1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
marscan
Function
Finds MAR/SAR sites in nucleic sequences
Description
Matrix/scaffold attachment regions (MARs/SARs) are genomic elements
thought to delineate the structural and functional organisation of the
eukaryotic genome. Originally, MARs and SARs were identified through
their ability to bind to the nuclear matrix or scaffold. Binding
cannot be assigned to a unique sequence element, but is dispersed over
a region of several hundred base pairs. These elements are found
flanking a gene or a small cluster of genes and are located often in
the vicinity of cis-regulatory sequences. This has led to the
suggestion that they contribute to higher order regulation of
transcription by defining boundaries of independently controlled
chromatin domains. There is indirect evidence to support this notion.
In transgenic experiments MARs/SARs dampen position effects by
shielding the transgene from the effects of the chromatin structure at
the site of integration. Furthermore, they may act as boundary
elements for enhancers, restricting their long range effect to only
the promoters that are located in the same chromatin domain.
marscan finds a bipartite sequence element that is unique for a large
group of eukaryotic MARs/SARs. This MAR/SAR recognition signature
(MRS) comprises two individual sequence elements that are <200 bp
apart and may be aligned on positioned nucleosomes in MARs. The MRS
can be used to correctly predict the position of MARs/SARs in plants
and animals, based on genomic DNA sequence information alone.
Experimental evidence from the analysis of >300 kb of sequence data
from several eukaryotic organisms show that wherever a MRS is observed
in the DNA sequence, the corresponding genomic fragment is a
biochemically identifiable SAR.
The MRS is a bipartite sequence element that consists of two
individual sequences of 8 (AATAAYAA) and 16 bp (AWWRTAANNWWGNNNC)
within a 200 bp distance from each other. One mismatch is allowed in
the 16 bp pattern. The patterns can occur on either strand of the DNA
with respect to each other. The 8 bp and the 16 bp sites can overlap.
Where there are many possible MRS sites caused by many 8 bp and/or 16
bp pattern sites located within 200 bp of each other, then only the 8
bp site and the 16 bp site that occur closest to each other are
reported.
Once a MRS has been reported, no more sites will be looked for within
200 bp of that site. This reduces (but maybe will not totally
eliminate) over-reporting of the clusters of MRS's that tend to occur
within a MAR/SAR.
Not all SARs contain a MRS. Analysis of >300 kb of genomic sequence
from a variety of eukaryotic organisms shows that the MRS faithfully
predicts 80% of MARs and SARs, suggesting that at least one other type
of MAR/SAR may exist which does not contain a MRS.
It it still not at all clear whether MAR/SARs are real biological
phenomena or just experimental artefacts.
The problem of how to define and find MARs is still being actively
invetsigated. For a recent evaluation of this method and others, see
reference 3.
Usage
Here is a sample session with marscan
% marscan
Finds MAR/SAR sites in nucleic sequences
Input nucleotide sequence(s): tembl:u01317
Output report [u01317.marscan]:
Go to the input files for this example
Go to the output files for this example
Command line arguments
Standard (Mandatory) qualifiers:
[-sequence] seqall Nucleotide sequence(s) filename and optional
format, or reference (input USA)
[-outfile] report [*.marscan] File for output of MAR/SAR
recognition signature (MRS) regions. This
contains details of the MRS in normal GFF
format. The MRS consists of two recognition
sites, one of 8 bp and one of 16 bp on
either sense strand of the genomic DNA,
within 200 bp of each other.
Additional (Optional) qualifiers: (none)
Advanced (Unprompted) qualifiers: (none)
Associated qualifiers:
"-sequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-sformat1 string Input sequence format
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outfile" associated qualifiers
-rformat2 string Report format
-rname2 string Base file name
-rextension2 string File name extension
-rdirectory2 string Output directory
-raccshow2 boolean Show accession number in the report
-rdesshow2 boolean Show description in the report
-rscoreshow2 boolean Show the score in the report
-rusashow2 boolean Show the full USA in the report
-rmaxall2 integer Maximum total hits to report
-rmaxseq2 integer Maximum hits to report for one sequence
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write standard output
-filter boolean Read standard input, write standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
Input file format
marscan reads a normal genomic DNA USA.
