1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
|
<HTML>
<HEAD>
<TITLE>
EMBOSS: sirna
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
sirna
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Function
</H2>
Finds siRNA duplexes in mRNA
<H2>
Description
</H2>
RNA interference, or RNAi, is a phenomenon in which double stranded RNA
(dsRNA) effects silencing of the expression of genes that are highly
homologous to either of the RNA strands in the duplex. Gene silencing
in RNAi results from the degradation of mRNA sequences, and the effect
has been used to determine the function of many genes in Drosophilia, C.
elegans, and many plant species.
<p>
The duration of knockdown by siRNA can typically last for 7-10 days, and
has been shown to transfer to daughter cells. Of further note, siRNAs
are effective at quantities much lower than alternative gene silencing
methodologies, including antisense and ribozyme based strategies.
<p>
Due to various mechanisms of antiviral response to long dsRNA, RNAi at
first proved more difficult to establish in mammalian species. Then,
Tuschl, Elbashir, and others discovered that RNAi can be elicited very
effectively by well-defined 21-base duplex RNAs. When these small
interfering RNA, or siRNA, are added in duplex form with a transfection
agent to mammalian cell cultures, the 21-base-pair RNA acts in concert
with cellular components to silence the gene with sequence homology to
one of the siRNA sequences.
Strategies for the design of effective siRNA sequences have been
recently documented, most notably by Sayda Elbashir, Thomas Tuschl, et
al.
<p>
Their studies of mammalian RNAi suggest that the most efficient
gene-silencing effect is achieved using double-stranded siRNA having a
19-nucleotide complementary region and a 2-nucleotide 3' overhang at
each end. Current models of the RNAi mechanism suggest that the
antisense siRNA strand recognizes the specific gene target.
<p>
In gene-specific RNAi, the coding region (CDS) of the mRNA is usually
targeted. The search for an appropriate target sequence should begin
50-100 nucleotides downstream of the start codon. UTR-binding proteins
and/or translation initiation complexes may interfere with the binding
of the siRNP endonuclease complex. Tuschl, Elbashir et al. say that
they have successfully used siRNAs targetting the 3' UTR.
<p>
To avoid interference
from mRNA regulatory proteins, sequences in the 5' untranslated region
or near the start codon should not be targeted.
<p>
A set of rules for the design of siRNA has been suggested <A href
="http://www.mpibpc.gwdg.de/abteilungen/100/105/sirna.html
">http://www.mpibpc.gwdg.de/abteilungen/100/105/sirna.html</a> based on
the work of Tuschl, Elbashir et al.
<p>
They suggest searching for 23-nt sequence motif AA(N19)TT (N, any
nucleotide) and select hits with approx. 50% G/C-content (30% to 70%
has also worked in for them). If no suitable sequences are found, the
search is extended using the motif NA(N21). The sequence of the sense
siRNA corresponds to (N19)TT or N21 (position 3 to 23 of the 23-nt
motif), respectively. In the latter case, they convert the 3' end of
the sense siRNA to TT.
<p>
The rationale for this sequence conversion is to generate a symmetric
duplex with respect to the sequence composition of the sense and
antisense 3' overhangs. The antisense siRNA is synthesized as the
complement to position 1 to 21 of the 23-nt motif. Because position 1
of the 23-nt motif is not recognized sequence-specifically by the
antisense siRNA, the 3'-most nucleotide residue of the antisense siRNA,
can be chosen deliberately. However, the penultimate nucleotide of the
antisense siRNA (complementary to position 2 of the 23-nt motif) should
always be complementary to the targeted sequence. For simplifying
chemical synthesis, they always use TT.
<p>
More recently, they preferentially select siRNAs corresponding to the
target motif NAR(N17)YNN, where R is purine (A, G) and Y is pyrimidine
(C, U). The respective 21-nt sense and antisense siRNAs therefore begin
with a purine nucleotide and can also be expressed from pol III
expression vectors without a change in targeting site; expression of
RNAs from pol III promoters is only efficient when the first transcribed
nucleotide is a purine.
<p>
They always design siRNAs with symmetric 3' TT overhangs, believing that
symmetric 3' overhangs help to ensure that the siRNPs are formed with
approximately equal ratios of sense and antisense target RNA-cleaving
siRNPs Please note that the modification of the overhang of the sense
sequence of the siRNA duplex is not expected to affect targeted mRNA
recognition, as the antisense siRNA strand guides target recognition.
In summary, no matter what you do to your overhangs, siRNAs should still
function to a reasonable extent. However, using TT in the 3' overhang
will always help your RNA synthesis company to let you know when you
accidentally order a siRNA sequences 3' to 5' rather than in the
recommended format of 5' to 3'.
<p>
<b>sirna</b> reports both the sense and antisense siRNAs as 5' to 3'.
<p>
<a href="http://www.xeragon.com/siRNA_support.html">Xeragon.com</a> also
suggest that choosing a region of the mRNA with a GC content as
close as possible to 50% is a more important consideration than choosing
a target sequence that begins with AA. They also suggest that a key
consideration in target selection is to avoid having more than three
guanosines in a row, since poly G sequences can hyperstack and form
agglomerates that potentially interfere with the siRNA silencing
mechanism.
<p>
siRNAs appear to effectively silence genes in more than 80% of cases.
Current data indicate that there are regions of some mRNAs where gene
silencing does not work. To help ensure that a given target gene is
silenced, it is advised that at least two target sequences as far apart
on the gene as possible be chosen.
<p>
mRNA secondary structure does not appear to have a significant effect on
gene silencing.
<p>
<h3>Coding region specification</h3>
It is possible (although the evidence is not clear) that regulatory
protein binding to regions in and near the untranslated 5' region might
interfere with the RNAi process.
<p>
Therefore, this program avoids choosing siRNA probes from the 5' UTR and
from the first 50 bases of the coding region. The second 50 bases of
the coding region has a penalty associated with it to reduce the
reporting of possible siRNA probes in this region.
<p>
If the input sequence has a feature table specifying a coding region,
then this will be used, else you can specify the start of the coding
region, where this is known by the '-sbegin' command-line qualifier
(which is normally used to specify the start of the region of a sequence
that should be analysed in all EMBOSS programs).
<p>
<b>sirna</b> looks at the feature table of the input mRNA sequence to
find the coding regions (CDS). It will ignore the 5' UTR and the first
50 bases of the CDS. It will assign a penalty of 2 points to any siRNA
in positions 51 to 100 in the CDS. If there is no CDS in the feature
table, you can specify the CDS by using the command-line qualifier
'-sbegin' to indicate where the CDS should start. If there is no CDS in
the feature table and you do not use the command-line qualifier
'-sbegin', then <b>sirna</b> will assume that the CDS region is not
known and will look for siRNAs in the whole of the sequence with no
penalties associated with the location within the sequence.
