File: seqret.txt

package info (click to toggle)
emboss 5.0.0-7
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 81,332 kB
  • ctags: 25,201
  • sloc: ansic: 229,873; java: 29,051; sh: 10,636; perl: 8,714; makefile: 1,227; csh: 520; asm: 351; pascal: 237; xml: 94; modula3: 8
file content (1149 lines) | stat: -rw-r--r-- 45,872 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

                                  seqret 



Function

   Reads and writes (returns) sequences

Description

   The simplicity of the above description of this program greatly
   understates the rich functionality of this program.

   Because EMBOSS programs can take a wide range of qualifiers that
   slightly change the behaviour of the program when reading or writing a
   sequence, this program can do many more things than simply "read and
   write a sequence".

   seqret can read a sequence or many sequences from databases, files,
   files of sequence names, the command-line or the output of other
   programs and then can write them to files, the screen or pass them to
   other programs. Because it can read in a sequence from a database and
   write it to a file, seqret is a program for extracting sequences from
   databases. Because it can write the sequence to the screen, seqret is
   a program for displaying sequences.

   seqret can read sequences in any of a wide range of standard sequence
   formats. You can specify the input and output formats being used. If
   you don't specify the input format, seqret will try a set of possible
   formats until it reads it in successfully. Because you can specify the
   output sequence format, seqret is a program to reformat a sequence.

   seqret can read in the reverse complement of a nucleic acid sequence.
   It therefore is a program for producing the reverse complement of a
   sequence.

   seqret can read in a sequence whose begin and end positions you have
   specified and write out that fragment. It is therefore a utility for
   doing simple extraction of a region of a sequence.

   seqret can change the case of the sequence being read in to upper or
   to lower case. It is therefore a simple sequence beautification
   utility.

   seqret can do any combination of the above functions.

   The sequence input and output specification of this (and many other
   EMBOSS programs) is described as being a Uniform Sequence Address.

   The Uniform Sequence Address, or USA, is a somewhat tongue-in-cheek
   reference to a URL-style sequence naming used by all EMBOSS
   applications.

   The USA is a very flexible way of specifying one or more sequences
   from a variety of sources and includes sequence files, database
   queries and external applications.

   See the full specification of USA syntax at:
   http://emboss.sourceforge.net/docs/themes/UniformSequenceAddress.html 

   The basic USA syntax is one of:
     * "file"
     * "file:entry"
     * "format::file"
     * "format::file:entry"
     * "database:entry"
     * "database"
     * "@file"

   Note that ':' separates the name of a file containing many possible
   entries from the specific name of a sequence entry in that file. It
   also separates the name of a database from an entry in that database

   Note also that '::' separates the specified format of a file from the
   name of the file. Normally the format can be omitted, in which case
   the program will attempt to identify the correct format when reading
   the sequence in and will default to using FASTA format when writing
   the sequence out.

   Valid names of the databases set up in your local implementation of
   EMBOSS can be seen by using the program 'showdb'.

   Database queries, and individual entries in files that have more than
   one sequence entry, use wildcards of "?" for any character and "*" for
   any string of characters. There are some problems with the Unix shell
   catching these characters so they do need to be hidden in quotes or
   preceded by a backslash on the Unix command line, (for example
   "embl:hs\*")

   The output USA name 'stdout' is special. It makes the output go to the
   device 'standard output'. This is the screen, by default.

  Example USAs

   The following are valid USAs for sequences:

   USA Description
   xxx.seq A sequence file "xxx.seq" in any format
   fasta::xxx.seq A sequence file "xxx.seq" in fasta format
   gcg::egmsmg.gcg A sequence file "egmsmg.gcg" in GCG 9 format
   egmsmg.gcg -sformat=gcg A sequence file "egmsmg.gcg" in GCG 9 format
   embl::paamir.em A sequence file "paamir.em" in EMBL format
   embl:paamir EMBL entry PAAMIR, using whatever access method is defined
   locally for the EMBL database
   embl:X13776 EMBL entry X13776, using whatever access method is defined
   locally for the EMBL database and searching by accession number and
   entry name (X13776 is the accession number in this case)
   embl-acc:X13776 EMBL entry X13776, using whatever access method is
   defined locally for the EMBL database and searching by accession
   number only
   embl-id:paamir EMBL entry PAAMIR, using whatever access method is
   defined locally for the EMBL database, and searching by ID only
   embl:paami* EMBL entries PAAMIB, PAAMIE and so on, usually in
   alphabetical order, using whatever access method is defined locally
   for the EMBL database
   embl or EMBL:* All sequences in the EMBL database
   @mylist Reads file mylist and uses each line as a separate USA. This
   is standard VMS list file syntax, also used in SRS 4.0 but missing in
   SRS 5.0. The list file is a list of USAs (one per line). List files
   can contain references to other lists files or any other standard USA.
   list::mylist Same as "@mylist" above
   'getz -e [embl-id:paamir] |' The pipe character "|" causes EMBOSS to
   fire up getz (SRS 5.1) to extract entry PAAMIR from EMBL in EMBL
   format. Any application or script which writes one or more sequences
   to stdout can be used in this way.
   asis::atacgcagttatctgaccat So far the shortest USA we could invent. In
   'asis' format the name is the sequence so no file needs to be opened.
   This is a special case. It was intended as a joke, but could be quite
   useful for generating command lines.

  Input sequence formats

   To date, the following sequence formats are accepted as input.

   By default, (i.e. if no format is explicitly specified) EMBOSS tries
   each format in turn until one succeeds.