Input files for usage example
'tembl:u01317' is a sequence entry in the example nucleic acid
database 'tembl'
Database entry: tembl:u01317
ID U01317; SV 1; linear; genomic DNA; STD; HUM; 73308 BP.
XX
AC U01317; J00093-J00094; J00096; J00158-J00175; J00177-J00179; K01239;
AC K01890; K02544; M18047; M19067; M24868; M24886;
XX
DT 19-MAR-1994 (Rel. 39, Created)
DT 14-NOV-2006 (Rel. 89, Last updated, Version 34)
XX
DE Human beta globin region on chromosome 11.
XX
KW allelic variation; alternate cap site; Alu repeat; beta-1 pseudogene;
KW beta-globin; delta-globin; epsilon-globin; gamma-globin; gene duplication;
KW globin; HPFH; KpnI repetitive sequence; polymorphism; promoter mutation;
KW pseudogene; repetitive sequence; RNA polymerase III; thalassemia.
XX
OS Homo sapiens (human)
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia
;
OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC Homo.
XX
RN [1]
RP 62409-62631, 63482-63610
RX PUBMED; 4135409.
RA Marotta C.A., Forget B.G., Weissman S.M., Verma I.M., McCaffrey R.P.,
RA Baltimore D.;
RT "Nucleotide sequences of human globin messenger RNA";
RL Proc. Natl. Acad. Sci. U.S.A. 71(6):2300-2304(1974).
XX
RN [2]
RP 63602-63646
RX PUBMED; 1059150.
RA Forget B.G., Marotta C.A., Weissman S.M., Cohen-Solal M.;
RT "Nucleotide sequences of the 3'-terminal untranslated region of messenger
RT RNA for human beta globin chain";
RL Proc. Natl. Acad. Sci. U.S.A. 72(9):3614-3618(1975).
XX
RN [3]
RP 63593-63626
RX PUBMED; 788834.
RA Proudfoot N.J., Brownlee G.G.;
RT "Nucleotide sequences of globin messenger RNA";
RL Br. Med. Bull. 32(3):251-256(1976).
XX
RN [4]
RP 63673-63743
RX DOI; 10.1016/0092-8674(76)90137-9.
RX PUBMED; 1035137.
RA Proudfoot N.J., Longley J.I.;
RT "The 3' terminal sequences of human alpha and beta globin messenger RNAs:
RT comparison with rabbit globin messenger RNA";
[Part of this file has been deleted for brevity]
aaaggggaga agaatcaaat agacgcaata aaaaatgaca cggggtatca ccactgatcc 7038
0
cacagaaata caaactaccg tcagagaata ctataaacac ctctacgcaa ataaactaga 7044
0
aaatctagaa gaaatggata aattcctcga cacatacact ctgccaagac taaaccagga 7050
0
agaagttgta tctctgaata gaccaataac aggctctgaa attgaggcaa taattaatag 7056
0
cttatcaacc aaaaaaagtc cgggaccagt aggattcata gccgaattct accagaggta 7062
0
caaggaggag ctggtaccat tccttctgaa actattccaa tcaatagaaa aagagggaat 7068
0
cctccctaac tcattttatg aggccagcat catcctgata ccaaagcctg acagagacac 7074
0
aacaaaaaaa gagaatgtta caccaatatc cttgatgaac atcgatgcaa aaatcctcaa 7080
0
taaaatactg gcaaactgaa tccagcagca catcaaaaag cttatcctcc atgatcaagt 7086
0
gggcttcatc cctgccatgc aaggctggtt caacatacga aatcaataaa cataatccag 7092
0
catataaaca gaaccaaaga cacaaaccat atgattatct caatagatgc agaaaaggcc 7098
0
tttgacaaaa ttcaacaatg cttcatgcta aaaactctca ataaattagg tattgatggg 7104
0
acatatctca aaataataag agctatctat gacaaaccca cagccaatat catactgagt 7110
0
ggacaaaaac tggaagcatt ccctttgaaa actggcacaa ggcagggatg ccctctctca 7116
0
ccactcctat tcaacatagt gttggaagtt ctggccaggg caatcaggca ggagaaggaa 7122
0
