".
;; - (0+ CLAUSE ...)
;; Concatenates the given CLAUSEs and matches zero or more
;; occurrences by appending "*".
;; - (1+ CLAUSE ...)
;; Concatenates the given CLAUSEs and matches one or more
;; occurrences by appending "+".
;; - (opt CLAUSE ...)
;; Concatenates the given CLAUSEs and matches zero or one occurrence
;; by appending "?".
;; - (repeat MIN MAX CLAUSE ...)
;; Concatenates the given CLAUSEs and constructs a regex matching at
;; least MIN occurrences and at most MAX occurrences. MIN must be a
;; non-negative integer. MAX must be a non-negative integer greater
;; than or equal to MIN; or MAX can be nil to mean "infinity."
;; - (char CHAR-CLAUSE ...)
;; Creates a "character class" matching one character from the given
;; set. See below for how to construct a CHAR-CLAUSE.
;; - (not-char CHAR-CLAUSE ...)
;; Creates a "character class" matching any one character not in the
;; given set. See below for how to construct a CHAR-CLAUSE.
;; - the symbol `bot'
;; Stands for "\\`", matching the empty string at the beginning of
;; text (beginning of a string or of a buffer).
;; - the symbol `eot'
;; Stands for "\\'", matching the empty string at the end of text.
;; - the symbol `point'
;; Stands for "\\=", matching the empty string at point.
;; - the symbol `word-boundary'
;; Stands for "\\b", matching the empty string at the beginning or
;; end of a word.
;; - the symbol `not-word-boundary'
;; Stands for "\\B", matching the empty string not at the beginning
;; or end of a word.
;; - the symbol `bow'
;; Stands for "\\<", matching the empty string at the beginning of a
;; word.
;; - the symbol `eow'
;; Stands for "\\>", matching the empty string at the end of a word.
;; - the symbol `wordchar'
;; Stands for the regex "\\w", matching a word-constituent character
;; (as determined by the current syntax table)
;; - the symbol `not-wordchar'
;; Stands for the regex "\\W", matching a non-word-constituent
;; character.
;; - (syntax CODE)
;; Stands for the regex "\\sCODE", where CODE is a syntax table code
;; (a single character). Matches any character with the requested
;; syntax.
;; - (not-syntax CODE)
;; Stands for the regex "\\SCODE", where CODE is a syntax table code
;; (a single character). Matches any character without the
;; requested syntax.
;; - (regex REGEX)
;; This is a "trapdoor" for including ordinary regular expression
;; strings in the result. Some regular expressions are clearer when
;; written the old way: "[a-z]" vs. (sregexq (char (?a . ?z))), for
;; instance. However, see the note under "Bugs," below.
;; Each CHAR-CLAUSE that is passed to (char ...) and (not-char ...)
;; has one of the following forms:
;; - a character
;; Adds that character to the set.
;; - a string
;; Adds all the characters in the string to the set.
;; - A pair (MIN . MAX)
;; Where MIN and MAX are characters, adds the range of characters
;; from MIN through MAX to the set.
;;; To do:
;; An earlier version of this package could optionally translate the
;; symbolic regex into other languages' syntaxes, e.g. Perl. For
;; instance, with Perl syntax selected, (sregexq (or "ab" "cd")) would
;; yield "ab|cd" instead of "ab\\|cd". It might be useful to restore
;; such a facility.
;; - handle multibyte chars in sregex--char-aux
;; - add support for character classes ([:blank:], ...)
;; - add support for non-greedy operators *? and +?
;; - bug: (sregexq (opt (opt ?a))) returns "a??" which is a non-greedy "a?"
;;; Bugs:
;;; Code:
(eval-when-compile (require 'cl))
;; Compatibility code for when we didn't have shy-groups
(defvar sregex--current-sregex nil)
(defun sregex-info () nil)
(defmacro sregex-save-match-data (&rest forms) (cons 'save-match-data forms))
(defun sregex-replace-match (r &optional f l str subexp x)
(replace-match r f l str subexp))
(defun sregex-match-string (c &optional i x) (match-string c i))
(defun sregex-match-string-no-properties (count &optional in-string sregex)
(match-string-no-properties count in-string))
(defun sregex-match-beginning (count &optional sregex) (match-beginning count))
(defun sregex-match-end (count &optional sregex) (match-end count))
(defun sregex-match-data (&optional sregex) (match-data))
(defun sregex-backref-num (n &optional sregex) n)
(defun sregex (&rest exps)
"Symbolic regular expression interpreter.