   Input Format Comments
   gcg GCG 9.x and 10.x format with the format and sequence type
   identified on the first line of the file
   gcg8 GCG 8.x format where anything up to the first line containing
   ".." is considered as heading, and the remainder is sequence data.
   This format is complicated by the header appearing to be in other
   formats such as EMBL, and by the possibility of reading a large amount
   of data in the wrong format before discovering that there is no ".."
   line because it is not GCG format after all.
   embl
   em EMBL entry format, or at least a minimal subset of the fields. The
   Staden package and others use EMBL or similar formats for sequence
   data.
   swiss
   sw SWISSPROT entry format, or at least a minimal subset of the fields.
   fasta
   pearson FASTA format with an optional accession number after the
   sequence identifier, eg:
   >name description
   or
   >name accession description
   and with an optional database name in GCG style fasta format included
   as part of the sequence identifier, eg:
   >database:name accession description
   ncbi FASTA format with optional accession number and database name in
   NCBI style included as part of the sequence identifier. eg
   >database|accession|id description
   (and other variants on this theme!)
   genbank
   gb GENBANK entry format, or at least a minimal subset of the fields.
   nbrf
   pir NBRF (PIR) format, as used in the PIR database sequence files.
   codata CODATA format.
   strider DNA strider format
   clustal
   aln ClustalW ALN (multiple alignment) format.
   phylip PHYLIP interleaved multiple alignment format.
   acedb ACeDB format
   msf Wisconsin Package GCG's MSF multiple sequence format.
   hennig86 Hennig86 format
   jackknifer Jackknifer format
   jackknifernon Jackknifernon format
   nexus
   paup Nexus/PAUP format
   nexusnon
   paupnon Nexusnon/PAUPnon format
   treecon Treecon format
   mega Mega format
   meganon Meganon format
   ig IntelliGenetics format.
   staden
   experiment The experiment file format used by the "gap" program in the
   Staden package, where the sequence identifier is optional and the
   remainer is plain text. Some alternative nucleotide ambiguity codes
   are used and must be converted.
   unknown
   text
   plain Plain text. This is the format with no format. The whole of the
   file is read in as a sequence. No attempt is made to parse the file
   contents in any way. Anything is acceptable in this format.
   raw Like unknown/text/plain format except that it accepts only
   alphanumeric and whitespace characters and rejects anything else.
   asis This is not so much a sequence format as a quick way of entering
   a sequence on the command line, but it is included here for
   completeness. Where a filename would normally be given, in asis format
   there is the sequence itself. An example would be:
   asis::atacgcagttatctgaccat
   In 'asis' format the name is the sequence so no file needs to be
   opened. This is a special case. It was intended as a joke, but could
   be quite useful for generating command lines.

  Output sequence formats

   To date, the following sequence formats are available as output.

   Some sequence formats can hold multiple sequences in one file, these
   are marked as multiple in the following table. The details of how many
   sequences are held in one file differs between formats, but they
   either allow many sequences to be concatenated one after the other, or
   they hold the sequences together in some sort of aligned set of
   sequences.

   Other formats, such as GCG, plain and staden formats can only hold one
   sequence per file, these are marked as single. An attempt to
   concatenate several sequences in one file leaves the results as a mess
   that makes it impossible to decide where the sequences start and end
   or what is annotation and what is sequence.

   These single formats therefore cause problems when there are multiple
   sequences to write out because a single file containing multiple
   sequences in that format is invalid. When these formats are specified
   for output, an EMBOSS program will allow you to write many sequences
   to one file, but EMBOSS programs will not be able to reliably read in
   the resulting mess.

   N.B This behaviour changed in EMBOSS version 1.7.0. (31 Oct 2000)
   Previously, EMBOSS programs that were asked to write multiple
   sequences in a single format would ignore the requested output file
   name and would write each sequence into a separate file whose name was
   constructed from the sequence name and the name of the format. This
   resulted in ouput to files whose names could not be reliably
   controlled. A decision was taken that EMBOSS users were intelligent
   people who could live with the consequences of their actions and who
   could learn not to write out multiple sequences to a file in formats
   that could not cope with multiple sequences.

   It you really wish to write multiple sequences out in formats that can
   not cope with multiple sequences, you are advised to add the global
   qualifier -ossingle on the command line. This will force the EMBOSS
   program to ignore the given output file name and will generate its own
   file names. One sequence will be written to each such file. These file
   names are made from the sequence ID name, with the name of the format
   as the extension (e.g. hsfau.gcg).

   This is not ideal. Preferably, you should stay away from formats that
   can't cope with multiple sequences in a file.

   Output Format Single/
   Multiple Comments
   gcg single Wisconsin Package GCG 9.x and 10.x format with the sequence
   type on the first line of the file.
   gcg8 single GCG 8.x format where anything up to the first line
   containing ".." is considered as heading, and the remainder is
   sequence data.
   embl
   em multiple EMBL entry format with available fields filled in and
   others with no infomation omitted. The EMBOSS command line allows
   missing data such as accession numbers to be provided if they are not
   obtainable from the input sequence.
   swiss
   sw multiple SwisProt entry format with available fields filled in and
   others with no infomation omitted. The EMBOSS command line allows
   missing data such as accession numbers to be provided if they are not
   obtainable from the input sequence.
   fasta multiple Standard Pearson FASTA format, but with the accession
   number included after the identifier if available.
   pearson multiple Simple Pearson FASTA format, an alias for "fasta"
   format.
   ncbi multiple NCBI style FASTA format with the database name, entry
   name and accession number separated by pipe ("|") characters.
   nbrf
   pir multiple NBRF (PIR) format, as used in the PIR database sequence
   files.
   genbank
   gb multiple GENBANK entry format with available fields filled in and
   others with no infomation omitted. The EMBOSS command line allows
   missing data such as accession numbers to be provided if they are not
   obtainable from the input sequence.
   ig multiple Intelligenetics format, as used by the Intelligenetics
   package
   codata multiple CODATA format.
   strider multiple DNA strider format
   acedb multiple ACeDB format
   staden
   experiment single The experiment file format used by the "gap" program
   in the Staden package. Some alternative nucleotide ambiguity codes are
   used and are converted.
   text
   plain
   raw single Plain sequence, no annotation or heading.
   fitch multiple Fitch format
   msf multiple Wisconsin Package GCG's MSF multiple sequence format.
   clustal
   aln multiple Clustal multiple sequence format.
   phylip multiple PHYLIP non-interleaved format.
   phylip3 multiple PHYLIP interleaved format.
   asn1 multiple A subset of ASN.1 containing entry name, accession
   number, description and sequence, similar to the current ASN.1 output
   of readseq
   hennig86 multiple Hennig86 format
   mega multiple Mega format
   meganon multiple Meganon format
   nexus
   paup multiple Nexus/PAUP format
   nexusnon
   paupnon multiple Nexusnon/PAUPnon format
   jackknifer multiple Jackknifer format
   jackknifernon multiple Jackknifernon format
   treecon multiple Treecon format
   debug multiple EMBOSS sequence object report for debugging showing all
   available fields. Not all fields will contain data - this depends very
   much on the input format used.

