1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
|
<HTML>
<HEAD>
<TITLE>
EMBOSS: distmat
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="/images/emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
distmat
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Wiki
</H2>
The master copies of EMBOSS documentation are available
at <a href="http://emboss.open-bio.org/wiki/Appdocs">
http://emboss.open-bio.org/wiki/Appdocs</a>
on the EMBOSS Wiki.
<p>
Please help by correcting and extending the Wiki pages.
<H2>
Function
</H2>
Create a distance matrix from a multiple sequence alignment
<H2>
Description
</H2>
<p><b>distmat</b> calculates the evolutionary distance between every pair of sequences in a multiple sequence alignment. A variety of methods to estimate distance may be selected, and differ in how they correct the observed substitution rates to more accurately reflect the true evolutionary distance. An output file containing a distance matrix for the set of sequences is written. The distances are expressed in terms of the number of substitutions per 100 bases or amino acids.</p>
<H2>
Algorithm
</H2>
<p>For more divergent sequences, the probability of there being multiple substitutions at an alignment site increases. The distance will then be misestimate the true evolutionary distance between the sequences. A number of methods are available in <b>distmat</b> to correct the observed substitution rate to more accurately reflect the true evolutionary distance.</p>
<h3>Uncorrected distances</h3>
This method does not make any corrections for multiple substitutions.
Therefore, the score will be an underestimate of the distance between
the sequences. This will not be less significant for highly similar sets
of sequences.
<p>
<pre>
S = m/(npos + gaps*gap_penalty) (1)
m - score of matches (1 for an exact match, a fraction for partial
matches and 0 for no match)
npos - number of positions included in m
gaps - number of gaps in the sequences
gap_penalty - the score given to a gapped position
</pre>
<p>
<pre>
D = uncorrected distance = p-distance = 1-S (2)
</pre>
<p>
The score of match includes all exact matches. For nucleotides, if the
flag "-ambiguous" is used then partial matches are included in the
score. For example, a match of M (A or C) with A will increment m by 0.5
(0.5*1.0). Gaps are not included in the calculation unless a non zero
value is given with "-gapweight". It should be noted that end gaps and
internal gaps will be weighted by the same amount. So it is recommended
that this be used with "-sbegin"and "-send" to specify the start and end
of the region to calculate the distance from.
<h2>Multiple Substitution correction algorithms</h2>
<h3>Jukes-Cantor</h3>
This can be used for nucleotide and protein sequences.
<p>
<pre>
distance = -b ln (1-D/b)
D - uncorrected distance
b - constant. b= 3/4 for nucleotides and 19/20 for proteins.
</pre>
<p>
Partial matches and gap positions can be taken into account in the
calculation of D, by setting the "-ambiguous" and "-gapweight" flags
(see "uncorrected distance" method).
<p>
Reference:
<br>
"Phylogenetic Inference", Swofford, Olsen, Waddell, and
Hillis, in Molecular Systematics, 2nd ed., Sinauer Ass., Inc., 1996, Ch. 11.
<h3>Tajima-Nei</h3>
This method is only for nucleotide sequences. It uses the same equation
as Jukes-Cantor, but the b-parameter is not constant. Also, only exact
matches are considered in the calculation of the match score and gap
positions are ignored.
<p>
<pre>
A = 1, T = 2, C = 3, G = 4
b = 0.5(1.- Sum(i=A,G)(fraction[i]^2 + D^2/h)
h = Sum(i=A,C)Sum(k=T,G) (0.5 * pair_frequency[i,k]^2/(fraction[i]*fraction[k]))
distance = -b ln(1.-D/b)
pair_frequency[i,k] - frequency of the i and k base pair at sites in
the alignement of the pair of sequences.
fraction[i] - average content of the base i in both sequences
</pre>
<p>
Reference:
<br>
F. Tajima and M. Nei, Mol. Biol. Evol. 1984, 1, 269.
<h3>Kimura Two-Parameter distance</h3>
This method is only for nucleotide sequences. This uses the principle
that transition substitutions (purine-purine and pyrimidine-purine) are
more likely than transversion substitutions (purine-pyprimidine). Purine
being the nucleic acid constituent of A and G, and pyrimidine being the
nucleic acid derivative of the bases C, T and U. Gaps are ignored and
abiguous symbols other than R (purine) and Y (pyrimidine) are ingnored.