This is exactly like `sregexq' (q.v.) except that it evaluates all its
arguments, so literal sregex clauses must be quoted. For example:
(sregex '(or \"Bob\" \"Robert\")) => \"Bob\\\\|Robert\"
An argument-evaluating sregex interpreter lets you reuse sregex
subexpressions:
(let ((dotstar '(0+ any))
(whitespace '(1+ (syntax ?-)))
(digits '(1+ (char (?0 . ?9)))))
(sregex 'bol dotstar \":\" whitespace digits)) => \"^.*:\\\\s-+[0-9]+\""
(sregex--sequence exps nil))
(defmacro sregexq (&rest exps)
"Symbolic regular expression interpreter.
This macro allows you to specify a regular expression (regexp) in
symbolic form, and converts it into the string form required by Emacs's
regex functions such as `re-search-forward' and `looking-at'. Here is
a simple example:
(sregexq (or \"Bob\" \"Robert\")) => \"Bob\\\\|Robert\"
As you can see, an sregex is specified by placing one or more special
clauses in a call to `sregexq'. The clause in this case is the `or'
of two strings (not to be confused with the Lisp function `or'). The
list of allowable clauses appears below.
With `sregex', it is never necessary to \"escape\" magic characters
that are meant to be taken literally; that happens automatically.
For example:
(sregexq \"M*A*S*H\") => \"M\\\\*A\\\\*S\\\\*H\"
It is also unnecessary to \"group\" parts of the expression together
to overcome operator precedence; that also happens automatically.
For example:
(sregexq (opt (or \"Bob\" \"Robert\"))) => \"\\\\(Bob\\\\|Robert\\\\)?\"
It *is* possible to group parts of the expression in order to refer
to them with numbered backreferences:
(sregexq (group (or \"Go\" \"Run\"))
\", Spot, \"
(backref 1)) => \"\\\\(Go\\\\|Run\\\\), Spot, \\\\1\"
If `sregexq' needs to introduce its own grouping parentheses, it will
automatically renumber your backreferences:
(sregexq (opt \"resent-\")
(group (or \"to\" \"cc\" \"bcc\"))
\": \"
(backref 1)) => \"\\\\(resent-\\\\)?\\\\(to\\\\|cc\\\\|bcc\\\\): \\\\2\"
`sregexq' is a macro. Each time it is used, it constructs a simple
Lisp expression that then invokes a moderately complex engine to
interpret the sregex and render the string form. Because of this, I
don't recommend sprinkling calls to `sregexq' throughout your code,
the way one normally does with string regexes (which are cheap to
evaluate). Instead, it's wiser to precompute the regexes you need
wherever possible instead of repeatedly constructing the same ones
over and over. Example:
(let ((field-regex (sregexq (opt \"resent-\")
(or \"to\" \"cc\" \"bcc\"))))
...
(while ...
...
(re-search-forward field-regex ...)
...))
The arguments to `sregexq' are automatically quoted, but the
flipside of this is that it is not straightforward to include
computed (i.e., non-constant) values in `sregexq' expressions. So
`sregex' is a function that is like `sregexq' but which does not
automatically quote its values. Literal sregex clauses must be
explicitly quoted like so:
(sregex '(or \"Bob\" \"Robert\")) => \"Bob\\\\|Robert\"
but computed clauses can be included easily, allowing for the reuse
of common clauses:
(let ((dotstar '(0+ any))
(whitespace '(1+ (syntax ?-)))
(digits '(1+ (char (?0 . ?9)))))
(sregex 'bol dotstar \":\" whitespace digits)) => \"^.*:\\\\s-+[0-9]+\"
Here are the clauses allowed in an `sregex' or `sregexq' expression:
- a string
This stands for the literal string. If it contains
metacharacters, they will be escaped in the resulting regex
(using `regexp-quote').
- the symbol `any'
This stands for \".\", a regex matching any character except
newline.