  Future directions

   More formats, both for input and for output, can be easily added, so
   suggestions are always welcome.

  Associated qualifiers

   As noted previously there are many 'associated' qualifiers that alter
   the behaviour of seqret when it reads in or writes out a sequence. As
   these are used in all EMBOSS programs that read in or write out
   sequences, they are not reported by the '-help' qualifier. They are
   however reported by the pair of qualifiers: '-help -verbose':

   Some of the more useful associated qualifiers are:

   Qualifier                        Description
   -sbegin   The first position to be used in the sequence
   -send     The last position to be used in the sequence
   -sreverse Use the reverse complement of a nucleic acid sequence
   -sask     Ask the user for begin/end/reverse information
   -slower   Convert the sequence to lower case
   -supper   Convert the sequence to upper case
   -sformat  Specify the input sequence format
   -osformat Specify the output sequence format
   -ossingle Write each entry into a separate file
   -auto     Turn off prompts and don't report the one-line description
   -stdout   Write the results to 'standard output' (the screen)
   -filter   Read input from another program, write to the screen
   -options  Prompt for optional qualifiers
   -help     Display a table of the command-line options

   The set of associated qualifiers for sequences behave in different
   ways depending on where they appear.

   If these qualifiers immediately follow a parameter they apply only to
   that parameter and not to all cases. If they occur before any
   parameters, they apply to all following sequence parameters.

   If there are no two parameters of equal type, the order of parameters
   and their qualifiers is irrelevant.

   Where a qualifier is defined more than once, for example "-sformat"
   for 2 input sequences to be aligned, the qualifier name can have a
   number to indicate which sequence is meant. "-sbegin2=25" will apply
   only to the second sequence, no matter where it appears on the command
   line.

   The -sbegin and -send qualifiers take an integer number specifying the
   position to begin or end reading a sequence. If the number is
   positive, the number is the position counting from the first base or
   residue of the sequence. If the number is negative the position is
   counted from the end of the sequence, so position -1 is the last base
   or residue of the sequence. (If -sbegin 0 is used, it is assumed to be
   the same as -sbegin 1 and -send 0 is the same as -send -1.)

   The filter qualifier makes the program behave like a filter, reading
   its (first) input 'file' from the standard input, and writing its
   (first) output 'file' to the standard output. The -filter qualifier
   will also invoke the -auto qualifier, so the user is never prompted
   for any missing values.

   Example:

% cat sequence.seq | seqret -filter | lpr

   The example shows the application seqret being run with the -filter
   qualifier. The input file is 'piped' into the program using the unix
   command cat and the output is 'piped' directly to the unix program
   lpr, which will print it on the printer.

   When the -options qualifier is used and not all the parameters are
   given on the command line, it will query the user for those
   parameters. It will not only query the user for the required
   parameters as it would do without the -options qualifier, but it will
   also query the user for the optional parameters.

   When the -stdout qualifier is used, the user will still be prompted
   for all the info that is required, but will write to standard output
   by default. The user will also still be prompted for an output
   filename, in case the user wants to save the output to a file.

Usage

   Here is a sample session with seqret

   Extract an entry from a database and write it to a file:


% seqret 
Reads and writes (returns) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]: 

   Go to the input files for this example
   Go to the output files for this example

   Example 2

   Read all entries in the database 'tembl' that start with 'ab' and
   write them to a file. In this example the specification is all done in
   the command line and to stop Unix getting confused by the '*'
   character, it has to have a backslash ('\') before it:


% seqret tembl:ab\*  aball.seq 
Reads and writes (returns) sequences

   Go to the output files for this example

   Example 3

   seqret does not read in features by default because this results in
   slightly faster performance. If however you wish to read in features
   with your sequence and write them out on output, using '-feature' will
   change the default behaviour to use any features present in the
   sequence. N.B. use embl format for the output file as the default
   format 'fasta' reports the features in gff (file "<seqname>.gff")


% seqret -feature 
Reads and writes (returns) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]: embl::x65923.embl

   Go to the output files for this example

   Example 4

   Display the contents of the sequence on the screen:


% seqret 
Reads and writes (returns) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]: stdout

>X65923 X65923.1 H.sapiens fau mRNA
ttcctctttctcgactccatcttcgcggtagctgggaccgccgttcagtcgccaatatgc
agctctttgtccgcgcccaggagctacacaccttcgaggtgaccggccaggaaacggtcg
cccagatcaaggctcatgtagcctcactggagggcattgccccggaagatcaagtcgtgc
tcctggcaggcgcgcccctggaggatgaggccactctgggccagtgcggggtggaggccc
tgactaccctggaagtagcaggccgcatgcttggaggtaaagttcatggttccctggccc
gtgctggaaaagtgagaggtcagactcctaaggtggccaaacaggagaagaagaagaaga
agacaggtcgggctaagcggcggatgcagtacaaccggcgctttgtcaacgttgtgccca
cctttggcaagaagaagggccccaatgccaactcttaagtcttttgtaattctggctttc
tctaataaaaaagccacttagttcagtcaaaaaaaaaa

   Example 5

   Write the result in GCG format by using the qualifier '-osformat'.