<p>
<pre>
P = transitions/npos
Q = transversions/npos
npos - number of positions scored
distance = -0.5 ln[ (1-2P-Q)*sqrt(1-2Q)]
</pre>
<p>
Reference:
<br>
M. kimura, J. Mol. Evol. 1980, 16, 111.
<h3>Tamura</h3>
This method is only for nucleotide sequences. This method uses
transition and transversion rates and takes into account the deviation
of GC content from the expected value of 50 %. Gap and ambiguous
positions are ignored.
<p>
<pre>
P = transitions/npos
Q = transversions/npos
npos - number of positions scored
GC1 = GC fraction in sequence 1
GC2 = GC fraction in sequence 2
C = GC1 + GC2 - 2*GC1*GC2
distance = -C ln(1-P/C-Q) - 0.5(1-C) ln(1-2Q)
</pre>
<p>
Reference:
<br>
K. Tamura, Mol. Biol. Evol. 1992, 9, 678.
<h3>Jin-Nei Gamma distance</h3>
This method applies to nucleotides only. This again uses transition and
transversion rates. As with the Kimura two parameter method, gaps and
ambiguous symbols other than R and Y are not oncluded in the score. The
shape parameter, i.e. "a", is the square of the inverse of the
coefficient of variation of the average substitution,
<p>
<pre>
L = average substituition = transition_rate + 2 * transversion_rate
a = (average L)^2/(variance of L)
P = transitions/npos
Q = transversions/npos
npos - number of positions scored
distance = 0.5 * a ((1-2P-Q)^(-1/a) + 0.5 (1-2Q)^(-1/a) -3/2)
</pre>
<p>
It is suggested [Jin et al.], in general, that the distance be
calculated with an a-value of 1. However, the user can specify their own
value, using the "-parametera" option, or calculate for each pair of
sequence, using "-calculatea".
<p>
Reference:
<br>
L. Jin and M. Nei, Mol. Biol. Evol. 1990, 7, 82.
<h3>Kimura Protein distance</h3>
This method is used for proteins only. Gaps are ignored and only exact
matches and ambiguity codes contribute to the match score.
<p>
<pre>
S = m/npos
m - exact match
npos - number of positions scored
D = 1-S
distance = -ln(1 - D - 0.2D^2)
</pre>
<p>
Reference:
<br>
M. Kimura, The Neutral Theory of Molecular Evolution, Camb. Uni. Press,
Camb., 1983.
<H2>
Usage
</H2>
Here is a sample session with <b>distmat</b>
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>distmat pax.align </b>
Create a distance matrix from a multiple sequence alignment
Multiple substitution correction methods for proteins
0 : Uncorrected
1 : Jukes-Cantor
2 : Kimura Protein
Method to use [0]: <b>2</b>
Phylip distance matrix output file [pax.distmat]: <b></b>
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Create a distance matrix from a multiple sequence alignment
Version: EMBOSS:6.6.0.0
Standard (Mandatory) qualifiers (* if not always prompted):
[-sequence] seqset File containing a sequence alignment.
* -nucmethod menu [0] Multiple substitution correction methods
for nucleotides. (Values: 0 (Uncorrected);
1 (Jukes-Cantor); 2 (Kimura); 3 (Tamura); 4
(Tajima-Nei); 5 (Jin-Nei Gamma))
* -protmethod menu [0] Multiple substitution correction methods
for proteins. (Values: 0 (Uncorrected); 1
(Jukes-Cantor); 2 (Kimura Protein))
[-outfile] outfile [*.distmat] Phylip distance matrix output
file
Additional (Optional) qualifiers (* if not always prompted):
* -ambiguous boolean [N] Option to use the ambiguous codes in the
calculation of the Jukes-Cantor method or
if the sequences are proteins.
* -gapweight float [0.] Option to weight gaps in the
uncorrected (nucleotide) and Jukes-Cantor
distance methods. (Any numeric value)
* -position integer [123] Choose base positions to analyse in
each codon i.e. 123 (all bases), 12 (the
first two bases), 1, 2, or 3 individual
bases. (Any integer value)
* -calculatea boolean [N] This will force the calculation of
parameter 'a' in the Jin-Nei Gamma distance
calculation, otherwise the default is 1.0
(see -parametera option).