<h3>All these confusing regions</h3>
There are a lot of references to 23 base regions, 21 base regions, 19 base regions, etc.
in any description of siRNA.
<p>
Perhaps an example with a sequence would be clearer?
<p>
The 23 base region, in this case starting with an 'AA', might typically look like:
<p>
<pre>
5' AAGUGAGAGGUCAGACUCCUATC
</pre>
<p>
The sense siRNA is made from the 19 bases of positions 3 to 21 of the 23 base target
region, so:
<p>
<pre>
5' GUGAGAGGUCAGACUCCUA
</pre>
<p>
and then typically d(TT) is added, so:
<p>
<pre>
5' GUGAGAGGUCAGACUCCUAdTdT
</pre>
<p>
The antisense siRNA sequence is made from bases 3 to 21 of the target
region, so:
<p>
<pre>
5' GUGAGAGGUCAGACUCCUA sense
3' CACUCUCCAGUCUGAGGAU antisense 3' -> 5'
</pre>
<p>
so the antisense sequence that should be ordered with d(TT) added is:
<p>
<pre>
5' UAGGAGUCUGACCUCUCACdTdT antisense 5' -> 3'
</pre>
<p>
<H2>
Algorithm
</H2>
<pre>
for each input sequence:
find the start position of the CDS in the feature table
if there is no such CDS, take the -sbegin position as the CDS start
for each 23 base window along the sequence:
set the score for this window = 0
if base 2 of the window is not 'a': ignore this window
if the window is within 50 bases of the CDS start: ignore this window
if the window is within 100 bases of the CDS: score = -2
measure the %GC of the 20 bases from position 2 to 21 of the window
for the following %GC values change the score:
%GC <= 25% (<= 5 bases): ignore this window
%GC 30% (6 bases): score + 0
%GC 35% (7 bases): score + 2
%GC 40% (8 bases): score + 4
%GC 45% (9 bases): score + 5
%GC 50% (10 bases): score + 6
%GC 55% (11 bases): score + 5
%GC 60% (12 bases): score + 4
%GC 65% (13 bases): score + 2
%GC 70% (14 bases): score + 0
%GC >= 75% (>= 15 bases): ignore this window
if the window starts with a 'AA': score + 3
if the window does not start 'AA' and it is required: ignore this window
if the window ends with a 'TT': score + 1
if the window does not end 'TT' and it is required: ignore this window
if 4 G's in a row are found: ignore this window
if any 4 bases in a row are present and not required: ignore this window
if PolIII probes are required and the window is not NARN(17)YNN: ignore this window
if the score is > 0: store this window for output
sort the windows found by their score
output the 23-base windows to the sequence file
if the 'context' qualifier is specified, output window bases 1 and 2 in brackets to the report file
take the window bases 3 to 21, add 'dTdT' output to the report file
take the window bases 3 to 21, reverse complement, add 'dTdT' output to the report file
</pre>
<H2>
Usage
</H2>
<b>Here is a sample session with sirna</b>
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>sirna </b>
Finds siRNA duplexes in mRNA
Input nucleotide sequence(s): <b>tembl:x65923</b>
Output report [x65923.sirna]: <b></b>
output sequence(s) [x65923.fasta]: <b></b>
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<p>
<b>Example 2</b>
<p>
Show the first two bases of the 23 base target region in brackets. These do not form part of the sequence to be ordered, but it is useful to see if the 23 base region starts with an 'AA'.
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>sirna -context </b>
Finds siRNA duplexes in mRNA
Input nucleotide sequence(s): <b>tembl:x65923</b>
Output report [x65923.sirna]: <b></b>
output sequence(s) [x65923.fasta]: <b></b>
</pre></td></tr></table><p>
<p>
<a href="#output.2">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Standard (Mandatory) qualifiers:
[-sequence] seqall Nucleotide sequence(s) filename and optional
format, or reference (input USA)
[-outfile] report [*.sirna] The output is a table of the
forward and reverse parts of the 21 base
siRNA duplex. Both the forward and reverse
sequences are written 5' to 3', ready to be
ordered. The last two bases have been
replaced by 'dTdT'. The starting position of
the 23 base region and the %GC content is
also given. If you wish to see the complete
23 base sequence, then either look at the
sequence in the other output file, or use
the qualifier '-context' which will display
the 23 bases of the forward sequence in this
report withthe first two bases in brackets.
These first two bases do not form part of
the siRNA probe to be ordered.
[-outseq] seqoutall [<sequence>.<format>] This is a file of the
sequences of the 23 base regions that the
siRNAs are selected from. You may use it to
do searches of mRNA databases (e.g. REFSEQ)
to confirm that the probes are unique to the
gene you wish to use it on.
Additional (Optional) qualifiers:
-poliii boolean [N] This option allows you to select only
the 21 base probes that start with a purine
and so can be expressed from Pol III
expression vectors. This is the NARN(17)YNN
pattern that has been suggested by Tuschl et
al.
-aa boolean [N] This option allows you to select only
those 23 base regions that start with AA. If
this option is not selected then regions
that start with AA will be favoured by
giving them a higher score, but regions that
do not start with AA will also be reported.
-tt boolean [N] This option allows you to select only
those 23 base regions that end with TT. If
this option is not selected then regions
that end with TT will be favoured by giving
them a higher score, but regions that do not
end with TT will also be reported.
-[no]polybase boolean [Y] If this option is FALSE then only those
23 base regions that have no repeat of 4 or
more of any bases in a row will be reported.
No regions will ever be reported that have
4 or more G's in a row.
-context boolean [N] The output report file gives the
sequences of the 21 base siRNA regions ready
to be ordered. This does not give you an
indication of the 2 bases before the 21
bases. It is often interesting to see which
of the suggested possible probe regions have
an 'AA' in front of them (i.e. it is useful
to see which of the 23 base regions start
with an 'AA'). This option displays the
whole 23 bases of the region with the first
two bases in brackets, e.g. '(AA)' to give
you some context for the probe region. YOU
SHOULD NOT INCLUDE THE TWO BASES IN BRACKETS
WHEN YOU PLACE AN ORDER FOR THE PROBES.
