File: distmat.html

package info (click to toggle)
emboss 6.6.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 571,248 kB
  • ctags: 39,971
  • sloc: ansic: 460,578; java: 29,439; perl: 13,573; sh: 12,740; makefile: 3,275; csh: 706; asm: 351; xml: 239; pascal: 237; modula3: 8
file content (1010 lines) | stat: -rw-r--r-- 28,710 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
<HTML>
<HEAD>
  <TITLE>
  EMBOSS: distmat
  </TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">

<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="/images/emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
distmat
</font></b>
</td></tr>
</table>
<br>&nbsp;
<p>


<H2>
Wiki
</H2>

The master copies of EMBOSS documentation are available
at <a href="http://emboss.open-bio.org/wiki/Appdocs">
http://emboss.open-bio.org/wiki/Appdocs</a>
on the EMBOSS Wiki.

<p>
Please help by correcting and extending the Wiki pages.

<H2>
    Function
</H2>
Create a distance matrix from a multiple sequence alignment
<H2>
    Description
</H2>

<p><b>distmat</b> calculates the evolutionary distance between every pair of sequences in a multiple sequence alignment. A variety of methods to estimate distance may be selected, and differ in how they correct the observed substitution rates to more accurately reflect the true evolutionary distance. An output file containing a distance matrix for the set of sequences is written. The distances are expressed in terms of the number of substitutions per 100 bases or amino acids.</p>

<H2>
    Algorithm
</H2>

<p>For more divergent sequences, the probability of there being multiple substitutions at an alignment site increases.  The distance will then be misestimate the true evolutionary distance between the sequences. A number of methods are available in <b>distmat</b> to correct the observed substitution rate to more accurately reflect the true evolutionary distance.</p>

<h3>Uncorrected distances</h3>

This method does not make any corrections for multiple substitutions.
Therefore, the score will be an underestimate of the distance between
the sequences. This will not be less significant for highly similar sets
of sequences.

<p>

<pre>
S = m/(npos + gaps*gap_penalty)                                  (1)

m 	    - score of matches (1 for an exact match, a fraction for partial
	      matches and 0 for no match)
npos	    - number of positions included in m
gaps        - number of gaps in the sequences
gap_penalty - the score given to a gapped position
</pre>

<p>

<pre>
D = uncorrected distance = p-distance = 1-S          (2)
</pre>

<p>

The score of match includes all exact matches. For nucleotides, if the
flag "-ambiguous" is used then partial matches are included in the
score. For example, a match of M (A or C) with A will increment m by 0.5
(0.5*1.0). Gaps are not included in the calculation unless a non zero
value is given with "-gapweight". It should be noted that end gaps and
internal gaps will be weighted by the same amount. So it is recommended
that this be used with "-sbegin"and "-send" to specify the start and end
of the region to calculate the distance from.


<h2>Multiple Substitution correction algorithms</h2>


<h3>Jukes-Cantor</h3>


This can be used for nucleotide and protein sequences.

<p>

<pre>
distance = -b ln (1-D/b)

D - uncorrected distance
b - constant. b= 3/4 for nucleotides and 19/20 for proteins.
</pre>

<p>

Partial matches and gap  positions can be taken into account in the
calculation of D, by setting the "-ambiguous" and "-gapweight" flags
(see "uncorrected distance" method).

<p>


Reference: 
<br>
"Phylogenetic Inference", Swofford, Olsen, Waddell, and
Hillis, in Molecular Systematics, 2nd ed., Sinauer Ass., Inc., 1996, Ch. 11. 


<h3>Tajima-Nei</h3>

This method is only for nucleotide sequences. It uses the same equation
as Jukes-Cantor, but the b-parameter is not constant. Also, only exact
matches are considered in the calculation of the match score and gap
positions are ignored.

<p>

<pre>
A = 1, T = 2, C = 3, G = 4

b = 0.5(1.- Sum(i=A,G)(fraction[i]^2  + D^2/h)

h = Sum(i=A,C)Sum(k=T,G) (0.5 * pair_frequency[i,k]^2/(fraction[i]*fraction[k]))

distance = -b ln(1.-D/b)

pair_frequency[i,k]   - frequency of the i and k base pair at sites in
			the alignement of the pair of sequences.
fraction[i]           - average content of the base i in both sequences
</pre>

<p>

Reference: 
<br>
F. Tajima and M. Nei, Mol. Biol. Evol. 1984, 1, 269.


<h3>Kimura Two-Parameter distance</h3>

This method is only for nucleotide sequences. This uses the principle
that transition substitutions (purine-purine and pyrimidine-purine) are
more likely than transversion substitutions (purine-pyprimidine). Purine
being the nucleic acid constituent of A and G, and pyrimidine being the
nucleic acid derivative of the bases C, T and U. Gaps are ignored and
abiguous symbols other than R (purine) and Y (pyrimidine) are ingnored.