* -parametera float [1.0] User defined parameter 'a' to be use
in the Jin-Nei Gamma distance calculation.
The suggested value to be used is 1.0 (Jin
et al.) and this is the default. (Any
numeric value)
Advanced (Unprompted) qualifiers: (none)
Associated qualifiers:
"-sequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-scircular1 boolean Sequence is circular
-squick1 boolean Read id and sequence only
-sformat1 string Input sequence format
-iquery1 string Input query fields or ID list
-ioffset1 integer Input start position offset
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outfile" associated qualifiers
-odirectory2 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write first file to standard output
-filter boolean Read first file from standard input, write
first file to standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options and exit. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
-version boolean Report version number and exit
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left">Qualifier</th>
<th align="left">Type</th>
<th align="left">Description</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Standard (Mandatory) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-sequence]<br>(Parameter 1)</td>
<td>seqset</td>
<td>File containing a sequence alignment.</td>
<td>Readable set of sequences</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-nucmethod</td>
<td>list</td>
<td>Multiple substitution correction methods for nucleotides.</td>
<td><table><tr><td>0</td> <td><i>(Uncorrected)</i></td></tr><tr><td>1</td> <td><i>(Jukes-Cantor)</i></td></tr><tr><td>2</td> <td><i>(Kimura)</i></td></tr><tr><td>3</td> <td><i>(Tamura)</i></td></tr><tr><td>4</td> <td><i>(Tajima-Nei)</i></td></tr><tr><td>5</td> <td><i>(Jin-Nei Gamma)</i></td></tr></table></td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-protmethod</td>
<td>list</td>
<td>Multiple substitution correction methods for proteins.</td>
<td><table><tr><td>0</td> <td><i>(Uncorrected)</i></td></tr><tr><td>1</td> <td><i>(Jukes-Cantor)</i></td></tr><tr><td>2</td> <td><i>(Kimura Protein)</i></td></tr></table></td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-outfile]<br>(Parameter 2)</td>
<td>outfile</td>
<td>Phylip distance matrix output file</td>
<td>Output file</td>
<td><i><*></i>.distmat</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Additional (Optional) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>-ambiguous</td>
<td>boolean</td>
<td>Option to use the ambiguous codes in the calculation of the Jukes-Cantor method or if the sequences are proteins.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-gapweight</td>
<td>float</td>
<td>Option to weight gaps in the uncorrected (nucleotide) and Jukes-Cantor distance methods.</td>
<td>Any numeric value</td>
<td>0.</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-position</td>
<td>integer</td>
<td>Choose base positions to analyse in each codon i.e. 123 (all bases), 12 (the first two bases), 1, 2, or 3 individual bases.</td>
<td>Any integer value</td>
<td>123</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-calculatea</td>
<td>boolean</td>
<td>This will force the calculation of parameter 'a' in the Jin-Nei Gamma distance calculation, otherwise the default is 1.0 (see -parametera option).</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-parametera</td>
<td>float</td>
<td>User defined parameter 'a' to be use in the Jin-Nei Gamma distance calculation. The suggested value to be used is 1.0 (Jin et al.) and this is the default.</td>
<td>Any numeric value</td>
<td>1.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Advanced (Unprompted) qualifiers</th>
</tr>
<tr>
<td colspan=5>(none)</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Associated qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-sequence" associated seqset qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sbegin1<br>-sbegin_sequence</td>
<td>integer</td>
<td>Start of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -send1<br>-send_sequence</td>
<td>integer</td>
<td>End of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sreverse1<br>-sreverse_sequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sask1<br>-sask_sequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -snucleotide1<br>-snucleotide_sequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sprotein1<br>-sprotein_sequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -slower1<br>-slower_sequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -supper1<br>-supper_sequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -scircular1<br>-scircular_sequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -squick1<br>-squick_sequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sformat1<br>-sformat_sequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -iquery1<br>-iquery_sequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ioffset1<br>-ioffset_sequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sdbname1<br>-sdbname_sequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sid1<br>-sid_sequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ufo1<br>-ufo_sequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fformat1<br>-fformat_sequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fopenfile1<br>-fopenfile_sequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-outfile" associated outfile qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -odirectory2<br>-odirectory_outfile</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>General qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td> -auto</td>
<td>boolean</td>
<td>Turn off prompts</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -stdout</td>
<td>boolean</td>
<td>Write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -filter</td>
<td>boolean</td>
<td>Read first file from standard input, write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -options</td>
<td>boolean</td>
<td>Prompt for standard and additional values</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -debug</td>
<td>boolean</td>
<td>Write debug output to program.dbg</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -verbose</td>
<td>boolean</td>
<td>Report some/full command line options</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -help</td>
<td>boolean</td>
<td>Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -warning</td>
<td>boolean</td>
<td>Report warnings</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -error</td>
<td>boolean</td>
<td>Report errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fatal</td>
<td>boolean</td>
<td>Report fatal errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -die</td>
<td>boolean</td>
<td>Report dying program messages</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -version</td>
<td>boolean</td>
<td>Report version number and exit</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
</table>
<H2>
Input file format
</H2>
It reads in a normal multiple sequence alignment file.