Advanced (Unprompted) qualifiers: (none)
Associated qualifiers:
"-sequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-sformat1 string Input sequence format
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outfile" associated qualifiers
-rformat2 string Report format
-rname2 string Base file name
-rextension2 string File name extension
-rdirectory2 string Output directory
-raccshow2 boolean Show accession number in the report
-rdesshow2 boolean Show description in the report
-rscoreshow2 boolean Show the score in the report
-rusashow2 boolean Show the full USA in the report
-rmaxall2 integer Maximum total hits to report
-rmaxseq2 integer Maximum hits to report for one sequence
"-outseq" associated qualifiers
-osformat3 string Output seq format
-osextension3 string File name extension
-osname3 string Base file name
-osdirectory3 string Output directory
-osdbname3 string Database name to add
-ossingle3 boolean Separate file for each entry
-oufo3 string UFO features
-offormat3 string Features format
-ofname3 string Features file name
-ofdirectory3 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write standard output
-filter boolean Read standard input, write standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Standard (Mandatory) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>[-sequence]<br>(Parameter 1)</td>
<td>Nucleotide sequence(s) filename and optional format, or reference (input USA)</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>
<tr>
<td>[-outfile]<br>(Parameter 2)</td>
<td>The output is a table of the forward and reverse parts of the 21 base siRNA duplex. Both the forward and reverse sequences are written 5' to 3', ready to be ordered. The last two bases have been replaced by 'dTdT'. The starting position of the 23 base region and the %GC content is also given. If you wish to see the complete 23 base sequence, then either look at the sequence in the other output file, or use the qualifier '-context' which will display the 23 bases of the forward sequence in this report withthe first two bases in brackets. These first two bases do not form part of the siRNA probe to be ordered.</td>
<td>Report output file</td>
<td><i><*></i>.sirna</td>
</tr>
<tr>
<td>[-outseq]<br>(Parameter 3)</td>
<td>This is a file of the sequences of the 23 base regions that the siRNAs are selected from. You may use it to do searches of mRNA databases (e.g. REFSEQ) to confirm that the probes are unique to the gene you wish to use it on.</td>
<td>Writeable sequence(s)</td>
<td><i><*></i>.<i>format</i></td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Additional (Optional) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>-poliii</td>
<td>This option allows you to select only the 21 base probes that start with a purine and so can be expressed from Pol III expression vectors. This is the NARN(17)YNN pattern that has been suggested by Tuschl et al.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-aa</td>
<td>This option allows you to select only those 23 base regions that start with AA. If this option is not selected then regions that start with AA will be favoured by giving them a higher score, but regions that do not start with AA will also be reported.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-tt</td>
<td>This option allows you to select only those 23 base regions that end with TT. If this option is not selected then regions that end with TT will be favoured by giving them a higher score, but regions that do not end with TT will also be reported.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-[no]polybase</td>
<td>If this option is FALSE then only those 23 base regions that have no repeat of 4 or more of any bases in a row will be reported. No regions will ever be reported that have 4 or more G's in a row.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr>
<td>-context</td>
<td>The output report file gives the sequences of the 21 base siRNA regions ready to be ordered. This does not give you an indication of the 2 bases before the 21 bases. It is often interesting to see which of the suggested possible probe regions have an 'AA' in front of them (i.e. it is useful to see which of the 23 base regions start with an 'AA'). This option displays the whole 23 bases of the region with the first two bases in brackets, e.g. '(AA)' to give you some context for the probe region. YOU SHOULD NOT INCLUDE THE TWO BASES IN BRACKETS WHEN YOU PLACE AN ORDER FOR THE PROBES.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Advanced (Unprompted) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td colspan=4>(none)</td>
</tr>
</table>
<H2>
Input file format
</H2>
<b>sirna</b> reads any normal sequence USAs.
<p>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
'tembl:x65923' is a sequence entry in the example nucleic acid database 'tembl'
<p>
<p><h3>Database entry: tembl:x65923</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID X65923; SV 1; linear; mRNA; STD; HUM; 518 BP.
XX
AC X65923;
XX
DT 13-MAY-1992 (Rel. 31, Created)
DT 18-APR-2005 (Rel. 83, Last updated, Version 11)
XX
DE H.sapiens fau mRNA
XX
KW fau gene.
XX
OS Homo sapiens (human)
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC Homo.
XX
RN [1]
RP 1-518
RA Michiels L.M.R.;
RT ;
RL Submitted (29-APR-1992) to the EMBL/GenBank/DDBJ databases.
RL L.M.R. Michiels, University of Antwerp, Dept of Biochemistry,
RL Universiteisplein 1, 2610 Wilrijk, BELGIUM
XX
RN [2]
RP 1-518
RX PUBMED; 8395683.
RA Michiels L., Van der Rauwelaert E., Van Hasselt F., Kas K., Merregaert J.;
RT " fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as
RT an antisense sequences in the Finkel-Biskis-Reilly murine sarcoma virus";
RL Oncogene 8(9):2537-2546(1993).
XX
DR H-InvDB; HIT000322806.
XX
FH Key Location/Qualifiers
FH
FT source 1..518
FT /organism="Homo sapiens"
FT /chromosome="11q"
FT /map="13"
FT /mol_type="mRNA"
FT /clone_lib="cDNA"
FT /clone="pUIA 631"
FT /tissue_type="placenta"
FT /db_xref="taxon:9606"
FT misc_feature 57..278
FT /note="ubiquitin like part"
FT CDS 57..458
FT /gene="fau"
FT /db_xref="GDB:135476"
FT /db_xref="GOA:P35544"
FT /db_xref="GOA:P62861"
FT /db_xref="HGNC:3597"
FT /db_xref="UniProtKB/Swiss-Prot:P35544"
FT /db_xref="UniProtKB/Swiss-Prot:P62861"
FT /protein_id="CAA46716.1"
FT /translation="MQLFVRAQELHTFEVTGQETVAQIKAHVASLEGIAPEDQVVLLAG
FT APLEDEATLGQCGVEALTTLEVAGRMLGGKVHGSLARAGKVRGQTPKVAKQEKKKKKTG
FT RAKRRMQYNRRFVNVVPTFGKKKGPNANS"
FT misc_feature 98..102
FT /note="nucleolar localization signal"
FT misc_feature 279..458
FT /note="S30 part"
FT polyA_signal 484..489
FT polyA_site 509
XX
SQ Sequence 518 BP; 125 A; 139 C; 148 G; 106 T; 0 other;
ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc gccaatatgc 60
agctctttgt ccgcgcccag gagctacaca ccttcgaggt gaccggccag gaaacggtcg 120
cccagatcaa ggctcatgta gcctcactgg agggcattgc cccggaagat caagtcgtgc 180
tcctggcagg cgcgcccctg gaggatgagg ccactctggg ccagtgcggg gtggaggccc 240
tgactaccct ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc 300
gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag aagaagaaga 360
agacaggtcg ggctaagcgg cggatgcagt acaaccggcg ctttgtcaac gttgtgccca 420
cctttggcaa gaagaagggc cccaatgcca actcttaagt cttttgtaat tctggctttc 480
tctaataaaa aagccactta gttcagtcaa aaaaaaaa 518
//
</pre>
</td></tr></table><p>
<H2>
Output file format
</H2>
<p>
The output is a standard EMBOSS report file.