ataaagggca ttcaattagg aaaagaggaa ggtgaaattg tccctgtttg cagatgacat 7128
0
gattgtatat ctagaaaacc ccattgtctc agcccaaaat ctccttaagc tgataagcaa 7134
0
cttcagcaaa gtctcaggat ataaaatcag tgtgcaaaaa tcacaagtat tcctatgcac 7140
0
caataacaga caaacagaga gccaaatcat gagtgaactc ccattcacaa ttgcttcaaa 7146
0
gagaataaaa tacctaggaa tccaacttac aagggatgtg aaggacctct tcaaggagaa 7152
0
ctacaaacca ctgctcaatg aaataaaaga ggatacaaac aaatggaaga acattccatg 7158
0
cttatgggta ggaagaatca tatcgtgaaa atggtcatac tgcccaaggt aatttataga 7164
0
ttcaatgcca tccccatcaa gctaccaatg actttcttca cagaactgga aaaaactact 7170
0
ttaaagttca tatggaatca aaaaagagcc cacatcacca aggcaatcct aagccaaaag 7176
0
aacaaagctg gaggcatcac gctacctgac ttcaaactat actacaatgc tacggtaacc 7182
0
aaaacagcat ggtactggta ccaaaacaga gatctagacc aatggaacag aacagagccc 7188
0
tcagaaataa tgccgcatat ctacaactat ccgatctttg acaaacctga gagaaacaag 7194
0
caatggggaa aggattccct atttaataaa tggtgctggg aaaactggct agccatatgt 7200
0
agaaagctga aactggatcc ttccttacac cttatacaaa aattaattca agatggatta 7206
0
aagacttaaa cattagacct aaaaccataa aaaccctaga aaaaaaccta ggcaatacca 7212
0
ttcaggacat aggcatgggc aaggacttca tgtctaaaac accaaaacga atggcaacaa 7218
0
aagacaaaat ggacaaacgg gatctaatta aactaaagag cttctgcaca gctaaagaaa 7224
0
ctaccatcag agtgaacagg caacctacaa aatgggagaa aatttttgca atctactcat 7230
0
ctgacaaagg gctaatatcc agaatctaca atgaactcaa acaaatttac aagaaaaaac 7236
0
aaacaacccc atcaaaaagt gggcaaagga tatgaacaga cacttctcaa aagaagacat 7242
0
ttatgtaatc aaaaaacaca tgaaaaaatg ctcatcatca ctagccatca gagaaatgca 7248
0
aatcaaaacc acaatgagat accatctcac accagttaga atggcgatca ttaaaaagtc 7254
0
aggaaacaac aggtgctgga gaggatgtgg agaaacagga acaactttta cactgttggt 7260
0
gggactgtaa actagttcaa ccattgcgga agtcagtgtg gcaattcctc aggaatctag 7266
0
aactagaaat accatttgac ccagccatcc cattactggg tagataccca aaggattata 7272
0
aatcatgctg ctataaagac acatgcacac gtatgtttat tgcagcacta ttcacaatag 7278
0
caaagacttg gaaccaaccc aaatgtccaa caacgataga ttggattaag aaaatgtggc 7284
0
acatatacac catggaatac tatgcagcca taaaaaatga tgagttcatg tcctttgtag 7290
0
ggacatggat gaagctggaa actatcattc tcagcaaact atcacaagga caataaacca 7296
0
aacaccgcat gttctcactc ataggtggga attgaacaat gagaacacat ggacacatga 7302
0
agaggaacat cacactctgg ggactgttat ggggtggggg gcaggggcag ggatagcact 7308
0
aggagatata cctaatgcta aatgacgagt taatgggtgc agcacaccaa catggcacat 7314
0
gtatacatat ataacaaacc tgccgttgtg cacatgtacc ctaaaacttg aagtataata 7320
0
ataaaaaaaa gttatcctat taaaactgat ctcacacatc cgtagagcca ttatcaagtc 7326
0
tttctctttg aaacagacag aaatttagtg ttttctcagt cagttaac 7330
8
//
Output file format
The output is a standard EMBOSS report file.
The results can be output in one of several styles by using the
command-line qualifier -rformat xxx, where 'xxx' is replaced by the
name of the required format. The available format names are: embl,
genbank, gff, pir, swiss, trace, listfile, dbmotif, diffseq, excel,
feattable, motif, regions, seqtable, simple, srs, table, tagseq
See: http://emboss.sf.net/docs/themes/ReportFormats.html for further
information on report formats.
