1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
|
<HTML>
<HEAD>
<TITLE>
EMBOSS: compseq
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
compseq
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Function
</H2>
Count composition of dimer/trimer/etc words in a sequence
<H2>
Description
</H2>
This takes a specified length of sequence and counts the number of
distinct subsequences of that length that there are in the input
sequence(s).
<p>
It can read in the result of a previous compseq analysis and use this
to set the expected frequencies of the subsequences.
<p>
Unless you tell 'compseq' otherwise, it expects each word to be equally
likely. The 'Expected' frequency therefore of any dimer is 1/16 - this
is simply the inverse of the number of possible dimers (AA, AC, AG, AT,
CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT).
<p>
Similarly, the 'Expected' frequency of any trimer is 1/64, etc.
<p>
Obviously this is not the case in real sequences - there will be bias in
favour of some words.
<p>
Compseq cannot otherwise guess what the 'Expected' frequency is. You
can, however, tell it what the Expected frequencies are by giving
compseq the output of the analysis of another set of sequences, produced
by a previous compseq run.
<p>
So you take a set of sequences that are representative of the type of
sequence you expect and you run compseq on it to get your expected
sequence frequencies.
<p>
You then take the sequences you wish to investigate, run compseq on them
giving compseq the expected frequencies that you have established,
above. You tell compseq what the file of expected frequencies is by
specifying it with '-infile filename' on the command-line.
<H2>
Usage
</H2>
<b>Here is a sample session with compseq</b>
<p>
To count the frequencies of dinucleotides in a file:
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>compseq tembl:x65923 -word 2 result3.comp </b>
Count composition of dimer/trimer/etc words in a sequence
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<p>
<b>Example 2</b>
<p>
To count the frequencies of hexanucleotides, without outputting the results of hexanucleotides that do not occur in the sequence:
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>compseq tembl:x65923 -word 6 result6.comp -nozero </b>
Count composition of dimer/trimer/etc words in a sequence
</pre></td></tr></table><p>
<p>
<a href="#output.2">Go to the output files for this example</a><p><p>
<p>
<b>Example 3</b>
<p>
To count the frequencies of trinucleotides in frame 2 of a sequence and use a previously prepared compseq output to show the expected frequencies:
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>compseq tembl:x65923 -word 3 result3.comp -frame 2 -in prev.comp </b>
Count composition of dimer/trimer/etc words in a sequence
</pre></td></tr></table><p>
<p>
<a href="#input.3">Go to the input files for this example</a><br><a href="#output.3">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Standard (Mandatory) qualifiers:
[-sequence] seqall Sequence(s) filename and optional format, or
reference (input USA)
-word integer [2] This is the size of word (n-mer) to
count.
Thus if you want to count codon frequencies,
you should enter 3 here. (Integer from 1 to
20)
[-outfile] outfile [*.compseq] This is the results file.
Additional (Optional) qualifiers (* if not always prompted):
-infile infile This is a file previously produced by
'compseq' that can be used to set the
expected frequencies of words in this
analysis.
The word size in the current run must be the
same as the one in this results file.
Obviously, you should use a file produced
from protein sequences if you are counting
protein sequence word frequencies, and you
must use one made from nucleotide
frequencies if you are analysing a
nucleotide sequence.
-frame integer [0] The normal behaviour of 'compseq' is to
count the frequencies of all words that
occur by moving a window of length 'word' up
by one each time.
This option allows you to move the window up
by the length of the word each time,
skipping over the intervening words.
You can count only those words that occur in
a single frame of the word by setting this
value to a number other than zero.
If you set it to 1 it will only count the
words in frame 1, 2 will only count the
words in frame 2 and so on. (Integer 0 or
more)
* -[no]ignorebz boolean [Y] The amino acid code B represents
Asparagine or Aspartic acid and the code Z
represents Glutamine or Glutamic acid.
These are not commonly used codes and you
may wish not to count words containing them,
just noting them in the count of 'Other'
words.
* -reverse boolean [N] Set this to be true if you also wish to
also count words in the reverse complement
of a nucleic sequence.
-calcfreq boolean [N] If this is set true then the expected
frequencies of words are calculated from the
observed frequency of single bases or
residues in the sequences.