<p>
The results can be output in one of several styles by using the
command-line qualifier <b>-rformat xxx</b>, where 'xxx' is replaced by
the name of the required format. The available format names are: embl,
genbank, gff, pir, swiss, trace, listfile, dbmotif, diffseq, excel,
feattable, motif, regions, seqtable, simple, srs, table, tagseq
<p>
See:
<A href="http://emboss.sf.net/docs/themes/ReportFormats.html">
http://emboss.sf.net/docs/themes/ReportFormats.html</A>
for further information on report formats.
<p>
<p>
<b>sirna</b>
outputs a report format file. The default format is 'table'
<p>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: x65923.sirna</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
########################################
# Program: sirna
# Rundate: Sun 15 Jul 2007 12:00:00
# Commandline: sirna
# -sequence tembl:x65923
# Report_format: table
# Report_file: x65923.sirna
########################################
#=======================================
#
# Sequence: X65923 from: 1 to: 518
# HitCount: 85
#
# CDS region found in feature table starting at 57
#
#=======================================
Start End Score GC% Sense_siRNA Antisense_siRNA
308 330 9.000 50.0 AAGUGAGAGGUCAGACUCCdTdT GGAGUCUGACCUCUCACUUdTdT
309 331 9.000 50.0 AGUGAGAGGUCAGACUCCUdTdT AGGAGUCUGACCUCUCACUdTdT
310 332 9.000 50.0 GUGAGAGGUCAGACUCCUAdTdT UAGGAGUCUGACCUCUCACdTdT
351 373 9.000 50.0 GAAGAAGAAGACAGGUCGGdTdT CCGACCUGUCUUCUUCUUCdTdT
166 188 8.000 55.0 GAUCAAGUCGUGCUCCUGGdTdT CCAGGAGCACGACUUGAUCdTdT
279 301 8.000 55.0 AGUUCAUGGUUCCCUGGCCdTdT GGCCAGGGAACCAUGAACUdTdT
330 352 8.000 55.0 GGUGGCCAAACAGGAGAAGdTdT CUUCUCCUGUUUGGCCACCdTdT
354 376 8.000 55.0 GAAGAAGACAGGUCGGGCUdTdT AGCCCGACCUGUCUUCUUCdTdT
357 379 8.000 55.0 GAAGACAGGUCGGGCUAAGdTdT CUUAGCCCGACCUGUCUUCdTdT
393 415 8.000 55.0 CCGGCGCUUUGUCAACGUUdTdT AACGUUGACAAAGCGCCGGdTdT
253 275 7.000 60.0 GUAGCAGGCCGCAUGCUUGdTdT CAAGCAUGCGGCCUGCUACdTdT
280 302 7.000 60.0 GUUCAUGGUUCCCUGGCCCdTdT GGGCCAGGGAACCAUGAACdTdT
339 361 7.000 40.0 ACAGGAGAAGAAGAAGAAGdTdT CUUCUUCUUCUUCUCCUGUdTdT
340 362 7.000 40.0 CAGGAGAAGAAGAAGAAGAdTdT UCUUCUUCUUCUUCUCCUGdTdT
348 370 7.000 40.0 GAAGAAGAAGAAGACAGGUdTdT ACCUGUCUUCUUCUUCUUCdTdT
375 397 7.000 60.0 GCGGCGGAUGCAGUACAACdTdT GUUGUACUGCAUCCGCCGCdTdT
408 430 7.000 60.0 CGUUGUGCCCACCUUUGGCdTdT GCCAAAGGUGGGCACAACGdTdT
429 451 7.000 60.0 GAAGAAGGGCCCCAAUGCCdTdT GGCAUUGGGGCCCUUCUUCdTdT
432 454 7.000 60.0 GAAGGGCCCCAAUGCCAACdTdT GUUGGCAUUGGGGCCCUUCdTdT
435 457 7.000 60.0 GGGCCCCAAUGCCAACUCUdTdT AGAGUUGGCAUUGGGGCCCdTdT
488 510 7.000 40.0 AAAGCCACUUAGUUCAGUCdTdT GACUGAACUAAGUGGCUUUdTdT
489 511 7.000 40.0 AAGCCACUUAGUUCAGUCAdTdT UGACUGAACUAAGUGGCUUdTdT
490 512 7.000 40.0 AGCCACUUAGUUCAGUCAAdTdT UUGACUGAACUAAGUGGCUdTdT
491 513 7.000 40.0 GCCACUUAGUUCAGUCAAAdTdT UUUGACUGAACUAAGUGGCdTdT
129 151 6.000 55.0 GGCUCAUGUAGCCUCACUGdTdT CAGUGAGGCUACAUGAGCCdTdT
165 187 6.000 50.0 AGAUCAAGUCGUGCUCCUGdTdT CAGGAGCACGACUUGAUCUdTdT
278 300 6.000 50.0 AAGUUCAUGGUUCCCUGGCdTdT GCCAGGGAACCAUGAACUUdTdT
314 336 6.000 50.0 GAGGUCAGACUCCUAAGGUdTdT ACCUUAGGAGUCUGACCUCdTdT
321 343 6.000 50.0 GACUCCUAAGGUGGCCAAAdTdT UUUGGCCACCUUAGGAGUCdTdT
323 345 6.000 50.0 CUCCUAAGGUGGCCAAACAdTdT UGUUUGGCCACCUUAGGAGdTdT
329 351 6.000 50.0 AGGUGGCCAAACAGGAGAAdTdT UUCUCCUGUUUGGCCACCUdTdT
<font color=red> [Part of this file has been deleted for brevity]</font>
353 375 5.000 55.0 AGAAGAAGACAGGUCGGGCdTdT GCCCGACCUGUCUUCUUCUdTdT
360 382 5.000 65.0 GACAGGUCGGGCUAAGCGGdTdT CCGCUUAGCCCGACCUGUCdTdT
374 396 5.000 55.0 AGCGGCGGAUGCAGUACAAdTdT UUGUACUGCAUCCGCCGCUdTdT
383 405 5.000 55.0 UGCAGUACAACCGGCGCUUdTdT AAGCGCCGGUUGUACUGCAdTdT
387 409 5.000 55.0 GUACAACCGGCGCUUUGUCdTdT GACAAAGCGCCGGUUGUACdTdT