% seqret -osf gcg 
Reads and writes (returns) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.gcg]: 

   Go to the output files for this example

   Example 6

   Write the result in GCG format by specifying the format in the output
   USA on the command line.


% seqret -outseq gcg::x65923.gcg 
Reads and writes (returns) sequences
Input (gapped) sequence(s): tembl:x65923

   Example 7

   Write the result in GCG format by specifying the format in the output
   USA at the prompt.


% seqret 
Reads and writes (returns) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]: gcg::x65923.gcg

   Example 8

   Write the reverse-complement of a sequence:


% seqret -srev 
Reads and writes (returns) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]: 

   Go to the output files for this example

   Example 9

   Extract the bases between the positions starting at 5 and ending at
   25:


% seqret -sbegin 5 -send 25 
Reads and writes (returns) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]: 

   Go to the output files for this example

   Example 10

   Extract the bases between the positions starting at 5 and ending at 5
   bases before the end of the sequence:


% seqret -sbegin 5 -send -5 
Reads and writes (returns) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]: 

   Go to the output files for this example

   Example 11

   Read all entries in the database 'tembl' that start with 'h' and write
   them to a file:


% seqret 
Reads and writes (returns) sequences
Input (gapped) sequence(s): tembl:h*
output sequence(s) [h45989.fasta]: hall.seq

   Go to the output files for this example

Command line arguments

   Standard (Mandatory) qualifiers:
  [-sequence]          seqall     (Gapped) sequence(s) filename and optional
                                  format, or reference (input USA)
  [-outseq]            seqoutall  [.] Sequence set(s)
                                  filename and optional format (output USA)

   Additional (Optional) qualifiers: (none)
   Advanced (Unprompted) qualifiers:
   -feature            boolean    Use feature information
   -firstonly          boolean    Read one sequence and stop

   Associated qualifiers:

   "-sequence" associated qualifiers
   -sbegin1            integer    Start of each sequence to be used
   -send1              integer    End of each sequence to be used
   -sreverse1          boolean    Reverse (if DNA)
   -sask1              boolean    Ask for begin/end/reverse
   -snucleotide1       boolean    Sequence is nucleotide
   -sprotein1          boolean    Sequence is protein
   -slower1            boolean    Make lower case
   -supper1            boolean    Make upper case
   -sformat1           string     Input sequence format
   -sdbname1           string     Database name
   -sid1               string     Entryname
   -ufo1               string     UFO features
   -fformat1           string     Features format
   -fopenfile1         string     Features file name

   "-outseq" associated qualifiers
   -osformat2          string     Output seq format
   -osextension2       string     File name extension
   -osname2            string     Base file name
   -osdirectory2       string     Output directory
   -osdbname2          string     Database name to add
   -ossingle2          boolean    Separate file for each entry
   -oufo2              string     UFO features
   -offormat2          string     Features format
   -ofname2            string     Features file name
   -ofdirectory2       string     Output directory

   General qualifiers:
   -auto               boolean    Turn off prompts
   -stdout             boolean    Write standard output
   -filter             boolean    Read standard input, write standard output
   -options            boolean    Prompt for standard and additional values
   -debug              boolean    Write debug output to program.dbg
   -verbose            boolean    Report some/full command line options
   -help               boolean    Report command line options. More
                                  information on associated and general
                                  qualifiers can be found with -help -verbose
   -warning            boolean    Report warnings
   -error              boolean    Report errors
   -fatal              boolean    Report fatal errors
   -die                boolean    Report dying program messages

Input file format

   seqret reads one or more sequence USAs.

  Input files for usage example

   'tembl:x65923' is a sequence entry in the example nucleic acid
   database 'tembl'

  Database entry: tembl:x65923

ID   X65923; SV 1; linear; mRNA; STD; HUM; 518 BP.
XX
AC   X65923;
XX
DT   13-MAY-1992 (Rel. 31, Created)
DT   18-APR-2005 (Rel. 83, Last updated, Version 11)
XX
DE   H.sapiens fau mRNA
XX
KW   fau gene.
XX
OS   Homo sapiens (human)
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia
;
OC   Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC   Homo.
XX
RN   [1]
RP   1-518
RA   Michiels L.M.R.;
RT   ;
RL   Submitted (29-APR-1992) to the EMBL/GenBank/DDBJ databases.
RL   L.M.R. Michiels, University of Antwerp, Dept of Biochemistry,
RL   Universiteisplein 1, 2610 Wilrijk, BELGIUM
XX
RN   [2]
RP   1-518
RX   PUBMED; 8395683.
RA   Michiels L., Van der Rauwelaert E., Van Hasselt F., Kas K., Merregaert J.;
RT   " fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as
RT   an antisense sequences in the Finkel-Biskis-Reilly murine sarcoma virus";
RL   Oncogene 8(9):2537-2546(1993).
XX
DR   H-InvDB; HIT000322806.
XX
FH   Key             Location/Qualifiers
FH
FT   source          1..518
FT                   /organism="Homo sapiens"
FT                   /chromosome="11q"
FT                   /map="13"
FT                   /mol_type="mRNA"
FT                   /clone_lib="cDNA"
FT                   /clone="pUIA 631"
FT                   /tissue_type="placenta"
FT                   /db_xref="taxon:9606"
FT   misc_feature    57..278
FT                   /note="ubiquitin like part"
FT   CDS             57..458
FT                   /gene="fau"
FT                   /db_xref="GDB:135476"
FT                   /db_xref="GOA:P35544"
FT                   /db_xref="GOA:P62861"
FT                   /db_xref="HGNC:3597"
FT                   /db_xref="UniProtKB/Swiss-Prot:P35544"
FT                   /db_xref="UniProtKB/Swiss-Prot:P62861"
FT                   /protein_id="CAA46716.1"
FT                   /translation="MQLFVRAQELHTFEVTGQETVAQIKAHVASLEGIAPEDQVVLLA
G
FT                   APLEDEATLGQCGVEALTTLEVAGRMLGGKVHGSLARAGKVRGQTPKVAKQEKKKKKT
G
FT                   RAKRRMQYNRRFVNVVPTFGKKKGPNANS"
FT   misc_feature    98..102
FT                   /note="nucleolar localization signal"
FT   misc_feature    279..458
FT                   /note="S30 part"
FT   polyA_signal    484..489
FT   polyA_site      509
XX
SQ   Sequence 518 BP; 125 A; 139 C; 148 G; 106 T; 0 other;
     ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc gccaatatgc        6
0
     agctctttgt ccgcgcccag gagctacaca ccttcgaggt gaccggccag gaaacggtcg       12
0
     cccagatcaa ggctcatgta gcctcactgg agggcattgc cccggaagat caagtcgtgc       18
0
     tcctggcagg cgcgcccctg gaggatgagg ccactctggg ccagtgcggg gtggaggccc       24
0
     tgactaccct ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc       30
0
     gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag aagaagaaga       36
0
     agacaggtcg ggctaagcgg cggatgcagt acaaccggcg ctttgtcaac gttgtgccca       42
0
     cctttggcaa gaagaagggc cccaatgcca actcttaagt cttttgtaat tctggctttc       48
0
     tctaataaaa aagccactta gttcagtcaa aaaaaaaa                               51
8
//