- the symbol `bol'
Stands for \"^\", matching the empty string at the beginning of a line
- the symbol `eol'
Stands for \"$\", matching the empty string at the end of a line
- (group CLAUSE ...)
Groups the given CLAUSEs using \"\\\\(\" and \"\\\\)\".
- (sequence CLAUSE ...)
Groups the given CLAUSEs; may or may not use \"\\\\(\" and \"\\\\)\".
Clauses grouped by `sequence' do not count for purposes of
numbering backreferences. Use `sequence' in situations like
this:
(sregexq (or \"dog\" \"cat\"
(sequence (opt \"sea \") \"monkey\")))
=> \"dog\\\\|cat\\\\|\\\\(?:sea \\\\)?monkey\"
where a single `or' alternate needs to contain multiple
subclauses.
- (backref N)
Matches the same string previously matched by the Nth \"group\" in
the same sregex. N is a positive integer.
- (or CLAUSE ...)
Matches any one of the CLAUSEs by separating them with \"\\\\|\".
- (0+ CLAUSE ...)
Concatenates the given CLAUSEs and matches zero or more
occurrences by appending \"*\".
- (1+ CLAUSE ...)
Concatenates the given CLAUSEs and matches one or more
occurrences by appending \"+\".
- (opt CLAUSE ...)
Concatenates the given CLAUSEs and matches zero or one occurrence
by appending \"?\".
- (repeat MIN MAX CLAUSE ...)
Concatenates the given CLAUSEs and constructs a regex matching at
least MIN occurrences and at most MAX occurrences. MIN must be a
non-negative integer. MAX must be a non-negative integer greater
than or equal to MIN; or MAX can be nil to mean \"infinity.\"
- (char CHAR-CLAUSE ...)
Creates a \"character class\" matching one character from the given
set. See below for how to construct a CHAR-CLAUSE.
- (not-char CHAR-CLAUSE ...)
Creates a \"character class\" matching any one character not in the
given set. See below for how to construct a CHAR-CLAUSE.
- the symbol `bot'
Stands for \"\\\\`\", matching the empty string at the beginning of
text (beginning of a string or of a buffer).
- the symbol `eot'
Stands for \"\\\\'\", matching the empty string at the end of text.
- the symbol `point'
Stands for \"\\\\=\\=\", matching the empty string at point.
- the symbol `word-boundary'
Stands for \"\\\\b\", matching the empty string at the beginning or
end of a word.
- the symbol `not-word-boundary'
Stands for \"\\\\B\", matching the empty string not at the beginning
or end of a word.
- the symbol `bow'
Stands for \"\\\\=\\<\", matching the empty string at the beginning of a
word.
- the symbol `eow'
Stands for \"\\\\=\\>\", matching the empty string at the end of a word.
- the symbol `wordchar'
Stands for the regex \"\\\\w\", matching a word-constituent character
(as determined by the current syntax table)
- the symbol `not-wordchar'
Stands for the regex \"\\\\W\", matching a non-word-constituent
character.
- (syntax CODE)
Stands for the regex \"\\\\sCODE\", where CODE is a syntax table code
(a single character). Matches any character with the requested
syntax.
- (not-syntax CODE)
Stands for the regex \"\\\\SCODE\", where CODE is a syntax table code
(a single character). Matches any character without the
requested syntax.
- (regex REGEX)
This is a \"trapdoor\" for including ordinary regular expression
strings in the result. Some regular expressions are clearer when
written the old way: \"[a-z]\" vs. (sregexq (char (?a . ?z))), for
instance.
Each CHAR-CLAUSE that is passed to (char ...) and (not-char ...)
has one of the following forms:
- a character
Adds that character to the set.
- a string
Adds all the characters in the string to the set.
- A pair (MIN . MAX)
Where MIN and MAX are characters, adds the range of characters
from MIN through MAX to the set."
`(apply 'sregex ',exps))
(defun sregex--engine (exp combine)
(cond
((stringp exp)
(if (and combine
(eq combine 'suffix)
(/= (length exp) 1))
(concat "\\(?:" (regexp-quote exp) "\\)")
(regexp-quote exp)))
((symbolp exp)
(ecase exp
(any ".")