390 412 5.000 55.0 CAACCGGCGCUUUGUCAACdTdT GUUGACAAAGCGCCGGUUGdTdT
392 414 5.000 55.0 ACCGGCGCUUUGUCAACGUdTdT ACGUUGACAAAGCGCCGGUdTdT
407 429 5.000 55.0 ACGUUGUGCCCACCUUUGGdTdT CCAAAGGUGGGCACAACGUdTdT
428 450 5.000 55.0 AGAAGAAGGGCCCCAAUGCdTdT GCAUUGGGGCCCUUCUUCUdTdT
431 453 5.000 55.0 AGAAGGGCCCCAAUGCCAAdTdT UUGGCAUUGGGGCCCUUCUdTdT
434 456 5.000 60.0 AGGGCCCCAAUGCCAACUCdTdT GAGUUGGCAUUGGGGCCCUdTdT
444 466 5.000 35.0 UGCCAACUCUUAAGUCUUUdTdT AAAGACUUAAGAGUUGGCAdTdT
487 509 5.000 35.0 AAAAGCCACUUAGUUCAGUdTdT ACUGAACUAAGUGGCUUUUdTdT
123 145 4.000 50.0 GAUCAAGGCUCAUGUAGCCdTdT GGCUACAUGAGCCUUGAUCdTdT
125 147 4.000 50.0 UCAAGGCUCAUGUAGCCUCdTdT GAGGCUACAUGAGCCUUGAdTdT
128 150 4.000 50.0 AGGCUCAUGUAGCCUCACUdTdT AGUGAGGCUACAUGAGCCUdTdT
155 177 4.000 50.0 UUGCCCCGGAAGAUCAAGUdTdT ACUUGAUCUUCCGGGGCAAdTdT
234 256 4.000 60.0 GGCCCUGACUACCCUGGAAdTdT UUCCAGGGUAGUCAGGGCCdTdT
259 281 4.000 60.0 GGCCGCAUGCUUGGAGGUAdTdT UACCUCCAAGCAUGCGGCCdTdT
266 288 4.000 40.0 UGCUUGGAGGUAAAGUUCAdTdT UGAACUUUACCUCCAAGCAdTdT
342 364 4.000 40.0 GGAGAAGAAGAAGAAGAAGdTdT CUUCUUCUUCUUCUUCUCCdTdT
347 369 4.000 40.0 AGAAGAAGAAGAAGACAGGdTdT CCUGUCUUCUUCUUCUUCUdTdT
359 381 4.000 60.0 AGACAGGUCGGGCUAAGCGdTdT CGCUUAGCCCGACCUGUCUdTdT
111 133 3.000 55.0 AACGGUCGCCCAGAUCAAGdTdT CUUGAUCUGGGCGACCGUUdTdT
113 135 3.000 65.0 CGGUCGCCCAGAUCAAGGCdTdT GCCUUGAUCUGGGCGACCGdTdT
172 194 3.000 70.0 GUCGUGCUCCUGGCAGGCGdTdT CGCCUGCCAGGAGCACGACdTdT
443 465 3.000 35.0 AUGCCAACUCUUAAGUCUUdTdT AAGACUUAAGAGUUGGCAUdTdT
456 478 3.000 35.0 AGUCUUUUGUAAUUCUGGCdTdT GCCAGAAUUACAAAAGACUdTdT
468 490 3.000 30.0 UUCUGGCUUUCUCUAAUAAdTdT UUAUUAGAGAAAGCCAGAAdTdT
484 506 3.000 30.0 UAAAAAAGCCACUUAGUUCdTdT GAACUAAGUGGCUUUUUUAdTdT
108 130 2.000 60.0 GGAAACGGUCGCCCAGAUCdTdT GAUCUGGGCGACCGUUUCCdTdT
135 157 2.000 60.0 UGUAGCCUCACUGGAGGGCdTdT GCCCUCCAGUGAGGCUACAdTdT
139 161 2.000 60.0 GCCUCACUGGAGGGCAUUGdTdT CAAUGCCCUCCAGUGAGGCdTdT
150 172 2.000 60.0 GGGCAUUGCCCCGGAAGAUdTdT AUCUUCCGGGGCAAUGCCCdTdT
171 193 2.000 65.0 AGUCGUGCUCCUGGCAGGCdTdT GCCUGCCAGGAGCACGACUdTdT
201 223 2.000 65.0 GGAUGAGGCCACUCUGGGCdTdT GCCCAGAGUGGCCUCAUCCdTdT
204 226 2.000 65.0 UGAGGCCACUCUGGGCCAGdTdT CUGGCCCAGAGUGGCCUCAdTdT
245 267 2.000 65.0 CCCUGGAAGUAGCAGGCCGdTdT CGGCCUGCUACUUCCAGGGdTdT
256 278 2.000 65.0 GCAGGCCGCAUGCUUGGAGdTdT CUCCAAGCAUGCGGCCUGCdTdT
285 307 2.000 65.0 UGGUUCCCUGGCCCGUGCUdTdT AGCACGGGCCAGGGAACCAdTdT
338 360 2.000 35.0 AACAGGAGAAGAAGAAGAAdTdT UUCUUCUUCUUCUCCUGUUdTdT
345 367 2.000 35.0 GAAGAAGAAGAAGAAGACAdTdT UGUCUUCUUCUUCUUCUUCdTdT
486 508 2.000 35.0 AAAAAGCCACUUAGUUCAGdTdT CUGAACUAAGUGGCUUUUUdTdT
#---------------------------------------
#---------------------------------------
#---------------------------------------
# Total_sequences: 1
# Total_hitcount: 85
#---------------------------------------
</pre>
</td></tr></table><p>
<p><h3>File: x65923.fasta</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
>X65923_308 %GC 50.0 Score 9 H.sapiens fau mRNA
aaaagtgagaggtcagactccta
>X65923_309 %GC 50.0 Score 9 H.sapiens fau mRNA
aaagtgagaggtcagactcctaa
>X65923_310 %GC 50.0 Score 9 H.sapiens fau mRNA
aagtgagaggtcagactcctaag
>X65923_351 %GC 50.0 Score 9 H.sapiens fau mRNA
aagaagaagaagacaggtcgggc
>X65923_166 %GC 55.0 Score 8 H.sapiens fau mRNA
aagatcaagtcgtgctcctggca
>X65923_279 %GC 55.0 Score 8 H.sapiens fau mRNA
aaagttcatggttccctggcccg
>X65923_330 %GC 55.0 Score 8 H.sapiens fau mRNA
aaggtggccaaacaggagaagaa
>X65923_354 %GC 55.0 Score 8 H.sapiens fau mRNA
aagaagaagacaggtcgggctaa
>X65923_357 %GC 55.0 Score 8 H.sapiens fau mRNA
aagaagacaggtcgggctaagcg
>X65923_393 %GC 55.0 Score 8 H.sapiens fau mRNA
aaccggcgctttgtcaacgttgt
>X65923_253 %GC 60.0 Score 7 H.sapiens fau mRNA