Output file format

   The output from seqret is one or more sequences, and by default will
   be written in FASTA format.

   If the '-firstonly' qualifier is used then only the first sequence of
   the input USA specification will be written out.

   In some cases the output filename will be the same as the input
   filename, but as seqret reads only the first sequence before opening
   the output file it may try to overwrite the input. Note that this is
   not true of seqretset which reads all sequences into memory at
   startup, but which can need a large amount of memory for many
   sequences.

  Output files for usage example

  File: x65923.fasta

>X65923 X65923.1 H.sapiens fau mRNA
ttcctctttctcgactccatcttcgcggtagctgggaccgccgttcagtcgccaatatgc
agctctttgtccgcgcccaggagctacacaccttcgaggtgaccggccaggaaacggtcg
cccagatcaaggctcatgtagcctcactggagggcattgccccggaagatcaagtcgtgc
tcctggcaggcgcgcccctggaggatgaggccactctgggccagtgcggggtggaggccc
tgactaccctggaagtagcaggccgcatgcttggaggtaaagttcatggttccctggccc
gtgctggaaaagtgagaggtcagactcctaaggtggccaaacaggagaagaagaagaaga
agacaggtcgggctaagcggcggatgcagtacaaccggcgctttgtcaacgttgtgccca
cctttggcaagaagaagggccccaatgccaactcttaagtcttttgtaattctggctttc
tctaataaaaaagccacttagttcagtcaaaaaaaaaa

  Output files for usage example 2

  File: aball.seq

>AB009602 AB009602.1 Schizosaccharomyces pombe mRNA for MET1 homolog, partial c
ds.
gttcgatgcctaaaataccttcttttgtccctacacagaccacagttttcctaatggctt
tacaccgactagaaattcttgtgcaagcactaattgaaagcggttggcctagagtgttac
cggtttgtatagctgagcgcgtctcttgccctgatcaaaggttcattttctctactttgg
aagacgttgtggaagaatacaacaagtacgagtctctcccccctggtttgctgattactg
gatacagttgtaatacccttcgcaacaccgcgtaactatctatatgaattattttccctt
tattatatgtagtaggttcgtctttaatcttcctttagcaagtcttttactgttttcgac
ctcaatgttcatgttcttaggttgttttggataatatgcggtcagtttaatcttcgttgt
ttcttcttaaaatatttattcatggtttaatttttggtttgtacttgttcaggggccagt
tcattatttactctgtttgtatacagcagttcttttatttttagtatgattttaatttaa
aacaattctaatggtcaaaaa
>AB000095 AB000095.1 Homo sapiens mRNA for hepatocyte growth factor activator i
nhibitor, complete cds.
cggccgagcccagctctccgagcaccgggtcggaagccgcgacccgagccgcgcaggaag
ctgggaccggaacctcggcggacccggccccacccaactcacctgcgcaggtcaccagca
ccctcggaacccagaggcccgcgctctgaaggtgacccccctggggaggaaggcgatggc
ccctgcgaggacgatggcccgcgcccgcctcgccccggccggcatccctgccgtcgcctt
gtggcttctgtgcacgctcggcctccagggcacccaggccgggccaccgcccgcgccccc
tgggctgcccgcgggagccgactgcctgaacagctttaccgccggggtgcctggcttcgt
gctggacaccaacgcctcggtcagcaacggagctaccttcctggagtcccccaccgtgcg
ccggggctgggactgcgtgcgcgcctgctgcaccacccagaactgcaacttggcgctagt
ggagctgcagcccgaccgcggggaggacgccatcgccgcctgcttcctcatcaactgcct
ctacgagcagaacttcgtgtgcaagttcgcgcccagggagggcttcatcaactacctcac
gagggaagtgtaccgctcctaccgccagctgcggacccagggctttggagggtctgggat
ccccaaggcctgggcaggcatagacttgaaggtacaaccccaggaacccctggtgctgaa
ggatgtggaaaacacagattggcgcctactgcggggtgacacggatgtcagggtagagag
gaaagacccaaaccaggtggaactgtggggactcaaggaaggcacctacctgttccagct
gacagtgactagctcagaccacccagaggacacggccaacgtcacagtcactgtgctgtc
caccaagcagacagaagactactgcctcgcatccaacaaggtgggtcgctgccggggctc
tttcccacgctggtactatgaccccacggagcagatctgcaagagtttcgtttatggagg
ctgcttgggcaacaagaacaactaccttcgggaagaagagtgcattctagcctgtcgggg
tgtgcaaggcccctccatggaaaggcgccatccagtgtgctctggcacctgtcagcccac
ccagttccgctgcagcaatggctgctgcatcgacagtttcctggagtgtgacgacacccc
caactgccccgacgcctccgacgaggctgcctgtgaaaaatacacgagtggctttgacga
gctccagcgcatccatttccccagtgacaaagggcactgcgtggacctgccagacacagg
actctgcaaggagagcatcccgcgctggtactacaaccccttcagcgaacactgcgcccg
ctttacctatggtggttgttatggcaacaagaacaactttgaggaagagcagcagtgcct
cgagtcttgtcgcggcatctccaagaaggatgtgtttggcctgaggcgggaaatccccat
tcccagcacaggctctgtggagatggctgtcgcagtgttcctggtcatctgcattgtggt
ggtggtagccatcttgggttactgcttcttcaagaaccagagaaaggacttccacggaca
ccaccaccacccaccacccacccctgccagctccactgtctccactaccgaggacacgga
gcacctggtctataaccacaccacccggcccctctgagcctgggtctcaccggctctcac
ctggccctgcttcctgcttgccaaggcagaggcctgggctgggaaaaactttggaaccag
actcttgcctgtttcccaggcccactgtgcctcagagaccagggctccagcccctcttgg
agaagtctcagctaagctcacgtcctgagaaagctcaaaggtttggaaggagcagaaaac
ccttgggccagaagtaccagactagatggacctgcctgcataggagtttggaggaagttg
gagttttgtttcctctgttcaaagctgcctgtccctaccccatggtgctaggaagaggag
tggggtggtgtcagaccctggaggccccaaccctgtcctcccgagctcctcttccatgct
gtgcgcccagggctgggaggaaggacttccctgtgtagtttgtgctgtaaagagttgctt
tttgtttatttaatgctgtggcatgggtgaagaggaggggaagaggcctgtttggcctct
ctgtcctctcttcctcttcccccaagattgagctctctgcccttgatcagccccaccctg


