1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
|
<HTML>
<HEAD>
<TITLE>
EMBOSS: getorf
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
getorf
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Function
</H2>
Finds and extracts open reading frames (ORFs)
<H2>
Description
</H2>
This program finds and outputs the sequences of open reading frames
(ORFs).
<p>
The ORFs can be defined as regions of a specified minimum size between
STOP codons or between START and STOP codons.
<p>
The ORFs can be output as the nucleotide sequence or as the translation.
<p>
The program can also output the region around the START or the initial
STOP codon or the ending STOP codons of an ORF for those doing analysis
of the properties of these regions.
<p>
The START and STOP codons are defined in the Genetic Code tables.
A suitable Genetic Code table can be selected for the organism you are
investigating.
<H2>
Usage
</H2>
<b>Here is a sample session with getorf</b>
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>getorf -minsize 300 </b>
Finds and extracts open reading frames (ORFs)
Input nucleotide sequence(s): <b>tembl:v00294</b>
protein output sequence(s) [v00294.orf]: <b></b>
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Standard (Mandatory) qualifiers:
[-sequence] seqall Nucleotide sequence(s) filename and optional
format, or reference (input USA)
[-outseq] seqoutall [<sequence>.<format>] Protein sequence
set(s) filename and optional format (output
USA)
Additional (Optional) qualifiers:
-table menu [0] Code to use (Values: 0 (Standard); 1
(Standard (with alternative initiation
codons)); 2 (Vertebrate Mitochondrial); 3
(Yeast Mitochondrial); 4 (Mold, Protozoan,
Coelenterate Mitochondrial and
Mycoplasma/Spiroplasma); 5 (Invertebrate
Mitochondrial); 6 (Ciliate Macronuclear and
Dasycladacean); 9 (Echinoderm
Mitochondrial); 10 (Euplotid Nuclear); 11
(Bacterial); 12 (Alternative Yeast Nuclear);
13 (Ascidian Mitochondrial); 14 (Flatworm
Mitochondrial); 15 (Blepharisma
Macronuclear); 16 (Chlorophycean
Mitochondrial); 21 (Trematode
Mitochondrial); 22 (Scenedesmus obliquus);
23 (Thraustochytrium Mitochondrial))
-minsize integer [30] Minimum nucleotide size of ORF to
report (Any integer value)
-maxsize integer [1000000] Maximum nucleotide size of ORF to
report (Any integer value)
-find menu [0] This is a small menu of possible output
options. The first four options are to
select either the protein translation or the
original nucleic acid sequence of the open
reading frame. There are two possible
definitions of an open reading frame: it can
either be a region that is free of STOP
codons or a region that begins with a START
codon and ends with a STOP codon. The last
three options are probably only of interest
to people who wish to investigate the
statistical properties of the regions around
potential START or STOP codons. The last
option assumes that ORF lengths are
calculated between two STOP codons. (Values:
0 (Translation of regions between STOP
codons); 1 (Translation of regions between
START and STOP codons); 2 (Nucleic sequences
between STOP codons); 3 (Nucleic sequences
between START and STOP codons); 4
(Nucleotides flanking START codons); 5
(Nucleotides flanking initial STOP codons);
6 (Nucleotides flanking ending STOP codons))
Advanced (Unprompted) qualifiers:
-[no]methionine boolean [Y] START codons at the beginning of protein
products will usually code for Methionine,
despite what the codon will code for when it
is internal to a protein. This qualifier
sets all such START codons to code for
Methionine by default.
-circular boolean [N] Is the sequence circular
-[no]reverse boolean [Y] Set this to be false if you do not wish
to find ORFs in the reverse complement of
the sequence.
-flanking integer [100] If you have chosen one of the options
of the type of sequence to find that gives
the flanking sequence around a STOP or START
codon, this allows you to set the number of
nucleotides either side of that codon to
output. If the region of flanking
nucleotides crosses the start or end of the
sequence, no output is given for this codon.