If you are reporting a word size of 1
(single bases or residues) then there is no
point in using this option because the
calculated expected frequency will be equal
to the observed frequency.
Calculating the expected frequencies like
this will give an approximation of the
expected frequencies that you might get by
using an input file of frequencies produced
by a previous run of this program. If an
input file of expected word frequencies has
been specified then the values from that
file will be used instead of this
calculation of expected frequency from the
sequence, even if 'calcfreq' is set to be
true.
-[no]zerocount boolean [Y] You can make the output results file
much smaller if you do not display the words
with a zero count.
Advanced (Unprompted) qualifiers: (none)
Associated qualifiers:
"-sequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-sformat1 string Input sequence format
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outfile" associated qualifiers
-odirectory2 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write standard output
-filter boolean Read standard input, write standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Standard (Mandatory) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>[-sequence]<br>(Parameter 1)</td>
<td>Sequence(s) filename and optional format, or reference (input USA)</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>
<tr>
<td>-word</td>
<td>This is the size of word (n-mer) to count.
Thus if you want to count codon frequencies, you should enter 3 here.</td>
<td>Integer from 1 to 20</td>
<td>2</td>
</tr>
<tr>
<td>[-outfile]<br>(Parameter 2)</td>
<td>This is the results file.</td>
<td>Output file</td>
<td><i><*></i>.compseq</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Additional (Optional) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>-infile</td>
<td>This is a file previously produced by 'compseq' that can be used to set the expected frequencies of words in this analysis.
The word size in the current run must be the same as the one in this results file. Obviously, you should use a file produced from protein sequences if you are counting protein sequence word frequencies, and you must use one made from nucleotide frequencies if you are analysing a nucleotide sequence.</td>
<td>Input file</td>
<td><b>Required</b></td>
</tr>
<tr>
<td>-frame</td>
<td>The normal behaviour of 'compseq' is to count the frequencies of all words that occur by moving a window of length 'word' up by one each time.
This option allows you to move the window up by the length of the word each time, skipping over the intervening words.
You can count only those words that occur in a single frame of the word by setting this value to a number other than zero.
If you set it to 1 it will only count the words in frame 1, 2 will only count the words in frame 2 and so on.</td>
<td>Integer 0 or more</td>
<td>0</td>
</tr>
<tr>
<td>-[no]ignorebz</td>
<td>The amino acid code B represents Asparagine or Aspartic acid and the code Z represents Glutamine or Glutamic acid.
These are not commonly used codes and you may wish not to count words containing them, just noting them in the count of 'Other' words.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr>
<td>-reverse</td>
<td>Set this to be true if you also wish to also count words in the reverse complement of a nucleic sequence.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-calcfreq</td>
<td>If this is set true then the expected frequencies of words are calculated from the observed frequency of single bases or residues in the sequences.
If you are reporting a word size of 1 (single bases or residues) then there is no point in using this option because the calculated expected frequency will be equal to the observed frequency.
Calculating the expected frequencies like this will give an approximation of the expected frequencies that you might get by using an input file of frequencies produced by a previous run of this program. If an input file of expected word frequencies has been specified then the values from that file will be used instead of this calculation of expected frequency from the sequence, even if 'calcfreq' is set to be true.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-[no]zerocount</td>
<td>You can make the output results file much smaller if you do not display the words with a zero count.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Advanced (Unprompted) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td colspan=4>(none)</td>
</tr>
</table>
<H2>
Input file format
</H2>
Normal sequence(s) USA.
<p>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
'tembl:x65923' is a sequence entry in the example nucleic acid database 'tembl'
<p>
<p><h3>Database entry: tembl:x65923</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID X65923; SV 1; linear; mRNA; STD; HUM; 518 BP.
XX
AC X65923;
XX
DT 13-MAY-1992 (Rel. 31, Created)
DT 18-APR-2005 (Rel. 83, Last updated, Version 11)
XX
DE H.sapiens fau mRNA
XX
KW fau gene.
XX
OS Homo sapiens (human)
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC Homo.
XX
RN [1]
RP 1-518
RA Michiels L.M.R.;
RT ;
RL Submitted (29-APR-1992) to the EMBL/GenBank/DDBJ databases.