  [Part of this file has been deleted for brevity]

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
nnnnnnnnntcctgtcctcccgtccatcctctgttcccgggttctcctgcccctttccct
ccccttcctcctcctccatggcctcttcgcctgcccatgctctgtgtgtattgcaggttt
cccagttcatggcgtgtgaggagctgcccccgggggccccagagcttccccaagaaggcc
ccacacgacgcctctccctaccgggccagctgggggccctcacctcccagcccctgcaca
gacacggctcggacccgggcagttagtggggctgcccagtgtggacacgt
>AB000360 AB000360.1 Homo sapiens PIGC gene, complete cds.
ggatccctgctgcagagggggtaacggtgtctggcttgccaagcaatatttgttgtggtc
tatcatggaagaaataaagtcgggcaatatgaattttttttttctcaaatttgccggatg
gctgtggtgtttctgactcttagttttctcattgtgaaaaaggaatgattatcttcttcg
atcctctcaagagtttccttgttttgagtagattgatagctctttaaaggatgctaagct
cagctaatggaagaagagtctagtttctttgaggctttgattttggttaaactatagagc
tcatacctttctgtatggtgcagcttactattgtctttggattggtaacttaaaaaatac
aaataacatgcctttgagaaccaataaaaactatggatattatccctataaatttacaca
aatccagatataagcatgcaatgtgatatacctaagggatatgtgaaccactgagttaag
aactgctttagagggagatacaatgtgagacacaggctttgggataagactttggtttga
atcctggctctgctctgttaccttagggcaaagttacttaagcatcttgaatctcagctt
ttttaccaaagcaggactaatactaacttacaaggtggtgaggattaagtgaaagaagat
acataaggcacttagcacatagtaggtactcaataagcgatagctaacagatgtctatta
ttattcaaggaattataattttcaaatctgaaatgcagttttaatgtcccataaggtgac
taccacatacatttttctcagacttttagtaaactgagttgatttgactttatctcagta
ctactcttgacctttcacaactttcgtaggttcacagtctctctttttctaggaacttgg
ctgtgttgtcctgcctcagagacaaattcatctattgtaggcctagcccctgcctttgaa
aacaaggaaaggttggtagaacatcaacacagcatggaatttccagggaggtctcatttc
aaaacttcataaagaacaagaaccacctggacttctgtgagggcgatgattaaactggcc
tgagtttgaatgaaaggataatgtatgctcaacctgtgactaacaccaaggaggtcaagt
ggcagaaggtcttgtatgagcgacagccctttcctgataactatgtggaccggcgattcc
tggaagagctccggaaaaacatccatgctcggaaataccaatattgggctgtggtatttg
agtccagtgtggtgatccagcagctgtgcagtgtttgtgtttttgtggttatctggtggt
atatggatgagggtcttctggccccccattggcttttagggactggcctggcttcttcac
tgattgggtatgttttgtttgatctcattgatggaggtgaagggcggaagaagagtgggc
agacccggtgggctgacctgaagagtgccctagtcttcattactttcacttatgggtttt
caccagtgctgaagacccttacagagtctgtcagcactgacaccatctatgccatgtcag
tcttcatgctgttaggccatctcatcttttttgactatggtgccaatgctgccattgtat
ccagcacactatccttgaacatggccatctttgcttctgtatgcttggcatcacgtcttc
cccggtccctgcatgccttcatcatggtgacatttgccattcagatttttgccctgtggc
ccatgttgcagaagaaactaaaggcatgtactccccggagctatgtgggggtcacactgc
tttttgcattttcagccgtgggaggcctactgtccattagtgctgtgggagccgtactct
ttgcccttctgctgatgtctatctcatgtctgtgttcattctacctcattcgcttgcagc
tttttaaagaaaacattcatgggccttgggatgaagctgaaatcaaggaagacttgtcca
ggttcctcagttaaattaggacatccattacattattaaagcaagctgatagattagcct
cctaactagtatagaacttaaagacagagttccattctggaagcagcatgtcattgtggt
aagagaatagagatcaaaaccaaaaaaaatgaaccaaaggcttgggtggtgagggtgctt
atcctttctgttattttgtagatgaaaaaactttctggggacctcttgaattacatgctg
taacatatgaagtgatgtggtttctattaaaaaaataacacatccatcaagttgtctcat
gatttttccataaacaggaggcagacagaggggcatgaagagtgaagtaagtgtgtgtgt
gtgtgtgtgtgtgtgtaaagtcacttctttctacccttttcaatgtgctaatgctctttt
atttatctagggctcaaatcttagaacacagggtgctatgctcagttttgttgcccaaga
tcacagaattggttacttaaccttgactcagagtttctaccttgttcttagggaagcata
tcacaactaattgcaaagcagagtgtgatgtgtcacaataagcagaatgctagggggaat
tc