(bol "^")
(eol "$")
(wordchar "\\w")
(not-wordchar "\\W")
(bot "\\`")
(eot "\\'")
(point "\\=")
(word-boundary "\\b")
(not-word-boundary "\\B")
(bow "\\<")
(eow "\\>")))
((consp exp)
(funcall (intern (concat "sregex--"
(symbol-name (car exp))))
(cdr exp)
combine))
(t (error "Invalid expression: %s" exp))))
(defun sregex--sequence (exps combine)
(if (= (length exps) 1) (sregex--engine (car exps) combine)
(let ((re (mapconcat
(lambda (e) (sregex--engine e 'concat))
exps "")))
(if (eq combine 'suffix)
(concat "\\(?:" re "\\)")
re))))
(defun sregex--or (exps combine)
(if (= (length exps) 1) (sregex--engine (car exps) combine)
(let ((re (mapconcat
(lambda (e) (sregex--engine e 'or))
exps "\\|")))
(if (not (eq combine 'or))
(concat "\\(?:" re "\\)")
re))))
(defun sregex--group (exps combine) (concat "\\(" (sregex--sequence exps nil) "\\)"))
(defun sregex--backref (exps combine) (concat "\\" (int-to-string (car exps))))
(defun sregex--opt (exps combine) (concat (sregex--sequence exps 'suffix) "?"))
(defun sregex--0+ (exps combine) (concat (sregex--sequence exps 'suffix) "*"))
(defun sregex--1+ (exps combine) (concat (sregex--sequence exps 'suffix) "+"))
(defun sregex--char (exps combine) (sregex--char-aux nil exps))
(defun sregex--not-char (exps combine) (sregex--char-aux t exps))
(defun sregex--syntax (exps combine) (format "\\s%c" (car exps)))
(defun sregex--not-syntax (exps combine) (format "\\S%c" (car exps)))
(defun sregex--regex (exps combine)
(if combine (concat "\\(?:" (car exps) "\\)") (car exps)))
(defun sregex--repeat (exps combine)
(let* ((min (or (pop exps) 0))
(minstr (number-to-string min))
(max (pop exps)))
(concat (sregex--sequence exps 'suffix)
(concat "\\{" minstr ","
(when max (number-to-string max)) "\\}"))))
(defun sregex--char-range (start end)
(let ((startc (char-to-string start))
(endc (char-to-string end)))
(cond
((> end (+ start 2)) (concat startc "-" endc))
((> end (+ start 1)) (concat startc (char-to-string (1+ start)) endc))
((> end start) (concat startc endc))
(t startc))))
(defun sregex--char-aux (complement args)
;; regex-opt does the same, we should join effort.
(let ((chars (make-bool-vector 256 nil))) ; Yeah, right!
(dolist (arg args)
(cond ((integerp arg) (aset chars arg t))
((stringp arg) (mapc (lambda (c) (aset chars c t)) arg))
((consp arg)
(let ((start (car arg))
(end (cdr arg)))
(when (> start end)
(let ((tmp start)) (setq start end) (setq end tmp)))
;; now start <= end
(let ((i start))
(while (<= i end)
(aset chars i t)
(setq i (1+ i))))))))
;; now chars is a map of the characters in the class
(let ((caret (aref chars ?^))
(dash (aref chars ?-))
(class (if (aref chars ?\]) "]" "")))
(aset chars ?^ nil)
(aset chars ?- nil)
(aset chars ?\] nil)
(let (start end)
(dotimes (i 256)
(if (aref chars i)
(progn
(unless start (setq start i))
(setq end i)
(aset chars i nil))
(when start
(setq class (concat class (sregex--char-range start end)))
(setq start nil))))
(if start
(setq class (concat class (sregex--char-range start end)))))
(if (> (length class) 0)
(setq class (concat class (if caret "^") (if dash "-")))
(setq class (concat class (if dash "-") (if caret "^"))))
(if (and (not complement) (= (length class) 1))
(regexp-quote class)
(concat "[" (if complement "^") class "]")))))
(provide 'sregex)
;; arch-tag: 460c1f5a-eb6e-42ec-a451-ffac78bdf492
;;; sregex.el ends here
|