<p>
The quality of the alignment is of paramount importance in obtaining
meaningful information from this analysis.
<p>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
<p><h3>File: pax.align</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
PileUp
MSF: 603 Type: P Check: 9004 ..
Name: PAX4_HUMAN oo Len: 603 Check: 6594 Weight: 11.2
Name: PAX6_HUMAN oo Len: 603 Check: 7176 Weight: 9.1
Name: PAX3_HUMAN oo Len: 603 Check: 7760 Weight: 9.5
Name: PAX7_HUMAN oo Len: 603 Check: 4677 Weight: 13.7
Name: PAX1_HUMAN oo Len: 603 Check: 9671 Weight: 8.7
Name: PAX9_HUMAN oo Len: 603 Check: 565 Weight: 12.0
Name: PAX2_HUMAN oo Len: 603 Check: 9553 Weight: 8.7
Name: PAX5_HUMAN oo Len: 603 Check: 448 Weight: 11.2
Name: PX8A_HUMAN oo Len: 603 Check: 6763 Weight: 7.5
Name: PX8D_HUMAN oo Len: 603 Check: 5797 Weight: 7.9
//
PAX4_HUMAN .......... .......... .........M HQDGISSMNQ LGGLFVNGRP
PAX6_HUMAN .......... .......... .......... MQNSHSGVNQ LGGVFVNGRP
PAX3_HUMAN MTTLAGAVPR MMRPGPGQNY PRSGFPLEVS TPLGQGRVNQ LGGVFINGRP
PAX7_HUMAN MAALPGTVPR MMRPAPGQNY PRTGFPLEVS TPLGQGRVNQ LGGVFINGRP
PAX1_HUMAN .......... .......... .......... MEQTYGEVNQ LGGVFVNGRP
PAX9_HUMAN .......... .......... .......... MEPAFGEVNQ LGGVFVNGRP
PAX2_HUMAN .......... ........MD MHCKADPFSA MHPGHGGVNQ LGGVFVNGRP
PAX5_HUMAN .......... ........MD LEKNYPTPRT SRTGHGGVNQ LGGVFVNGRP
PX8A_HUMAN .......... .......... .....MPHNS IRSGHGGLNQ LGGAFVNGRP
PX8D_HUMAN .......... .......... .....MPHNS IRSGHGGLNQ LGGAFVNGRP
PAX4_HUMAN LPLDTRQQIV RLAVSGMRPC DISRILKVSN GCVSKILGRY YRTGVLEPKG
PAX6_HUMAN LPDSTRQKIV ELAHSGARPC DISRILQVSN GCVSKILGRY YETGSIRPRA
PAX3_HUMAN LPNHIRHKIV EMAHHGIRPC VISRQLRVSH GCVSKILCRY QETGSIRPGA
PAX7_HUMAN LPNHIRHKIV EMAHHGIRPC VISRQLRVSH GCVSKILCRY QETGSIRPGA
PAX1_HUMAN LPNAIRLRIV ELAQLGIRPC DISRQLRVSH GCVSKILARY NETGSILPGA
PAX9_HUMAN LPNAIRLRIV ELAQLGIRPC DISRQLRVSH GCVSKILARY NETGSILPGA
PAX2_HUMAN LPDVVRQRIV ELAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIKPGV
PAX5_HUMAN LPDVVRQRIV ELAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIKPGV
PX8A_HUMAN LPEVVRQRIV DLAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIRPGV
PX8D_HUMAN LPEVVRQRIV DLAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIRPGV
PAX4_HUMAN IGGSKPR.LA TPPVVARIAQ LKGECPALFA WEIQRQLCAE GLCTQDKTPS
PAX6_HUMAN IGGSKPR.VA TPEVVSKIAQ YKRECPSIFA WEIRDRLLSE GVCTNDNIPS
PAX3_HUMAN IGGSKPKQVT TPDVEKKIEE YKRENPGMFS WEIRDKLLKD AVCDRNTVPS
PAX7_HUMAN IGGSKPRQVA TPDVEKKIEE YKRENPGMFS WEIRDRLLKD GHCDRSTVPS
PAX1_HUMAN IGGSKPR.VT TPNVVKHIRD YKQGDPGIFA WEIRDRLLAD GVCDKYNVPS
<font color=red> [Part of this file has been deleted for brevity]</font>
PX8A_HUMAN VSSSSSTPSS LSSSAFLDLQ QVGSGVPPFN AFPHAASVYG QFTGQALLSG
PX8D_HUMAN ....KSAPGS RPS....... .....MP... .FPMLPPCTG SSRARPSSQG
PAX4_HUMAN .......... .......... .....ERCLS DTPPKACLKP CWDCGSFLLP
PAX6_HUMAN .......... .......... .SFTMANNLP MQPPVPSQTS SYSCMLPTSP
PAX3_HUMAN NGL.SPQVM. .......... GLLTNHGGVP HQPQTDYALS PLTGGLEPTT
PAX7_HUMAN NGL.SPQVM. .......... SILGNPSAVP PQPQADFSIS PLHGGLDSAT
PAX1_HUMAN .......... .......... GAGVAVHGGE LAAAMTFKHR EGTDRKPP..
PAX9_HUMAN .......... .......... ......HNCD IPASLAFKGM QAARE.....
PAX2_HUMAN .......... .......... GSYPTSTLAG MVPGSEFSGN PYSHPQYTAY
PAX5_HUMAN .......... .......... GSYSAPTLTG MVPGSEFSGS PYSHPQYSSY
PX8A_HUMAN REMVGPTLPG YPPHIPTSGQ GSYASSAIAG MVAGSEYSGN AYGHTPYSSY
PX8D_HUMAN ERWWGPRCP. .......... DTHPTSPPAD RAAMPPLPSQ AWWQEVN...
PAX4_HUMAN VIAPSCVDVA WP.CLDASLA HHLIGGAGKA TPTHFS.... ..........
PAX6_HUMAN SVNGRSYDTY TPPHMQTHMN SQPMGTSGTT STGLISPGVS VPVQVPGSEP
PAX3_HUMAN TVSASCSQRL DHMKSLDSLP TSQSYCPPTY STTGYSMDPV TGYQYGQYGQ
PAX7_HUMAN SISASCSQRA DSIKPGDSLP TSQAYCPPTY STTGYSVDPV AGYQYGQYGQ
PAX1_HUMAN ..SSGSKAPD ALSSLH.... ....GLPIPA STS....... ..........
PAX9_HUMAN ..GSHSVTAS AL........ .......... .......... ..........
PAX2_HUMAN NEAWRFSNPA LLSSPYYYSA APR.SAPAAR AAAYDRH... ..........
PAX5_HUMAN NDSWRFPNPG LLGSPYYYSA AARGAAPPAA ATAYDRH... ..........
PX8A_HUMAN SEAWGFPNSS LLSSPYYYSS TSRPSAPPTT ATAFDHL... ..........
PX8D_HUMAN ..TLAMPMAT PPTPP..... TARPGASPTP AC........ ..........
PAX4_HUMAN .....HWP.. .......... .......... .......... ..........
PAX6_HUMAN DMS.QYWPRL Q......... .......... .......... ..........