  Output files for usage example 3

  File: x65923.embl

ID   X65923; SV 1; linear; mRNA; STD; HUM; 518 BP.
XX
AC   X65923;
XX
DT   13-MAY-1992 (Rel. 31, Created)
DT   18-APR-2005 (Rel. 83, Last updated, Version 11)
XX
DE   H.sapiens fau mRNA
XX
KW   fau gene.
XX
OS   Homo sapiens (human)
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia
;
OC   Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC   Homo.
XX
RN   [1]
RP   1-518
RA   Michiels L.M.R.;
RT   ;
RL   Submitted (29-APR-1992) to the EMBL/GenBank/DDBJ databases.
RL   L.M.R. Michiels, University of Antwerp, Dept of Biochemistry,
RL   Universiteisplein 1, 2610 Wilrijk, BELGIUM.
XX
RN   [2]
RP   1-518
RX   PUBMED; 8395683.
RA   Michiels L., Van der Rauwelaert E., Van Hasselt F., Kas K., Merregaert J.;
RT   " fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as
RT   an antisense sequences in the Finkel-Biskis-Reilly murine sarcoma virus";
RL   Oncogene 8(9):2537-2546(1993).
XX
DR   H-InvDB; HIT000322806.
XX
FH   Key             Location/Qualifiers
FH
FT   source          1..518
FT                   /organism="Homo sapiens"
FT                   /chromosome="11q"
FT                   /map="13"
FT                   /mol_type="mRNA"
FT                   /clone_lib="cDNA"
FT                   /clone="pUIA 631"
FT                   /tissue_type="placenta"
FT                   /db_xref="taxon:9606"
FT   misc_feature    57..278
FT                   /note="ubiquitin like part"
FT   CDS             57..458
FT                   /gene="fau"
FT                   /db_xref="GDB:135476"
FT                   /db_xref="GOA:P35544"
FT                   /db_xref="GOA:P62861"
FT                   /db_xref="HGNC:3597"
FT                   /db_xref="UniProtKB/Swiss-Prot:P35544"
FT                   /db_xref="UniProtKB/Swiss-Prot:P62861"
FT                   /protein_id="CAA46716.1"
FT                   /translation="MQLFVRAQELHTFEVTGQETVAQIKAHVASLEGIAPEDQVVLLA
G
FT                   APLEDEATLGQCGVEALTTLEVAGRMLGGKVHGSLARAGKVRGQTPKVAKQEKKKKKT
G
FT                   RAKRRMQYNRRFVNVVPTFGKKKGPNANS"
FT   misc_feature    98..102
FT                   /note="nucleolar localization signal"
FT   misc_feature    279..458
FT                   /note="S30 part"
FT   polyA_signal    484..489
FT   polyA_site      509
XX
SQ   Sequence 518 BP; 125 A; 139 C; 148 G; 106 T; 0 other;
     ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc gccaatatgc        6
0
     agctctttgt ccgcgcccag gagctacaca ccttcgaggt gaccggccag gaaacggtcg       12
0
     cccagatcaa ggctcatgta gcctcactgg agggcattgc cccggaagat caagtcgtgc       18
0
     tcctggcagg cgcgcccctg gaggatgagg ccactctggg ccagtgcggg gtggaggccc       24
0
     tgactaccct ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc       30
0
     gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag aagaagaaga       36
0
     agacaggtcg ggctaagcgg cggatgcagt acaaccggcg ctttgtcaac gttgtgccca       42
0
     cctttggcaa gaagaagggc cccaatgcca actcttaagt cttttgtaat tctggctttc       48
0
     tctaataaaa aagccactta gttcagtcaa aaaaaaaa                               51
8
//

  Output files for usage example 5

  File: x65923.gcg

!!NA_SEQUENCE 1.0

H.sapiens fau mRNA

X65923  Length: 518  Type: N  Check: 2981 ..

   1 ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc

  51 gccaatatgc agctctttgt ccgcgcccag gagctacaca ccttcgaggt

 101 gaccggccag gaaacggtcg cccagatcaa ggctcatgta gcctcactgg

 151 agggcattgc cccggaagat caagtcgtgc tcctggcagg cgcgcccctg

 201 gaggatgagg ccactctggg ccagtgcggg gtggaggccc tgactaccct

 251 ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc

 301 gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag

 351 aagaagaaga agacaggtcg ggctaagcgg cggatgcagt acaaccggcg

 401 ctttgtcaac gttgtgccca cctttggcaa gaagaagggc cccaatgcca

 451 actcttaagt cttttgtaat tctggctttc tctaataaaa aagccactta

 501 gttcagtcaa aaaaaaaa

  Output files for usage example 8

  File: x65923.fasta

>X65923 X65923.1 H.sapiens fau mRNA
ttttttttttgactgaactaagtggcttttttattagagaaagccagaattacaaaagac
ttaagagttggcattggggcccttcttcttgccaaaggtgggcacaacgttgacaaagcg
ccggttgtactgcatccgccgcttagcccgacctgtcttcttcttcttcttctcctgttt
ggccaccttaggagtctgacctctcacttttccagcacgggccagggaaccatgaacttt
acctccaagcatgcggcctgctacttccagggtagtcagggcctccaccccgcactggcc
cagagtggcctcatcctccaggggcgcgcctgccaggagcacgacttgatcttccggggc
aatgccctccagtgaggctacatgagccttgatctgggcgaccgtttcctggccggtcac
ctcgaaggtgtgtagctcctgggcgcggacaaagagctgcatattggcgactgaacggcg
gtcccagctaccgcgaagatggagtcgagaaagaggaa