aagtagcaggccgcatgcttgga
>X65923_280 %GC 60.0 Score 7 H.sapiens fau mRNA
aagttcatggttccctggcccgt
>X65923_339 %GC 40.0 Score 7 H.sapiens fau mRNA
aaacaggagaagaagaagaagaa
>X65923_340 %GC 40.0 Score 7 H.sapiens fau mRNA
aacaggagaagaagaagaagaag
>X65923_348 %GC 40.0 Score 7 H.sapiens fau mRNA
aagaagaagaagaagacaggtcg
>X65923_375 %GC 60.0 Score 7 H.sapiens fau mRNA
aagcggcggatgcagtacaaccg
>X65923_408 %GC 60.0 Score 7 H.sapiens fau mRNA
aacgttgtgcccacctttggcaa
>X65923_429 %GC 60.0 Score 7 H.sapiens fau mRNA
aagaagaagggccccaatgccaa
>X65923_432 %GC 60.0 Score 7 H.sapiens fau mRNA
aagaagggccccaatgccaactc
>X65923_435 %GC 60.0 Score 7 H.sapiens fau mRNA
aagggccccaatgccaactctta
>X65923_488 %GC 40.0 Score 7 H.sapiens fau mRNA
aaaaagccacttagttcagtcaa
>X65923_489 %GC 40.0 Score 7 H.sapiens fau mRNA
aaaagccacttagttcagtcaaa
>X65923_490 %GC 40.0 Score 7 H.sapiens fau mRNA
aaagccacttagttcagtcaaaa
>X65923_491 %GC 40.0 Score 7 H.sapiens fau mRNA
aagccacttagttcagtcaaaaa
>X65923_129 %GC 55.0 Score 6 H.sapiens fau mRNA
aaggctcatgtagcctcactgga
<font color=red> [Part of this file has been deleted for brevity]</font>
gaggccctgactaccctggaagt
>X65923_259 %GC 60.0 Score 4 H.sapiens fau mRNA
caggccgcatgcttggaggtaaa
>X65923_266 %GC 40.0 Score 4 H.sapiens fau mRNA
catgcttggaggtaaagttcatg
>X65923_342 %GC 40.0 Score 4 H.sapiens fau mRNA
caggagaagaagaagaagaagac
>X65923_347 %GC 40.0 Score 4 H.sapiens fau mRNA
gaagaagaagaagaagacaggtc
>X65923_359 %GC 60.0 Score 4 H.sapiens fau mRNA
gaagacaggtcgggctaagcggc
>X65923_111 %GC 55.0 Score 3 H.sapiens fau mRNA
gaaacggtcgcccagatcaaggc
>X65923_113 %GC 65.0 Score 3 H.sapiens fau mRNA
aacggtcgcccagatcaaggctc
>X65923_172 %GC 70.0 Score 3 H.sapiens fau mRNA
aagtcgtgctcctggcaggcgcg
>X65923_443 %GC 35.0 Score 3 H.sapiens fau mRNA
caatgccaactcttaagtctttt
>X65923_456 %GC 35.0 Score 3 H.sapiens fau mRNA
taagtcttttgtaattctggctt
>X65923_468 %GC 30.0 Score 3 H.sapiens fau mRNA
aattctggctttctctaataaaa
>X65923_484 %GC 30.0 Score 3 H.sapiens fau mRNA
aataaaaaagccacttagttcag
>X65923_108 %GC 60.0 Score 2 H.sapiens fau mRNA
caggaaacggtcgcccagatcaa
>X65923_135 %GC 60.0 Score 2 H.sapiens fau mRNA
catgtagcctcactggagggcat
>X65923_139 %GC 60.0 Score 2 H.sapiens fau mRNA
tagcctcactggagggcattgcc
>X65923_150 %GC 60.0 Score 2 H.sapiens fau mRNA
gagggcattgccccggaagatca
>X65923_171 %GC 65.0 Score 2 H.sapiens fau mRNA
caagtcgtgctcctggcaggcgc
>X65923_201 %GC 65.0 Score 2 H.sapiens fau mRNA
gaggatgaggccactctgggcca
>X65923_204 %GC 65.0 Score 2 H.sapiens fau mRNA
gatgaggccactctgggccagtg
>X65923_245 %GC 65.0 Score 2 H.sapiens fau mRNA
taccctggaagtagcaggccgca
>X65923_256 %GC 65.0 Score 2 H.sapiens fau mRNA
tagcaggccgcatgcttggaggt
>X65923_285 %GC 65.0 Score 2 H.sapiens fau mRNA
catggttccctggcccgtgctgg
>X65923_338 %GC 35.0 Score 2 H.sapiens fau mRNA
caaacaggagaagaagaagaaga
>X65923_345 %GC 35.0 Score 2 H.sapiens fau mRNA
gagaagaagaagaagaagacagg
>X65923_486 %GC 35.0 Score 2 H.sapiens fau mRNA
taaaaaagccacttagttcagtc
</pre>
</td></tr></table><p>
<a name="output.2"></a>
<h3>Output files for usage example 2</h3>
<p><h3>File: x65923.sirna</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
########################################
# Program: sirna
# Rundate: Sun 15 Jul 2007 12:00:00
# Commandline: sirna
# -context
# -sequence tembl:x65923
# Report_format: table
# Report_file: x65923.sirna
########################################
#=======================================
#
# Sequence: X65923 from: 1 to: 518
# HitCount: 85
#
# The forward sense sequence shows the first 2 bases of
# the 23 base region in brackets, this should be ignored
# when ordering siRNA probes.
# CDS region found in feature table starting at 57
#
#=======================================