(Any integer value)
Associated qualifiers:
"-sequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-sformat1 string Input sequence format
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outseq" associated qualifiers
-osformat2 string Output seq format
-osextension2 string File name extension
-osname2 string Base file name
-osdirectory2 string Output directory
-osdbname2 string Database name to add
-ossingle2 boolean Separate file for each entry
-oufo2 string UFO features
-offormat2 string Features format
-ofname2 string Features file name
-ofdirectory2 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write standard output
-filter boolean Read standard input, write standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Standard (Mandatory) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>[-sequence]<br>(Parameter 1)</td>
<td>Nucleotide sequence(s) filename and optional format, or reference (input USA)</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>
<tr>
<td>[-outseq]<br>(Parameter 2)</td>
<td>Protein sequence set(s) filename and optional format (output USA)</td>
<td>Writeable sequence(s)</td>
<td><i><*></i>.<i>format</i></td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Additional (Optional) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>-table</td>
<td>Code to use</td>
<td><table><tr><td>0</td> <td><i>(Standard)</i></td></tr><tr><td>1</td> <td><i>(Standard (with alternative initiation codons))</i></td></tr><tr><td>2</td> <td><i>(Vertebrate Mitochondrial)</i></td></tr><tr><td>3</td> <td><i>(Yeast Mitochondrial)</i></td></tr><tr><td>4</td> <td><i>(Mold, Protozoan, Coelenterate Mitochondrial and Mycoplasma/Spiroplasma)</i></td></tr><tr><td>5</td> <td><i>(Invertebrate Mitochondrial)</i></td></tr><tr><td>6</td> <td><i>(Ciliate Macronuclear and Dasycladacean)</i></td></tr><tr><td>9</td> <td><i>(Echinoderm Mitochondrial)</i></td></tr><tr><td>10</td> <td><i>(Euplotid Nuclear)</i></td></tr><tr><td>11</td> <td><i>(Bacterial)</i></td></tr><tr><td>12</td> <td><i>(Alternative Yeast Nuclear)</i></td></tr><tr><td>13</td> <td><i>(Ascidian Mitochondrial)</i></td></tr><tr><td>14</td> <td><i>(Flatworm Mitochondrial)</i></td></tr><tr><td>15</td> <td><i>(Blepharisma Macronuclear)</i></td></tr><tr><td>16</td> <td><i>(Chlorophycean Mitochondrial)</i></td></tr><tr><td>21</td> <td><i>(Trematode Mitochondrial)</i></td></tr><tr><td>22</td> <td><i>(Scenedesmus obliquus)</i></td></tr><tr><td>23</td> <td><i>(Thraustochytrium Mitochondrial)</i></td></tr></table></td>
<td>0</td>
</tr>
<tr>
<td>-minsize</td>
<td>Minimum nucleotide size of ORF to report</td>
<td>Any integer value</td>
<td>30</td>
</tr>
<tr>
<td>-maxsize</td>
<td>Maximum nucleotide size of ORF to report</td>
<td>Any integer value</td>
<td>1000000</td>
</tr>
<tr>
<td>-find</td>
<td>This is a small menu of possible output options. The first four options are to select either the protein translation or the original nucleic acid sequence of the open reading frame. There are two possible definitions of an open reading frame: it can either be a region that is free of STOP codons or a region that begins with a START codon and ends with a STOP codon. The last three options are probably only of interest to people who wish to investigate the statistical properties of the regions around potential START or STOP codons. The last option assumes that ORF lengths are calculated between two STOP codons.</td>
<td><table><tr><td>0</td> <td><i>(Translation of regions between STOP codons)</i></td></tr><tr><td>1</td> <td><i>(Translation of regions between START and STOP codons)</i></td></tr><tr><td>2</td> <td><i>(Nucleic sequences between STOP codons)</i></td></tr><tr><td>3</td> <td><i>(Nucleic sequences between START and STOP codons)</i></td></tr><tr><td>4</td> <td><i>(Nucleotides flanking START codons)</i></td></tr><tr><td>5</td> <td><i>(Nucleotides flanking initial STOP codons)</i></td></tr><tr><td>6</td> <td><i>(Nucleotides flanking ending STOP codons)</i></td></tr></table></td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Advanced (Unprompted) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>-[no]methionine</td>
<td>START codons at the beginning of protein products will usually code for Methionine, despite what the codon will code for when it is internal to a protein. This qualifier sets all such START codons to code for Methionine by default.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr>
<td>-circular</td>
<td>Is the sequence circular</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-[no]reverse</td>
<td>Set this to be false if you do not wish to find ORFs in the reverse complement of the sequence.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr>
<td>-flanking</td>
<td>If you have chosen one of the options of the type of sequence to find that gives the flanking sequence around a STOP or START codon, this allows you to set the number of nucleotides either side of that codon to output. If the region of flanking nucleotides crosses the start or end of the sequence, no output is given for this codon.</td>
<td>Any integer value</td>
<td>100</td>
</tr>
</table>
<H2>
Input file format
</H2>
<b>getorf</b> reads any nucleic acid sequence USA.