PAX3_HUMAN S...KPWTF. .......... .......... .......... ..........
PAX7_HUMAN SECLVPWASP VPIPSPTPRA SCLFMESYKV VSGWGMSISQ MEKLKSSQME
PAX1_HUMAN .......... .......... .......... .......... ..........
PAX9_HUMAN .......... .......... .......... .......... ..........
PAX2_HUMAN .......... .......... .......... .......... ..........
PAX5_HUMAN .......... .......... .......... .......... ..........
PX8A_HUMAN .......... .......... .......... .......... ..........
PX8D_HUMAN .......... .......... .......... .......... ..........
PAX4_HUMAN ...
PAX6_HUMAN ...
PAX3_HUMAN ...
PAX7_HUMAN QFT
PAX1_HUMAN ...
PAX9_HUMAN ...
PAX2_HUMAN ...
PAX5_HUMAN ...
PX8A_HUMAN ...
PX8D_HUMAN ...
</pre>
</td></tr></table><p>
<H2>
Output file format
</H2>
The output from the program is a file containing a matrix of the
calculated distances between each of the input aligned sequences. The
distances are expressed in terms of the number of substitutions per 100
bases or amino acids.
<p>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: pax.distmat</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
Distance Matrix
---------------
Using the Kimura correction method
Gap weighting is 0.000000
1 2 3 4 5 6 7 8 9 10
0.00 96.15 137.48 128.72 161.14 160.37 157.55 154.23 164.32 152.68 PAX4_HUMAN 1
0.00 111.86 109.96 156.25 149.70 143.75 135.71 150.60 146.87 PAX6_HUMAN 2
0.00 26.21 131.54 143.54 162.95 151.39 163.56 159.78 PAX3_HUMAN 3
0.00 145.45 138.76 158.79 149.96 167.26 161.82 PAX7_HUMAN 4
0.00 44.29 120.84 123.00 131.69 130.22 PAX1_HUMAN 5
0.00 123.56 130.21 131.64 130.17 PAX9_HUMAN 6
0.00 36.43 53.12 64.32 PAX2_HUMAN 7
0.00 60.88 73.82 PAX5_HUMAN 8
0.00 20.37 PX8A_HUMAN 9
0.00 PX8D_HUMAN 10
</pre>
</td></tr></table><p>
<H2>
Data files
</H2>
None.
<H2>
Notes
</H2>
<p>The input sequences must of course be aligned before running this program. The quality of the alignment is of paramount importance in obtaining meaningful information from this analysis.</p>
<p>For nucleotides, the <tt>-position</tt> flag selects base positions to analyse in each codon, i.e. 123 (all bases), 12 (the first two bases), 1, 2, or 3 individual bases.</p>
<H2>
References
</H2>
See the following for details of the methods used:
<p>
<ol>
<li>"Phylogenetic Inference", Swofford, Olsen, Waddell, and Hillis, in
Molecular Systematics, 2nd ed., Sinauer Ass., Inc., 1996, Ch. 11.
<li>F. Tajima and M. Nei, Mol. Biol. Evol. 1984, 1, 269.
<li>M. Kimura, J. Mol. Evol. 1980, 16, 111.
<li>K. Tamura, Mol. Biol. Evol. 1992, 9, 678.
<li>L. Jin and M. Nei, Mol. Biol. Evol. 1990, 7, 82.
<li>M. Kimura, The Neutral Theory of Molecular Evolution,
Camb. Uni. Press, Camb., 1983.
</ol>
<H2>
Warnings
</H2>
The quality of the alignment is of paramount importance in obtaining
meaningful information from this analysis.
<H2>
Diagnostic Error Messages
</H2>
None.
<H2>
Exit status
</H2>
It always exits with status 0.
<H2>
Known bugs
</H2>
None.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th>
<th>Description</th></tr>
</table>
<H2>
Author(s)
</H2>
Tim Carver formerly at:
<br>
MRC Rosalind Franklin Centre for Genomics Research
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
<p>
Please report all bugs to the EMBOSS bug team (emboss-bug © emboss.open-bio.org) not to the original author.
<H2>
History
</H2>
Written (March 2001) - Tim Carver
<H2>
Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
Comments
</H2>
None
</BODY>
</HTML>
|