Start End Score GC% Sense_siRNA Antisense_siRNA
308 330 9.000 50.0 (AA)AAGUGAGAGGUCAGACUCCdTdT GGAGUCUGACCUCUCACUUdTdT
309 331 9.000 50.0 (AA)AGUGAGAGGUCAGACUCCUdTdT AGGAGUCUGACCUCUCACUdTdT
310 332 9.000 50.0 (AA)GUGAGAGGUCAGACUCCUAdTdT UAGGAGUCUGACCUCUCACdTdT
351 373 9.000 50.0 (AA)GAAGAAGAAGACAGGUCGGdTdT CCGACCUGUCUUCUUCUUCdTdT
166 188 8.000 55.0 (AA)GAUCAAGUCGUGCUCCUGGdTdT CCAGGAGCACGACUUGAUCdTdT
279 301 8.000 55.0 (AA)AGUUCAUGGUUCCCUGGCCdTdT GGCCAGGGAACCAUGAACUdTdT
330 352 8.000 55.0 (AA)GGUGGCCAAACAGGAGAAGdTdT CUUCUCCUGUUUGGCCACCdTdT
354 376 8.000 55.0 (AA)GAAGAAGACAGGUCGGGCUdTdT AGCCCGACCUGUCUUCUUCdTdT
357 379 8.000 55.0 (AA)GAAGACAGGUCGGGCUAAGdTdT CUUAGCCCGACCUGUCUUCdTdT
393 415 8.000 55.0 (AA)CCGGCGCUUUGUCAACGUUdTdT AACGUUGACAAAGCGCCGGdTdT
253 275 7.000 60.0 (AA)GUAGCAGGCCGCAUGCUUGdTdT CAAGCAUGCGGCCUGCUACdTdT
280 302 7.000 60.0 (AA)GUUCAUGGUUCCCUGGCCCdTdT GGGCCAGGGAACCAUGAACdTdT
339 361 7.000 40.0 (AA)ACAGGAGAAGAAGAAGAAGdTdT CUUCUUCUUCUUCUCCUGUdTdT
340 362 7.000 40.0 (AA)CAGGAGAAGAAGAAGAAGAdTdT UCUUCUUCUUCUUCUCCUGdTdT
348 370 7.000 40.0 (AA)GAAGAAGAAGAAGACAGGUdTdT ACCUGUCUUCUUCUUCUUCdTdT
375 397 7.000 60.0 (AA)GCGGCGGAUGCAGUACAACdTdT GUUGUACUGCAUCCGCCGCdTdT
408 430 7.000 60.0 (AA)CGUUGUGCCCACCUUUGGCdTdT GCCAAAGGUGGGCACAACGdTdT
429 451 7.000 60.0 (AA)GAAGAAGGGCCCCAAUGCCdTdT GGCAUUGGGGCCCUUCUUCdTdT
432 454 7.000 60.0 (AA)GAAGGGCCCCAAUGCCAACdTdT GUUGGCAUUGGGGCCCUUCdTdT
435 457 7.000 60.0 (AA)GGGCCCCAAUGCCAACUCUdTdT AGAGUUGGCAUUGGGGCCCdTdT
488 510 7.000 40.0 (AA)AAAGCCACUUAGUUCAGUCdTdT GACUGAACUAAGUGGCUUUdTdT
489 511 7.000 40.0 (AA)AAGCCACUUAGUUCAGUCAdTdT UGACUGAACUAAGUGGCUUdTdT
490 512 7.000 40.0 (AA)AGCCACUUAGUUCAGUCAAdTdT UUGACUGAACUAAGUGGCUdTdT
491 513 7.000 40.0 (AA)GCCACUUAGUUCAGUCAAAdTdT UUUGACUGAACUAAGUGGCdTdT
129 151 6.000 55.0 (AA)GGCUCAUGUAGCCUCACUGdTdT CAGUGAGGCUACAUGAGCCdTdT
165 187 6.000 50.0 (GA)AGAUCAAGUCGUGCUCCUGdTdT CAGGAGCACGACUUGAUCUdTdT
278 300 6.000 50.0 (UA)AAGUUCAUGGUUCCCUGGCdTdT GCCAGGGAACCAUGAACUUdTdT
<font color=red> [Part of this file has been deleted for brevity]</font>
353 375 5.000 55.0 (GA)AGAAGAAGACAGGUCGGGCdTdT GCCCGACCUGUCUUCUUCUdTdT
360 382 5.000 65.0 (AA)GACAGGUCGGGCUAAGCGGdTdT CCGCUUAGCCCGACCUGUCdTdT
374 396 5.000 55.0 (UA)AGCGGCGGAUGCAGUACAAdTdT UUGUACUGCAUCCGCCGCUdTdT
383 405 5.000 55.0 (GA)UGCAGUACAACCGGCGCUUdTdT AAGCGCCGGUUGUACUGCAdTdT
387 409 5.000 55.0 (CA)GUACAACCGGCGCUUUGUCdTdT GACAAAGCGCCGGUUGUACdTdT
390 412 5.000 55.0 (UA)CAACCGGCGCUUUGUCAACdTdT GUUGACAAAGCGCCGGUUGdTdT
392 414 5.000 55.0 (CA)ACCGGCGCUUUGUCAACGUdTdT ACGUUGACAAAGCGCCGGUdTdT
407 429 5.000 55.0 (CA)ACGUUGUGCCCACCUUUGGdTdT CCAAAGGUGGGCACAACGUdTdT
428 450 5.000 55.0 (CA)AGAAGAAGGGCCCCAAUGCdTdT GCAUUGGGGCCCUUCUUCUdTdT
431 453 5.000 55.0 (GA)AGAAGGGCCCCAAUGCCAAdTdT UUGGCAUUGGGGCCCUUCUdTdT
434 456 5.000 60.0 (GA)AGGGCCCCAAUGCCAACUCdTdT GAGUUGGCAUUGGGGCCCUdTdT
444 466 5.000 35.0 (AA)UGCCAACUCUUAAGUCUUUdTdT AAAGACUUAAGAGUUGGCAdTdT
487 509 5.000 35.0 (AA)AAAAGCCACUUAGUUCAGUdTdT ACUGAACUAAGUGGCUUUUdTdT
123 145 4.000 50.0 (CA)GAUCAAGGCUCAUGUAGCCdTdT GGCUACAUGAGCCUUGAUCdTdT
125 147 4.000 50.0 (GA)UCAAGGCUCAUGUAGCCUCdTdT GAGGCUACAUGAGCCUUGAdTdT
128 150 4.000 50.0 (CA)AGGCUCAUGUAGCCUCACUdTdT AGUGAGGCUACAUGAGCCUdTdT
155 177 4.000 50.0 (CA)UUGCCCCGGAAGAUCAAGUdTdT ACUUGAUCUUCCGGGGCAAdTdT
234 256 4.000 60.0 (GA)GGCCCUGACUACCCUGGAAdTdT UUCCAGGGUAGUCAGGGCCdTdT
259 281 4.000 60.0 (CA)GGCCGCAUGCUUGGAGGUAdTdT UACCUCCAAGCAUGCGGCCdTdT
266 288 4.000 40.0 (CA)UGCUUGGAGGUAAAGUUCAdTdT UGAACUUUACCUCCAAGCAdTdT
342 364 4.000 40.0 (CA)GGAGAAGAAGAAGAAGAAGdTdT CUUCUUCUUCUUCUUCUCCdTdT
347 369 4.000 40.0 (GA)AGAAGAAGAAGAAGACAGGdTdT CCUGUCUUCUUCUUCUUCUdTdT
359 381 4.000 60.0 (GA)AGACAGGUCGGGCUAAGCGdTdT CGCUUAGCCCGACCUGUCUdTdT