RL L.M.R. Michiels, University of Antwerp, Dept of Biochemistry,
RL Universiteisplein 1, 2610 Wilrijk, BELGIUM
XX
RN [2]
RP 1-518
RX PUBMED; 8395683.
RA Michiels L., Van der Rauwelaert E., Van Hasselt F., Kas K., Merregaert J.;
RT " fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as
RT an antisense sequences in the Finkel-Biskis-Reilly murine sarcoma virus";
RL Oncogene 8(9):2537-2546(1993).
XX
DR H-InvDB; HIT000322806.
XX
FH Key Location/Qualifiers
FH
FT source 1..518
FT /organism="Homo sapiens"
FT /chromosome="11q"
FT /map="13"
FT /mol_type="mRNA"
FT /clone_lib="cDNA"
FT /clone="pUIA 631"
FT /tissue_type="placenta"
FT /db_xref="taxon:9606"
FT misc_feature 57..278
FT /note="ubiquitin like part"
FT CDS 57..458
FT /gene="fau"
FT /db_xref="GDB:135476"
FT /db_xref="GOA:P35544"
FT /db_xref="GOA:P62861"
FT /db_xref="HGNC:3597"
FT /db_xref="UniProtKB/Swiss-Prot:P35544"
FT /db_xref="UniProtKB/Swiss-Prot:P62861"
FT /protein_id="CAA46716.1"
FT /translation="MQLFVRAQELHTFEVTGQETVAQIKAHVASLEGIAPEDQVVLLAG
FT APLEDEATLGQCGVEALTTLEVAGRMLGGKVHGSLARAGKVRGQTPKVAKQEKKKKKTG
FT RAKRRMQYNRRFVNVVPTFGKKKGPNANS"
FT misc_feature 98..102
FT /note="nucleolar localization signal"
FT misc_feature 279..458
FT /note="S30 part"
FT polyA_signal 484..489
FT polyA_site 509
XX
SQ Sequence 518 BP; 125 A; 139 C; 148 G; 106 T; 0 other;
ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc gccaatatgc 60
agctctttgt ccgcgcccag gagctacaca ccttcgaggt gaccggccag gaaacggtcg 120
cccagatcaa ggctcatgta gcctcactgg agggcattgc cccggaagat caagtcgtgc 180
tcctggcagg cgcgcccctg gaggatgagg ccactctggg ccagtgcggg gtggaggccc 240
tgactaccct ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc 300
gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag aagaagaaga 360
agacaggtcg ggctaagcgg cggatgcagt acaaccggcg ctttgtcaac gttgtgccca 420
cctttggcaa gaagaagggc cccaatgcca actcttaagt cttttgtaat tctggctttc 480
tctaataaaa aagccactta gttcagtcaa aaaaaaaa 518
//
</pre>
</td></tr></table><p>
<a name="input.3"></a>
<h3>Input files for usage example 3</h3>
<p><h3>File: prev.comp</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
#
# Output from 'compseq'
#
# The Expected frequencies are calculated on the (false) assumption that every
# word has equal frequency.
#
# The input sequences are:
# HSFAU
Word size 3
Total count 516
#
# Word Obs Count Obs Frequency Exp Frequency Obs/Exp Frequency
#
AAA 17 0.0329457 0.0156250 2.1085271
AAC 5 0.0096899 0.0156250 0.6201550
AAG 18 0.0348837 0.0156250 2.2325581
AAT 4 0.0077519 0.0156250 0.4961240
ACA 5 0.0096899 0.0156250 0.6201550
ACC 6 0.0116279 0.0156250 0.7441860
ACG 2 0.0038760 0.0156250 0.2480620
ACT 7 0.0135659 0.0156250 0.8682171
AGA 12 0.0232558 0.0156250 1.4883721
AGC 7 0.0135659 0.0156250 0.8682171
AGG 16 0.0310078 0.0156250 1.9844961
AGT 10 0.0193798 0.0156250 1.2403101
ATA 2 0.0038760 0.0156250 0.2480620
ATC 3 0.0058140 0.0156250 0.3720930
ATG 7 0.0135659 0.0156250 0.8682171
ATT 2 0.0038760 0.0156250 0.2480620
CAA 10 0.0193798 0.0156250 1.2403101
CAC 6 0.0116279 0.0156250 0.7441860
CAG 13 0.0251938 0.0156250 1.6124031
CAT 5 0.0096899 0.0156250 0.6201550
CCA 12 0.0232558 0.0156250 1.4883721
CCC 13 0.0251938 0.0156250 1.6124031
CCG 8 0.0155039 0.0156250 0.9922481
CCT 10 0.0193798 0.0156250 1.2403101
CGA 2 0.0038760 0.0156250 0.2480620
CGC 10 0.0193798 0.0156250 1.2403101
CGG 9 0.0174419 0.0156250 1.1162791
CGT 4 0.0077519 0.0156250 0.4961240
CTA 5 0.0096899 0.0156250 0.6201550
CTC 11 0.0213178 0.0156250 1.3643411
CTG 10 0.0193798 0.0156250 1.2403101
CTT 11 0.0213178 0.0156250 1.3643411
GAA 11 0.0213178 0.0156250 1.3643411
GAC 6 0.0116279 0.0156250 0.7441860
GAG 10 0.0193798 0.0156250 1.2403101
GAT 4 0.0077519 0.0156250 0.4961240
GCA 7 0.0135659 0.0156250 0.8682171
GCC 18 0.0348837 0.0156250 2.2325581
GCG 8 0.0155039 0.0156250 0.9922481
GCT 10 0.0193798 0.0156250 1.2403101
GGA 13 0.0251938 0.0156250 1.6124031
GGC 17 0.0329457 0.0156250 2.1085271
GGG 7 0.0135659 0.0156250 0.8682171
GGT 9 0.0174419 0.0156250 1.1162791
GTA 6 0.0116279 0.0156250 0.7441860
GTC 9 0.0174419 0.0156250 1.1162791
GTG 8 0.0155039 0.0156250 0.9922481
GTT 5 0.0096899 0.0156250 0.6201550
TAA 7 0.0135659 0.0156250 0.8682171
TAC 3 0.0058140 0.0156250 0.3720930
TAG 4 0.0077519 0.0156250 0.4961240
TAT 1 0.0019380 0.0156250 0.1240310
TCA 10 0.0193798 0.0156250 1.2403101
TCC 6 0.0116279 0.0156250 0.7441860
TCG 7 0.0135659 0.0156250 0.8682171
TCT 10 0.0193798 0.0156250 1.2403101
TGA 4 0.0077519 0.0156250 0.4961240
TGC 9 0.0174419 0.0156250 1.1162791
TGG 14 0.0271318 0.0156250 1.7364341
TGT 5 0.0096899 0.0156250 0.6201550
TTA 2 0.0038760 0.0156250 0.2480620
TTC 10 0.0193798 0.0156250 1.2403101
TTG 7 0.0135659 0.0156250 0.8682171
TTT 7 0.0135659 0.0156250 0.8682171
Other 0 0.0000000 0.0000000 10000000000.0000000
</pre>
</td></tr></table><p>
<H2>
Output file format
</H2>
The output format consists of:
<p>
Header information and comments are preceeded by a '#' character
at the start of the line.
<p>
The Word size and the Total count are then given on separate lines,
<p>
The headers of the columns of results are preceeded by a '#'
<p>
The results columns are: the sub-sequence word, the observed
frequency, the expected frequency (which will be read from the input
file if one is given, else it is a simple inverse of the number of words
of the size specified that can be constructed), the ratio of the
observed to expected frequency.
<p>
After a blank line at the end, the results of 'Other' words is
given - this is the number of words with a sequence which has
IUPAC ambiguity codes or other unusual characters in.