<p>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
'tembl:v00294' is a sequence entry in the example nucleic acid database 'tembl'
<p>
<p><h3>Database entry: tembl:v00294</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID V00294; SV 1; linear; genomic DNA; STD; PRO; 1113 BP.
XX
AC V00294;
XX
DT 09-JUN-1982 (Rel. 01, Created)
DT 10-FEB-1999 (Rel. 58, Last updated, Version 2)
XX
DE E. coli laci gene (codes for the lac repressor).
XX
KW DNA binding protein; repressor.
XX
OS Escherichia coli
OC Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC Enterobacteriaceae; Escherichia.
XX
RN [1]
RP 1-1113
RX DOI; 10.1038/274765a0.
RX PUBMED; 355891.
RA Farabaugh P.J.;
RT "Sequence of the lacI gene";
RL Nature 274(5673):765-769(1978).
XX
CC KST ECO.LACI
XX
FH Key Location/Qualifiers
FH
FT source 1..1113
FT /organism="Escherichia coli"
FT /mol_type="genomic DNA"
FT /db_xref="taxon:562"
FT CDS 31..1113
FT /transl_table=11
FT /note="reading frame"
FT /db_xref="GOA:P03023"
FT /db_xref="PDB:1CJG"
FT /db_xref="PDB:1EFA"
FT /db_xref="PDB:1JWL"
FT /db_xref="PDB:1JYE"
FT /db_xref="PDB:1JYF"
FT /db_xref="PDB:1L1M"
FT /db_xref="PDB:1LBG"
FT /db_xref="PDB:1LBH"
FT /db_xref="PDB:1LBI"
FT /db_xref="PDB:1LCC"
FT /db_xref="PDB:1LCD"
FT /db_xref="PDB:1LQC"
FT /db_xref="PDB:1LTP"
FT /db_xref="PDB:1TLF"
FT /db_xref="PDB:2BJC"
FT /db_xref="UniProtKB/Swiss-Prot:P03023"
FT /protein_id="CAA23569.1"
FT /translation="MKPVTLYDVAEYAGVSYQTVSRVVNQASHVSAKTREKVEAAMAEL
FT NYIPNRVAQQLAGKQSLLIGVATSSLALHAPSQIVAAIKSRADQLGASVVVSMVERSGV
FT EACKAAVHNLLAQRVSGLIINYPLDDQDAIAVEAACTNVPALFLDVSDQTPINSIIFSH
FT EDGTRLGVEHLVALGHQQIALLAGPLSSVSARLRLAGWHKYLTRNQIQPIAEREGDWSA
FT MSGFQQTMQMLNEGIVPTAMLVANDQMALGAMRAITESGLRVGADISVVGYDDTEDSSC
FT YIPPSTTIKQDFRLLGQTSVDRLLQLSQGQAVKGNQLLPVSLVKRKTTLAPNTQTASPR
FT ALADSLMQLARQVSRLESGQ"
XX
SQ Sequence 1113 BP; 249 A; 304 C; 322 G; 238 T; 0 other;
ccggaagaga gtcaattcag ggtggtgaat gtgaaaccag taacgttata cgatgtcgca 60
gagtatgccg gtgtctctta tcagaccgtt tcccgcgtgg tgaaccaggc cagccacgtt 120
tctgcgaaaa cgcgggaaaa agtggaagcg gcgatggcgg agctgaatta cattcccaac 180
cgcgtggcac aacaactggc gggcaaacag tcgttgctga ttggcgttgc cacctccagt 240