111 133 3.000 55.0 (GA)AACGGUCGCCCAGAUCAAGdTdT CUUGAUCUGGGCGACCGUUdTdT
113 135 3.000 65.0 (AA)CGGUCGCCCAGAUCAAGGCdTdT GCCUUGAUCUGGGCGACCGdTdT
172 194 3.000 70.0 (AA)GUCGUGCUCCUGGCAGGCGdTdT CGCCUGCCAGGAGCACGACdTdT
443 465 3.000 35.0 (CA)AUGCCAACUCUUAAGUCUUdTdT AAGACUUAAGAGUUGGCAUdTdT
456 478 3.000 35.0 (UA)AGUCUUUUGUAAUUCUGGCdTdT GCCAGAAUUACAAAAGACUdTdT
468 490 3.000 30.0 (AA)UUCUGGCUUUCUCUAAUAAdTdT UUAUUAGAGAAAGCCAGAAdTdT
484 506 3.000 30.0 (AA)UAAAAAAGCCACUUAGUUCdTdT GAACUAAGUGGCUUUUUUAdTdT
108 130 2.000 60.0 (CA)GGAAACGGUCGCCCAGAUCdTdT GAUCUGGGCGACCGUUUCCdTdT
135 157 2.000 60.0 (CA)UGUAGCCUCACUGGAGGGCdTdT GCCCUCCAGUGAGGCUACAdTdT
139 161 2.000 60.0 (UA)GCCUCACUGGAGGGCAUUGdTdT CAAUGCCCUCCAGUGAGGCdTdT
150 172 2.000 60.0 (GA)GGGCAUUGCCCCGGAAGAUdTdT AUCUUCCGGGGCAAUGCCCdTdT
171 193 2.000 65.0 (CA)AGUCGUGCUCCUGGCAGGCdTdT GCCUGCCAGGAGCACGACUdTdT
201 223 2.000 65.0 (GA)GGAUGAGGCCACUCUGGGCdTdT GCCCAGAGUGGCCUCAUCCdTdT
204 226 2.000 65.0 (GA)UGAGGCCACUCUGGGCCAGdTdT CUGGCCCAGAGUGGCCUCAdTdT
245 267 2.000 65.0 (UA)CCCUGGAAGUAGCAGGCCGdTdT CGGCCUGCUACUUCCAGGGdTdT
256 278 2.000 65.0 (UA)GCAGGCCGCAUGCUUGGAGdTdT CUCCAAGCAUGCGGCCUGCdTdT
285 307 2.000 65.0 (CA)UGGUUCCCUGGCCCGUGCUdTdT AGCACGGGCCAGGGAACCAdTdT
338 360 2.000 35.0 (CA)AACAGGAGAAGAAGAAGAAdTdT UUCUUCUUCUUCUCCUGUUdTdT
345 367 2.000 35.0 (GA)GAAGAAGAAGAAGAAGACAdTdT UGUCUUCUUCUUCUUCUUCdTdT
486 508 2.000 35.0 (UA)AAAAAGCCACUUAGUUCAGdTdT CUGAACUAAGUGGCUUUUUdTdT
#---------------------------------------
#---------------------------------------
#---------------------------------------
# Total_sequences: 1
# Total_hitcount: 85
#---------------------------------------
</pre>
</td></tr></table><p>
<p>
The siRNAs are reported in order of best score first.
<p>
<b>sirna</b> reports both the sense and antisense siRNAs as 5' to 3'.
<H2>
Data files
</H2>
None.
<H2>
Notes
</H2>
None.
<H2>
References
</H2>
<ol>
<li>Elbashir, S. M., et al. (2001a). Duplexes of 21-nucleotide RNAs
mediate RNA interference in mammalian cell culture. Nature 411:
494-498.
<li>
Elbashir, S. M., W. Lendeckel and T. Tuschl (2001b). RNA
interference is mediated by 21 and 22 nt RNAs. Genes & Dev. 15:
188-200.
</ol>
<H2>
Warnings
</H2>
It is assumed that the input sequence is mRNA.
<H2>
Diagnostic Error Messages
</H2>
None.
<H2>
Exit status
</H2>
It always exits with status 0.
<H2>
Known bugs
</H2>
None.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th><th>Description</th></tr>
<tr>
<td><a href="banana.html">banana</a></td>
<td>Bending and curvature plot in B-DNA</td>
</tr>
<tr>
<td><a href="btwisted.html">btwisted</a></td>
<td>Calculates the twisting in a B-DNA sequence</td>
</tr>
<tr>
<td><a href="chaos.html">chaos</a></td>
<td>Create a chaos game representation plot for a sequence</td>
</tr>
<tr>
<td><a href="compseq.html">compseq</a></td>
<td>Count composition of dimer/trimer/etc words in a sequence</td>
</tr>
<tr>
<td><a href="dan.html">dan</a></td>
<td>Calculates DNA RNA/DNA melting temperature</td>
</tr>
<tr>
<td><a href="freak.html">freak</a></td>
<td>Residue/base frequency table or plot</td>
</tr>
<tr>
<td><a href="isochore.html">isochore</a></td>
<td>Plots isochores in large DNA sequences</td>
</tr>
<tr>
<td><a href="wordcount.html">wordcount</a></td>
<td>Counts words of a specified size in a DNA sequence</td>
</tr>
</table>
<H2>
Author(s)
</H2>
Gary Williams (gwilliam © rfcgr.mrc.ac.uk)
<br>
MRC Rosalind Franklin Centre for Genomics Research
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
<H2>
History
</H2>
Written (November 2002) - Gary Williams.
<H2>
Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
Comments
</H2>
None
</BODY>
</HTML>
|