<p>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: result3.comp</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
#
# Output from 'compseq'
#
# The Expected frequencies are calculated on the (false) assumption that every
# word has equal frequency.
#
# The input sequences are:
# X65923
Word size 2
Total count 517
#
# Word Obs Count Obs Frequency Exp Frequency Obs/Exp Frequency
#
AA 45 0.0870406 0.0625000 1.3926499
AC 20 0.0386847 0.0625000 0.6189555
AG 45 0.0870406 0.0625000 1.3926499
AT 14 0.0270793 0.0625000 0.4332689
CA 34 0.0657640 0.0625000 1.0522244
CC 43 0.0831721 0.0625000 1.3307544
CG 25 0.0483559 0.0625000 0.7736944
CT 37 0.0715667 0.0625000 1.1450677
GA 31 0.0599613 0.0625000 0.9593810
GC 43 0.0831721 0.0625000 1.3307544
GG 46 0.0889749 0.0625000 1.4235977
GT 28 0.0541586 0.0625000 0.8665377
TA 15 0.0290135 0.0625000 0.4642166
TC 33 0.0638298 0.0625000 1.0212766
TG 32 0.0618956 0.0625000 0.9903288
TT 26 0.0502901 0.0625000 0.8046422
Other 0 0.0000000 0.0000000 10000000000.0000000
</pre>
</td></tr></table><p>
<a name="output.2"></a>
<h3>Output files for usage example 2</h3>
<p><h3>File: result6.comp</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
#
# Output from 'compseq'
#
# Words with a frequency of zero are not reported.
# The Expected frequencies are calculated on the (false) assumption that every
# word has equal frequency.
#
# The input sequences are:
# X65923
Word size 6
Total count 513
#
# Word Obs Count Obs Frequency Exp Frequency Obs/Exp Frequency
#
AAAAAA 6 0.0116959 0.0002441 47.9064327
AAAAAG 1 0.0019493 0.0002441 7.9844055
AAAAGC 1 0.0019493 0.0002441 7.9844055
AAAAGT 1 0.0019493 0.0002441 7.9844055
AAACAG 1 0.0019493 0.0002441 7.9844055
AAACGG 1 0.0019493 0.0002441 7.9844055
AAAGCC 1 0.0019493 0.0002441 7.9844055
AAAGTG 1 0.0019493 0.0002441 7.9844055
AAAGTT 1 0.0019493 0.0002441 7.9844055
AACAGG 1 0.0019493 0.0002441 7.9844055
AACCGG 1 0.0019493 0.0002441 7.9844055
AACGGT 1 0.0019493 0.0002441 7.9844055
AACGTT 1 0.0019493 0.0002441 7.9844055
AACTCT 1 0.0019493 0.0002441 7.9844055
AAGAAG 6 0.0116959 0.0002441 47.9064327
AAGACA 1 0.0019493 0.0002441 7.9844055
AAGATC 1 0.0019493 0.0002441 7.9844055
AAGCCA 1 0.0019493 0.0002441 7.9844055
AAGCGG 1 0.0019493 0.0002441 7.9844055
AAGGCT 1 0.0019493 0.0002441 7.9844055
AAGGGC 1 0.0019493 0.0002441 7.9844055
AAGGTG 1 0.0019493 0.0002441 7.9844055
AAGTAG 1 0.0019493 0.0002441 7.9844055
AAGTCG 1 0.0019493 0.0002441 7.9844055
AAGTCT 1 0.0019493 0.0002441 7.9844055
AAGTGA 1 0.0019493 0.0002441 7.9844055
AAGTTC 1 0.0019493 0.0002441 7.9844055
AATAAA 1 0.0019493 0.0002441 7.9844055
AATATG 1 0.0019493 0.0002441 7.9844055
AATGCC 1 0.0019493 0.0002441 7.9844055
AATTCT 1 0.0019493 0.0002441 7.9844055
ACAACC 1 0.0019493 0.0002441 7.9844055
ACACAC 1 0.0019493 0.0002441 7.9844055
<font color=red> [Part of this file has been deleted for brevity]</font>
TGAGGC 1 0.0019493 0.0002441 7.9844055
TGCAGC 1 0.0019493 0.0002441 7.9844055
TGCAGT 1 0.0019493 0.0002441 7.9844055