ctggccctgc acgcgccgtc gcaaattgtc gcggcgatta aatctcgcgc cgatcaactg 300
ggtgccagcg tggtggtgtc gatggtagaa cgaagcggcg tcgaagcctg taaagcggcg 360
gtgcacaatc ttctcgcgca acgcgtcagt gggctgatca ttaactatcc gctggatgac 420
caggatgcca ttgctgtgga agctgcctgc actaatgttc cggcgttatt tcttgatgtc 480
tctgaccaga cacccatcaa cagtattatt ttctcccatg aagacggtac gcgactgggc 540
gtggagcatc tggtcgcatt gggtcaccag caaatcgcgc tgttagcggg cccattaagt 600
tctgtctcgg cgcgtctgcg tctggctggc tggcataaat atctcactcg caatcaaatt 660
cagccgatag cggaacggga aggcgactgg agtgccatgt ccggttttca acaaaccatg 720
caaatgctga atgagggcat cgttcccact gcgatgctgg ttgccaacga tcagatggcg 780
ctgggcgcaa tgcgcgccat taccgagtcc gggctgcgcg ttggtgcgga tatctcggta 840
gtgggatacg acgataccga agacagctca tgttatatcc cgccgtcaac caccatcaaa 900
caggattttc gcctgctggg gcaaaccagc gtggaccgct tgctgcaact ctctcagggc 960
caggcggtga agggcaatca gctgttgccc gtctcactgg tgaaaagaaa aaccaccctg 1020
gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 1080
cgacaggttt cccgactgga aagcgggcag tga 1113
//
</pre>
</td></tr></table><p>
<H2>
Output file format
</H2>
The output is a sequence file containing predicted open reading frames
longer than the minimum size, which defaults to 30 bases (i.e. 10 amino acids).
<p>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: v00294.orf</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
>V00294_1 [735 - 1112] E. coli laci gene (codes for the lac repressor).
GHRSHCDAGCQRSDGAGRNARHYRVRAARWCGYLGSGIRRYRRQLMLYPAVNHHQTGFSP
AGANQRGPLAATLSGPGGEGQSAVARLTGEKKNHPGAQYANRLSPRVGRFINAAGTTGFP
TGKRAV
>V00294_2 [1 - 1110] E. coli laci gene (codes for the lac repressor).
PEESQFRVVNVKPVTLYDVAEYAGVSYQTVSRVVNQASHVSAKTREKVEAAMAELNYIPN
RVAQQLAGKQSLLIGVATSSLALHAPSQIVAAIKSRADQLGASVVVSMVERSGVEACKAA
VHNLLAQRVSGLIINYPLDDQDAIAVEAACTNVPALFLDVSDQTPINSIIFSHEDGTRLG
VEHLVALGHQQIALLAGPLSSVSARLRLAGWHKYLTRNQIQPIAEREGDWSAMSGFQQTM
QMLNEGIVPTAMLVANDQMALGAMRAITESGLRVGADISVVGYDDTEDSSCYIPPSTTIK
QDFRLLGQTSVDRLLQLSQGQAVKGNQLLPVSLVKRKTTLAPNTQTASPRALADSLMQLA
RQVSRLESGQ*
>V00294_3 [465 - 49] (REVERSE SENSE) E. coli laci gene (codes for the lac repressor).