By default marscan writes a GFF (Gene Feature Format) report file.
Output files for usage example
File: u01317.marscan
##gff-version 2.0
##date 2006-07-15
##Type DNA U01317
U01317 marscan misc_signal 2242 2458 0.000 + . Sequenc
e "U01317.1" ; note "*type MAR/SAR recognition site (MRS)" ; note "*start8bp 24
51" ; note "*end8bp 2458" ; note "*start16bp 2242" ; note "*end16bp 2257"
U01317 marscan misc_signal 17654 17730 0.000 + . Sequenc
e "U01317.2" ; note "*type MAR/SAR recognition site (MRS)" ; note "*start8bp 17
723" ; note "*end8bp 17730" ; note "*start16bp 17654" ; note "*end16bp 17669"
U01317 marscan misc_signal 40956 41123 0.000 + . Sequenc
e "U01317.3" ; note "*type MAR/SAR recognition site (MRS)" ; note "*start8bp 40
956" ; note "*end8bp 40963" ; note "*start16bp 41108" ; note "*end16bp 41123"
U01317 marscan misc_signal 42232 42248 0.000 + . Sequenc
e "U01317.4" ; note "*type MAR/SAR recognition site (MRS)" ; note "*start8bp 42
232" ; note "*end8bp 42239" ; note "*start16bp 42233" ; note "*end16bp 42248"
U01317 marscan misc_signal 47834 47966 0.000 + . Sequenc
e "U01317.5" ; note "*type MAR/SAR recognition site (MRS)" ; note "*start8bp 47
959" ; note "*end8bp 47966" ; note "*start16bp 47834" ; note "*end16bp 47849"
U01317 marscan misc_signal 65112 65146 0.000 + . Sequenc
e "U01317.6" ; note "*type MAR/SAR recognition site (MRS)" ; note "*start8bp 65
139" ; note "*end8bp 65146" ; note "*start16bp 65112" ; note "*end16bp 65127"
U01317 marscan misc_signal 65947 65963 0.000 + . Sequenc
e "U01317.7" ; note "*type MAR/SAR recognition site (MRS)" ; note "*start8bp 65
947" ; note "*end8bp 65954" ; note "*start16bp 65948" ; note "*end16bp 65963"
Data files
None.
Notes
It does not check whether the DNA input sequence is genomic or not.
References
1. The method for finding the MAR/SAR sites is described in:
van Drunen CM., Sewalt RGAB., Oosterling RW., Weisbeek PJ.,
Smeekens SCM. and van Driel R. "A bipartite sequence element
associated with matrix/scaffold attachment regions" Nucleic Acids
Research. 1999. Vol 27, No. 14, pp. 2924-2930
2. The original paper on MARs/SARs is:
Mirkovitch J., Mirault M-E. and Laemmli UK. Cell. 1984. Vol. 39
pp. 223-232.
3. A recent evaluation of methods to find MARs/SARs:
I. Liebich, J. Bode, I. Reuter and E. Wingender "Evaluation of
sequence motifs found in scaffold/matrix-attached regions
(S/MARs)" Nucleic Acids Research 2002, Vol. 30, No. 15 3433-3442
Warnings
None
Diagnostic Error Messages
None.
Exit status
It always exits with status 0.
Known bugs
None.
See also
Program name Description
dreg Regular expression search of a nucleotide sequence
fuzznuc Nucleic acid pattern search
fuzztran Protein pattern search after translation
getorf Finds and extracts open reading frames (ORFs)
plotorf Plot potential open reading frames
showorf Pretty output of DNA translations
sixpack Display a DNA sequence with 6-frame translation and ORFs
syco Synonymous codon usage Gribskov statistic plot
tcode Fickett TESTCODE statistic to identify protein-coding DNA
wobble Wobble base plot
Author(s)
Gary Williams (gwilliam rfcgr.mrc.ac.uk)
MRC Rosalind Franklin Centre for Genomics Research Wellcome Trust
Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
History
Written (Jan 2001) - Gary Williams.
Changed output file to standard EMBOSS report format (April 2002) -
Peter Rice
Target users
This program is intended to be used by everyone and everything, from
naive users to embedded scripts.
Comments
None
|