TGCCAA 1 0.0019493 0.0002441 7.9844055
TGCCCA 1 0.0019493 0.0002441 7.9844055
TGCCCC 1 0.0019493 0.0002441 7.9844055
TGCGGG 1 0.0019493 0.0002441 7.9844055
TGCTCC 1 0.0019493 0.0002441 7.9844055
TGCTGG 1 0.0019493 0.0002441 7.9844055
TGCTTG 1 0.0019493 0.0002441 7.9844055
TGGAAA 1 0.0019493 0.0002441 7.9844055
TGGAAG 1 0.0019493 0.0002441 7.9844055
TGGAGG 4 0.0077973 0.0002441 31.9376218
TGGCAA 1 0.0019493 0.0002441 7.9844055
TGGCAG 1 0.0019493 0.0002441 7.9844055
TGGCCA 1 0.0019493 0.0002441 7.9844055
TGGCCC 1 0.0019493 0.0002441 7.9844055
TGGCTT 1 0.0019493 0.0002441 7.9844055
TGGGAC 1 0.0019493 0.0002441 7.9844055
TGGGCC 1 0.0019493 0.0002441 7.9844055
TGGTTC 1 0.0019493 0.0002441 7.9844055
TGTAAT 1 0.0019493 0.0002441 7.9844055
TGTAGC 1 0.0019493 0.0002441 7.9844055
TGTCAA 1 0.0019493 0.0002441 7.9844055
TGTCCG 1 0.0019493 0.0002441 7.9844055
TGTGCC 1 0.0019493 0.0002441 7.9844055
TTAAGT 1 0.0019493 0.0002441 7.9844055
TTAGTT 1 0.0019493 0.0002441 7.9844055
TTCAGT 2 0.0038986 0.0002441 15.9688109
TTCATG 1 0.0019493 0.0002441 7.9844055
TTCCCT 1 0.0019493 0.0002441 7.9844055
TTCCTC 1 0.0019493 0.0002441 7.9844055
TTCGAG 1 0.0019493 0.0002441 7.9844055
TTCGCG 1 0.0019493 0.0002441 7.9844055
TTCTCG 1 0.0019493 0.0002441 7.9844055
TTCTCT 1 0.0019493 0.0002441 7.9844055
TTCTGG 1 0.0019493 0.0002441 7.9844055
TTGCCC 1 0.0019493 0.0002441 7.9844055
TTGGAG 1 0.0019493 0.0002441 7.9844055
TTGGCA 1 0.0019493 0.0002441 7.9844055
TTGTAA 1 0.0019493 0.0002441 7.9844055
TTGTCA 1 0.0019493 0.0002441 7.9844055
TTGTCC 1 0.0019493 0.0002441 7.9844055
TTGTGC 1 0.0019493 0.0002441 7.9844055
TTTCTC 2 0.0038986 0.0002441 15.9688109
TTTGGC 1 0.0019493 0.0002441 7.9844055
TTTGTA 1 0.0019493 0.0002441 7.9844055
TTTGTC 2 0.0038986 0.0002441 15.9688109
TTTTGT 1 0.0019493 0.0002441 7.9844055
Other 0 0.0000000 0.0000000 10000000000.0000000
</pre>
</td></tr></table><p>
<a name="output.3"></a>
<h3>Output files for usage example 3</h3>
<p><h3>File: result3.comp</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
#
# Output from 'compseq'
#
# Only words in frame 2 will be counted.
# The Expected frequencies are taken from the file: ../../data/prev.comp
#
# The input sequences are:
# X65923
Word size 3
Total count 172
#
# Word Obs Count Obs Frequency Exp Frequency Obs/Exp Frequency
#
AAA 7 0.0406977 0.0329457 1.2352955
AAC 3 0.0174419 0.0096899 1.8000042
AAG 11 0.0639535 0.0348837 1.8333344
AAT 3 0.0174419 0.0077519 2.2500110
ACA 1 0.0058140 0.0096899 0.6000014
ACC 4 0.0232558 0.0116279 2.0000012
ACG 1 0.0058140 0.0038760 1.4999880
ACT 3 0.0174419 0.0135659 1.2857135
AGA 1 0.0058140 0.0232558 0.2500002
AGC 2 0.0116279 0.0135659 0.8571423
AGG 0 0.0000000 0.0310078 0.0000000
AGT 0 0.0000000 0.0193798 0.0000000
ATA 0 0.0000000 0.0038760 0.0000000
ATC 1 0.0058140 0.0058140 0.9999920
ATG 3 0.0174419 0.0135659 1.2857135
ATT 1 0.0058140 0.0038760 1.4999880
CAA 1 0.0058140 0.0193798 0.3000007
CAC 2 0.0116279 0.0116279 1.0000006
CAG 9 0.0523256 0.0251938 2.0769229