  Output files for usage example 9

  File: x65923.fasta

>X65923 X65923.1 H.sapiens fau mRNA
tctttctcgactccatcttcg

  Output files for usage example 10

  File: x65923.fasta

>X65923 X65923.1 H.sapiens fau mRNA
tctttctcgactccatcttcgcggtagctgggaccgccgttcagtcgccaatatgcagct
ctttgtccgcgcccaggagctacacaccttcgaggtgaccggccaggaaacggtcgccca
gatcaaggctcatgtagcctcactggagggcattgccccggaagatcaagtcgtgctcct
ggcaggcgcgcccctggaggatgaggccactctgggccagtgcggggtggaggccctgac
taccctggaagtagcaggccgcatgcttggaggtaaagttcatggttccctggcccgtgc
tggaaaagtgagaggtcagactcctaaggtggccaaacaggagaagaagaagaagaagac
aggtcgggctaagcggcggatgcagtacaaccggcgctttgtcaacgttgtgcccacctt
tggcaagaagaagggccccaatgccaactcttaagtcttttgtaattctggctttctcta
ataaaaaagccacttagttcagtcaaaaaa

  Output files for usage example 11

  File: hall.seq

>H45989 H45989.1 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clon
e IMAGE:177794 3', mRNA sequence.
ccggnaagctcancttggaccaccgactctcgantgnntcgccgcgggagccggntggan
aacctgagcgggactggnagaaggagcagagggaggcagcacccggcgtgacggnagtgt
gtggggcactcaggccttccgcagtgtcatctgccacacggaaggcacggccacgggcag
gggggtctatgatcttctgcatgcccagctggcatggccccacgtagagtggnntggcgt
ctcggtgctggtcagcgacacgttgtcctggctgggcaggtccagctcccggaggacctg
gggcttcagcttcccgtagcgctggctgcagtgacggatgctcttgcgctgccatttctg
ggtgctgtcactgtccttgctcactccaaaccagttcggcggtccccctgcggatggtct
gtgttgatggacgtttgggctttgcagcaccggccgccgagttcatggtngggtnaagag
atttgggttttttcn

Data files

   None.

Notes

   This description of what you can do when reading or writing files is
   not specific to the program seqret. All EMBOSS programs that read or
   write sequences can do the same.

   seqret is often one of the first programs taught in EMBOSS training
   courses. This is because it is versatile, it is extremely powerful for
   its size (17 lines of code) it illustrates many aspects of EMBOSS
   programs and it was one of the first EMBOSS programs to be written, so
   it has a special place in the hearts of EMBOSS developers.

   The name 'seqret' derives both from its function ("sequence return")
   and from the fact that immense amounts of functionality can come from
   so few lines of source code - most of the work is done by the EMBOSS
   libraries which the program calls and whose complexity is hidden, or
   "secret".

References

   None.

Warnings

   None.

Diagnostic Error Messages

   None.

Exit status

   It always exits with a status of 0.

Known bugs

   None.

See also

   Program name                         Description
   biosed       Replace or delete sequence sections
   codcopy      Reads and writes a codon usage table
   cutseq       Removes a specified section from a sequence
   degapseq     Removes gap characters from sequences
   descseq      Alter the name or description of a sequence
   entret       Reads and writes (returns) flatfile entries
   extractalign Extract regions from a sequence alignment
   extractfeat  Extract features from a sequence
   extractseq   Extract regions from a sequence
   listor       Write a list file of the logical OR of two sets of sequences
   makenucseq   Creates random nucleotide sequences
   makeprotseq  Creates random protein sequences
   maskfeat     Mask off features of a sequence
   maskseq      Mask off regions of a sequence
   newseq       Type in a short new sequence
   noreturn     Removes carriage return from ASCII files
   notseq       Exclude a set of sequences and write out the remaining ones
   nthseq       Writes one sequence from a multiple set of sequences
   pasteseq     Insert one sequence into another
   revseq       Reverse and complement a sequence
   seqretsplit  Reads and writes (returns) sequences in individual files
   skipseq      Reads and writes (returns) sequences, skipping first few
   splitter     Split a sequence into (overlapping) smaller sequences
   trimest      Trim poly-A tails off EST sequences
   trimseq      Trim ambiguous bits off the ends of sequences
   union        Reads sequence fragments and builds one sequence
   vectorstrip  Strips out DNA between a pair of vector sequences
   yank         Reads a sequence range, appends the full USA to a list file

   Valid names of the databases set up in your local implementation of
   EMBOSS can be seen by using the program 'showdb'.

Author(s)

   Peter Rice (pmr  ebi.ac.uk)
   Informatics Division, European Bioinformatics Institute, Wellcome
   Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK

History

   1999 - Written by Peter Rice
   Feb 2002 - '-feature' qualifier added by Peter Rice

Target users

   This program is intended to be used by everyone and everything, from
   naive users to embedded scripts.

Comments

  Fasta output format

    Question

   When i tried to convert the EMBL format file into fasta format using
   the program "seqret", I found that the Access.no appears twice...

>AF102796 AF102796 Homo sapiens alphaE-catenin (CTNNA1) gene, exon 11.

    Answer

   "It is not a bug ... it is a feature"

   There are many "FASTA formats". EMBOSS uses the format that ACEDB and
   the EBI genome projects use. The first field after the ID is the
   accession number, so that accession numbers can be kept when sequences
   are converted to FASTA format, without using the NCBI format (with '|'
   characters in the IDs).

   Your EMBL format file has IDs that look like accession numbers, so
   EMBOSS fills in the accession number for each sequence, and reports it
   in the FASTA format.