RRNISAGSFHSNGILVIQRIVNDQPTDALREKIVHRRFTGFDAASFYHRHHHAGTQLIGA
RFNRRDNLRRRVQGQTGGGNANQQRLFARQLLCHAVGNVIQLRHRRFHFFPRFRRNVAGL
VHHAGNGLIRDTGILCDIV
</pre>
</td></tr></table><p>
<p>
The name of the ORF sequences is constructed from the name of the
input sequence with an underscore character ('_') and a unique ordinal number
of the ORF found appended. The description of the output ORF sequence
is constructed from the description of the input sequence with the start
and end positions of the ORF prepended.
<p>
The unique number appended to the name is simply used to create new
unique sequence names, it does not imply any further information
indicating any order, positioning or sense-strand of the ORFs.
<p>
If the ORF has been found in the reverse sense, then the start position
will be smaller than the end position. The numbering uses the
forward-sense positions, but read in the reverse sense. For example,
<b>>ECLACI_3 [465 - 49]</b> in the output above is a reverse-sense
ORF running from position 465 to 49. The description will also contain
'(REVERSE SENSE)'.
<p>
If the sequence has been specified as a circular genome (using the
command-line switch '-circular'), then ORFs can potentially continue
past the 'end' of the input sequence (the breakpoint of the circular
genome) and into the 'start' of the sequence again. This is dealt with
by appending the sequence to itself three times and reporting long ORFs
that are found in this extended sequence. Any ORF that is longer that
three times the sequence length (i.e one that continues without hitting
a STOP at any point in the genome) will be reported as being a maximum
of three times the length of the input sequence. Note that the end
position of an ORF in circular genomes can be apparently longer than the
input sequence if the ORF crosses the breakpoint. If the ORF crosses
the breakpoint, then the text '(ORF crosses the breakpoint)' will be
added to the description of the output sequence.
<H2>
Data files
</H2>
The START and STOP codons used by <b>getorf</b> are defined in the
Genetic Code data files. By default, Genetic Code file <b>EGC.0</b>
is used.
<p>
The default file <b>EGC.0</b> is the 'Standard Code' with the rarely
used alternate START codons omitted, it only has the normal 'AUG' START
codon. The 'Standard Code' with the rarely used alternate START codons
included is Genetic Code file <b>EGC.1</b>.
<p>
It is expected that user will sometimes wish to customise a Genetic Code
file. To do this, use the program <b>embossdata</b>.
<p>
<p>
EMBOSS data files are distributed with the application and stored
in the standard EMBOSS data directory, which is defined
by the EMBOSS environment variable EMBOSS_DATA.
<p>
To see the available EMBOSS data files, run:
<p>
<pre>
% embossdata -showall
</pre>
<p>
To fetch one of the data files (for example 'Exxx.dat') into your
current directory for you to inspect or modify, run:
<pre>
% embossdata -fetch -file Exxx.dat
</pre>
<p>
Users can provide their own data files in their own directories.
Project specific files can be put in the current directory, or for
tidier directory listings in a subdirectory called
".embossdata". Files for all EMBOSS runs can be put in the user's home
directory, or again in a subdirectory called ".embossdata".
<p>
The directories are searched in the following order:
<ul>
<li> . (your current directory)
<li> .embossdata (under your current directory)
<li> ~/ (your home directory)
<li> ~/.embossdata
</ul>
<p>
<p>
The Genetic Code data files are based on the NCBI genetic code tables.