CAT 3 0.0174419 0.0096899 1.8000042
CCA 0 0.0000000 0.0232558 0.0000000
CCC 3 0.0174419 0.0251938 0.6923076
CCG 1 0.0058140 0.0155039 0.3749994
CCT 2 0.0116279 0.0193798 0.6000014
CGA 1 0.0058140 0.0038760 1.4999880
CGC 5 0.0290698 0.0193798 1.5000035
CGG 4 0.0232558 0.0174419 1.3333303
CGT 2 0.0116279 0.0077519 1.5000074
CTA 1 0.0058140 0.0096899 0.6000014
CTC 4 0.0232558 0.0213178 1.0909106
CTG 7 0.0406977 0.0193798 2.1000049
CTT 3 0.0174419 0.0213178 0.8181829
GAA 3 0.0174419 0.0213178 0.8181829
GAC 1 0.0058140 0.0116279 0.5000003
GAG 7 0.0406977 0.0193798 2.1000049
GAT 2 0.0116279 0.0077519 1.5000074
GCA 2 0.0116279 0.0135659 0.8571423
GCC 10 0.0581395 0.0348837 1.6666677
GCG 1 0.0058140 0.0155039 0.3749994
GCT 3 0.0174419 0.0193798 0.9000021
GGA 2 0.0116279 0.0251938 0.4615384
GGC 8 0.0465116 0.0329457 1.4117663
GGG 1 0.0058140 0.0135659 0.4285712
GGT 5 0.0290698 0.0174419 1.6666629
GTA 2 0.0116279 0.0116279 1.0000006
GTC 6 0.0348837 0.0174419 1.9999955
GTG 6 0.0348837 0.0155039 2.2499965
GTT 3 0.0174419 0.0096899 1.8000042
TAA 3 0.0174419 0.0135659 1.2857135
TAC 1 0.0058140 0.0058140 0.9999920
TAG 0 0.0000000 0.0077519 0.0000000
TAT 0 0.0000000 0.0019380 0.0000000
TCA 3 0.0174419 0.0193798 0.9000021
TCC 1 0.0058140 0.0116279 0.5000003
TCG 0 0.0000000 0.0135659 0.0000000
TCT 3 0.0174419 0.0193798 0.9000021
TGA 0 0.0000000 0.0077519 0.0000000
TGC 1 0.0058140 0.0174419 0.3333326
TGG 1 0.0058140 0.0271318 0.2142856
TGT 1 0.0058140 0.0096899 0.6000014
TTA 1 0.0058140 0.0038760 1.4999880
TTC 1 0.0058140 0.0193798 0.3000007
TTG 0 0.0000000 0.0135659 0.0000000
TTT 5 0.0290698 0.0135659 2.1428558
Other 0 0.0000000 0.0000000 10000000000.0000000
</pre>
</td></tr></table><p>
<H2>
Data files
</H2>
The input data file is not required.
<p>
The input data file format is exactly the same as the output
file format.
<p>
It expects to read in a previous output file of this program.
An error is produced if the word size of the current compseq job
and that of the output file being read in are different.
<H2>
Notes
</H2>
The results are held in an array in memory before being written
to a file. For large values of wordsize, you may run out of memory.
<p>
You can produce very large output files if you choose large values
of wordsize.
<H2>
References
</H2>
None.
<H2>
Warnings
</H2>
If you use large word-sizes (over about 7 for nucleic, 5 for protein)
you will use huge amounts of memory.
<H2>
Diagnostic Error Messages
</H2>
<dl>
<dt>"The word size is too large for the data structure available."
</dt><dd>You chose a word size that cannot be stored by the program.
<dt>"Insufficient memory - aborting."
</dt><dd>You do not have enough memory - use a machine with more memory.
<dt>"The word size you are counting (n) is different to the word
size in the file of expected frequencies (n)."
</dt><dd>You chose different word sizes in the run of compseq that produced
your results file used to display the expected word frequencies
to the word size used in this run of compseq.
<dt>"The 'Word size' line was not found, instead found:"
</dt><dd>You appear to be trying to read a corrupted compseq results file
</dl>
<H2>
Exit status
</H2>
It always exits with status 0 unless one of the above error conditions
is found
<H2>
Known bugs
</H2>
This program can use a large amount of memory is you specify a large
word size (7 or above). This may impact the behaviour of other programs
on your machine.
<p>
If you run out of memory, you may see the program crash with a generic
error message that will be specific to your machine's operating system,
but will probably be a warning about writing to memory that the program
does not own (eg "Segmentation fault" on a Solaris machine)
<p>
This is not a bug, it is a feature of the way this program grabs large
amounts of memory.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th><th>Description</th></tr>
<tr>
<td><a href="backtranambig.html">backtranambig</a></td>
<td>Back translate a protein sequence to ambiguous codons</td>
</tr>
<tr>
<td><a href="backtranseq.html">backtranseq</a></td>
<td>Back translate a protein sequence</td>
</tr>
<tr>
<td><a href="banana.html">banana</a></td>
<td>Bending and curvature plot in B-DNA</td>
</tr>
<tr>
<td><a href="btwisted.html">btwisted</a></td>
<td>Calculates the twisting in a B-DNA sequence</td>
</tr>
<tr>
<td><a href="chaos.html">chaos</a></td>
<td>Create a chaos game representation plot for a sequence</td>
</tr>
<tr>
<td><a href="charge.html">charge</a></td>
<td>Protein charge plot</td>
</tr>
<tr>
<td><a href="checktrans.html">checktrans</a></td>
<td>Reports STOP codons and ORF statistics of a protein</td>
</tr>
<tr>
<td><a href="dan.html">dan</a></td>
<td>Calculates DNA RNA/DNA melting temperature</td>
</tr>
<tr>
<td><a href="emowse.html">emowse</a></td>
<td>Protein identification by mass spectrometry</td>
</tr>
<tr>
<td><a href="freak.html">freak</a></td>
<td>Residue/base frequency table or plot</td>
</tr>
<tr>
<td><a href="iep.html">iep</a></td>
<td>Calculates the isoelectric point of a protein</td>
</tr>
<tr>
<td><a href="isochore.html">isochore</a></td>
<td>Plots isochores in large DNA sequences</td>
</tr>
<tr>
<td><a href="mwcontam.html">mwcontam</a></td>
<td>Shows molwts that match across a set of files</td>
</tr>
<tr>
<td><a href="mwfilter.html">mwfilter</a></td>
<td>Filter noisy molwts from mass spec output</td>
</tr>
<tr>
<td><a href="octanol.html">octanol</a></td>
<td>Displays protein hydropathy</td>
</tr>
<tr>
<td><a href="pepinfo.html">pepinfo</a></td>
<td>Plots simple amino acid properties in parallel</td>
</tr>
<tr>
<td><a href="pepstats.html">pepstats</a></td>
<td>Protein statistics</td>
</tr>
<tr>
<td><a href="pepwindow.html">pepwindow</a></td>
<td>Displays protein hydropathy</td>
</tr>
<tr>
<td><a href="pepwindowall.html">pepwindowall</a></td>
<td>Displays protein hydropathy of a set of sequences</td>
</tr>
<tr>
<td><a href="sirna.html">sirna</a></td>
<td>Finds siRNA duplexes in mRNA</td>
</tr>
<tr>
<td><a href="wordcount.html">wordcount</a></td>
<td>Counts words of a specified size in a DNA sequence</td>
</tr>
</table>
<H2>
Author(s)
</H2>
Gary Williams (gwilliam © rfcgr.mrc.ac.uk)
<br>
MRC Rosalind Franklin Centre for Genomics Research
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
<H2>
History
</H2>
Completed 2 March 2000
<BR>
5 April 2001 (version 1.12.0) - the operation of the option '-reverse'
has changed. It is now 'False' by default instead of being 'True' by
default for nucleic sequences. Too many people were getting confused by
the counts being done on both senses, so this is now done on only the
forward sense by default.
<H2>
Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
Comments
</H2>
None
</BODY>
</HTML>
|