Their names and descriptions are:
<dl>
<dt>EGC.0 </dt><dd>
Standard (Differs from GC.1 in that it only has initiation site 'AUG')
<dt>EGC.1 </dt><dd>
Standard
<dt>EGC.2 </dt><dd>
Vertebrate Mitochodrial
<dt>EGC.3 </dt><dd>
Yeast Mitochondrial
<dt>EGC.4 </dt><dd>
Mold, Protozoan, Coelenterate Mitochondrial and Mycoplasma/Spiroplasma
<dt>EGC.5 </dt><dd>
Invertebrate Mitochondrial
<dt>EGC.6 </dt><dd>
Ciliate Macronuclear and Dasycladacean
<dt>EGC.9 </dt><dd>
Echinoderm Mitochondrial
<dt>EGC.10 </dt><dd>
Euplotid Nuclear
<dt>EGC.11 </dt><dd>
Bacterial
<dt>EGC.12 </dt><dd>
Alternative Yeast Nuclear
<dt>EGC.13 </dt><dd>
Ascidian Mitochondrial
<dt>EGC.14 </dt><dd>
Flatworm Mitochondrial
<dt>EGC.15</dt><dd>
Blepharisma Macronuclear
<dt>EGC.16</dt><dd>
Chlorophycean Mitochondrial
<dt>EGC.21</dt><dd>
Trematode Mitochondrial
<dt>EGC.22</dt><dd>
Scenedesmus obliquus
<dt>EGC.23</dt><dd>
Thraustochytrium Mitochondrial
</dl>
<p>
The format of these files is very simple.
<p>
It consists of several lines of optional comments, each starting with
a '#' character.
<p>
These are followed the line: 'Genetic Code [n]', where 'n' is the
number of the genetic code file.
<p>
This is followed by the description of the code and then by four lines
giving the IUPAC one-letter code of the translated amino acid, the
start codons (indicdated by an 'M') and the three bases of the codon,
lined up one on top of the other.
<p>
For example:
<pre>
------------------------------------------------------------------------------
# Genetic Code Table
#
# Obtained from: http://www.ncbi.nlm.nih.gov/collab/FT/genetic_codes.html
# and: http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wprintgc?mode=c
#
# Differs from Genetic Code [1] only in that the initiation sites have been
# changed to only 'AUG'
Genetic Code [0]
Standard
AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
Starts = -----------------------------------M----------------------------
Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG
Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
------------------------------------------------------------------------------
</pre>
<H2>
Notes
</H2>
If you have selected one of the options to report a regions around a
START or STOP codon, then note that any such region that crosses the
beginning or end of the sequence will not be reported.
<H2>
References
</H2>
None.
<H2>
Warnings
</H2>
None.
<H2>
Diagnostic Error Messages
</H2>
None.
<H2>
Exit status
</H2>
It always exits with status 0.
<H2>
Known bugs
</H2>
'-sbegin' and -send' do not work with this program.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th><th>Description</th></tr>
<tr>
<td><a href="marscan.html">marscan</a></td>
<td>Finds MAR/SAR sites in nucleic sequences</td>
</tr>
<tr>
<td><a href="plotorf.html">plotorf</a></td>
<td>Plot potential open reading frames</td>
</tr>
<tr>
<td><a href="showorf.html">showorf</a></td>
<td>Pretty output of DNA translations</td>
</tr>
<tr>
<td><a href="sixpack.html">sixpack</a></td>
<td>Display a DNA sequence with 6-frame translation and ORFs</td>
</tr>
<tr>
<td><a href="syco.html">syco</a></td>
<td>Synonymous codon usage Gribskov statistic plot</td>
</tr>
<tr>
<td><a href="tcode.html">tcode</a></td>
<td>Fickett TESTCODE statistic to identify protein-coding DNA</td>
</tr>
<tr>
<td><a href="wobble.html">wobble</a></td>
<td>Wobble base plot</td>
</tr>
</table>
<P>
<ul>
<li><a href="checktrans.html">checktrans</a> - Reports STOP codons
and ORF statistics of a protein sequence
</ul>
<H2>
Author(s)
</H2>
Gary Williams (gwilliam © rfcgr.mrc.ac.uk)
<br>
MRC Rosalind Franklin Centre for Genomics Research
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
<H2>
History
</H2>
2000 - written - Gary Williams
<p>
November 2002 - added indication of reverse sense ORFs
<p>
November 2002 - added indication of ORFs that cross the breakpoint at
position 1 in circular genomes.
<H2>
Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
Comments
</H2>
None
</BODY>
</HTML>
|