<p>

<pre>
P = transitions/npos
Q = transversions/npos

npos - number of positions scored

distance = -0.5 ln[ (1-2P-Q)*sqrt(1-2Q)]
</pre>

<p>

Reference: 
<br>
M. kimura, J. Mol. Evol. 1980, 16, 111.


<h3>Tamura</h3>


This method is only for nucleotide sequences.  This method uses
transition and transversion rates and takes into account the deviation
of GC content from the expected value of 50 %. Gap and ambiguous
positions are ignored.

<p>

<pre>
P = transitions/npos
Q = transversions/npos

npos - number of positions scored

GC1 = GC fraction in sequence 1
GC2 = GC fraction in sequence 2
C = GC1 + GC2 - 2*GC1*GC2

distance = -C ln(1-P/C-Q) - 0.5(1-C) ln(1-2Q)
</pre>

<p>

Reference:
<br>
K. Tamura, Mol. Biol. Evol. 1992, 9, 678.


<h3>Jin-Nei Gamma distance</h3>

This method applies to nucleotides only. This again uses transition and
transversion rates. As with the Kimura two parameter method, gaps and
ambiguous symbols other than R and Y are not oncluded in the score. The
shape parameter, i.e. "a", is the square of the inverse of the
coefficient of variation of the average substitution,

<p>

<pre>
L = average substituition = transition_rate + 2 * transversion_rate
a = (average L)^2/(variance of L)

P = transitions/npos
Q = transversions/npos

npos - number of positions scored

distance = 0.5 * a ((1-2P-Q)^(-1/a) + 0.5 (1-2Q)^(-1/a) -3/2)
</pre>

<p>

It is suggested [Jin et al.], in general, that the distance be
calculated with an a-value of 1. However, the user can specify their own
value, using the "-parametera" option, or calculate for each pair of
sequence, using "-calculatea".

<p>

Reference:
<br>
L. Jin and M. Nei, Mol. Biol. Evol. 1990, 7, 82.


<h3>Kimura Protein distance</h3>

This method is used for proteins only. Gaps are ignored and only exact
matches and ambiguity codes contribute to the match score.

<p>

<pre>
S = m/npos

m  - exact match
npos - number of positions scored

D = 1-S
distance = -ln(1 - D - 0.2D^2)
</pre>

<p>

Reference:
<br>
M. Kimura, The Neutral Theory of Molecular Evolution, Camb. Uni. Press,
Camb., 1983.



<H2>
    Usage
</H2>
Here is a sample session with <b>distmat</b>
<p>

<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>

% <b>distmat pax.align </b>
Create a distance matrix from a multiple sequence alignment
Multiple substitution correction methods for proteins
         0 : Uncorrected
         1 : Jukes-Cantor
         2 : Kimura Protein
Method to use [0]: <b>2</b>
Phylip distance matrix output file [pax.distmat]: <b></b>

</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>


<H2>
    Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Create a distance matrix from a multiple sequence alignment
Version: EMBOSS:6.6.0.0

   Standard (Mandatory) qualifiers (* if not always prompted):
  [-sequence]          seqset     File containing a sequence alignment.
*  -nucmethod          menu       [0] Multiple substitution correction methods
                                  for nucleotides. (Values: 0 (Uncorrected);
                                  1 (Jukes-Cantor); 2 (Kimura); 3 (Tamura); 4
                                  (Tajima-Nei); 5 (Jin-Nei Gamma))
*  -protmethod         menu       [0] Multiple substitution correction methods
                                  for proteins. (Values: 0 (Uncorrected); 1
                                  (Jukes-Cantor); 2 (Kimura Protein))
  [-outfile]           outfile    [*.distmat] Phylip distance matrix output
                                  file

   Additional (Optional) qualifiers (* if not always prompted):
*  -ambiguous          boolean    [N] Option to use the ambiguous codes in the
                                  calculation of the Jukes-Cantor method or
                                  if the sequences are proteins.
*  -gapweight          float      [0.] Option to weight gaps in the
                                  uncorrected (nucleotide) and Jukes-Cantor
                                  distance methods. (Any numeric value)
*  -position           integer    [123] Choose base positions to analyse in
                                  each codon i.e. 123 (all bases), 12 (the
                                  first two bases), 1, 2, or 3 individual
                                  bases. (Any integer value)
*  -calculatea         boolean    [N] This will force the calculation of
                                  parameter 'a' in the Jin-Nei Gamma distance
                                  calculation, otherwise the default is 1.0
                                  (see -parametera option).
*  -parametera         float      [1.0] User defined parameter 'a' to be use
                                  in the Jin-Nei Gamma distance calculation.
                                  The suggested value to be used is 1.0 (Jin
                                  et al.) and this is the default. (Any
                                  numeric value)

   Advanced (Unprompted) qualifiers: (none)
   Associated qualifiers:

   "-sequence" associated qualifiers
   -sbegin1            integer    Start of each sequence to be used
   -send1              integer    End of each sequence to be used
   -sreverse1          boolean    Reverse (if DNA)
   -sask1              boolean    Ask for begin/end/reverse
   -snucleotide1       boolean    Sequence is nucleotide
   -sprotein1          boolean    Sequence is protein
   -slower1            boolean    Make lower case
   -supper1            boolean    Make upper case
   -scircular1         boolean    Sequence is circular
   -squick1            boolean    Read id and sequence only
   -sformat1           string     Input sequence format
   -iquery1            string     Input query fields or ID list
   -ioffset1           integer    Input start position offset
   -sdbname1           string     Database name
   -sid1               string     Entryname
   -ufo1               string     UFO features
   -fformat1           string     Features format
   -fopenfile1         string     Features file name

   "-outfile" associated qualifiers
   -odirectory2        string     Output directory

   General qualifiers:
   -auto               boolean    Turn off prompts
   -stdout             boolean    Write first file to standard output
   -filter             boolean    Read first file from standard input, write
                                  first file to standard output
   -options            boolean    Prompt for standard and additional values
   -debug              boolean    Write debug output to program.dbg
   -verbose            boolean    Report some/full command line options
   -help               boolean    Report command line options and exit. More
                                  information on associated and general
                                  qualifiers can be found with -help -verbose
   -warning            boolean    Report warnings
   -error              boolean    Report errors
   -fatal              boolean    Report fatal errors
   -die                boolean    Report dying program messages
   -version            boolean    Report version number and exit

</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left">Qualifier</th>
<th align="left">Type</th>
<th align="left">Description</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Standard (Mandatory) qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td>[-sequence]<br>(Parameter 1)</td>
<td>seqset</td>
<td>File containing a sequence alignment.</td>
<td>Readable set of sequences</td>
<td><b>Required</b></td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-nucmethod</td>
<td>list</td>
<td>Multiple substitution correction methods for nucleotides.</td>
<td><table><tr><td>0</td> <td><i>(Uncorrected)</i></td></tr><tr><td>1</td> <td><i>(Jukes-Cantor)</i></td></tr><tr><td>2</td> <td><i>(Kimura)</i></td></tr><tr><td>3</td> <td><i>(Tamura)</i></td></tr><tr><td>4</td> <td><i>(Tajima-Nei)</i></td></tr><tr><td>5</td> <td><i>(Jin-Nei Gamma)</i></td></tr></table></td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-protmethod</td>
<td>list</td>
<td>Multiple substitution correction methods for proteins.</td>
<td><table><tr><td>0</td> <td><i>(Uncorrected)</i></td></tr><tr><td>1</td> <td><i>(Jukes-Cantor)</i></td></tr><tr><td>2</td> <td><i>(Kimura Protein)</i></td></tr></table></td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>[-outfile]<br>(Parameter 2)</td>
<td>outfile</td>
<td>Phylip distance matrix output file</td>
<td>Output file</td>
<td><i>&lt;*&gt;</i>.distmat</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Additional (Optional) qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td>-ambiguous</td>
<td>boolean</td>
<td>Option to use the ambiguous codes in the calculation of the Jukes-Cantor method or if the sequences are proteins.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-gapweight</td>
<td>float</td>
<td>Option to weight gaps in the uncorrected (nucleotide) and Jukes-Cantor distance methods.</td>
<td>Any numeric value</td>
<td>0.</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-position</td>
<td>integer</td>
<td>Choose base positions to analyse in each codon i.e. 123 (all bases), 12 (the first two bases), 1, 2, or 3 individual bases.</td>
<td>Any integer value</td>
<td>123</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-calculatea</td>
<td>boolean</td>
<td>This will force the calculation of parameter 'a' in the Jin-Nei Gamma distance calculation, otherwise the default is 1.0 (see -parametera option).</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-parametera</td>
<td>float</td>
<td>User defined parameter 'a' to be use in the Jin-Nei Gamma distance calculation. The suggested value to be used is 1.0 (Jin et al.) and this is the default.</td>
<td>Any numeric value</td>
<td>1.0</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Advanced (Unprompted) qualifiers</th>
</tr>

<tr>
<td colspan=5>(none)</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Associated qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-sequence" associated seqset qualifiers
</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sbegin1<br>-sbegin_sequence</td>
<td>integer</td>
<td>Start of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -send1<br>-send_sequence</td>
<td>integer</td>
<td>End of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sreverse1<br>-sreverse_sequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sask1<br>-sask_sequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -snucleotide1<br>-snucleotide_sequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sprotein1<br>-sprotein_sequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -slower1<br>-slower_sequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -supper1<br>-supper_sequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -scircular1<br>-scircular_sequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -squick1<br>-squick_sequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sformat1<br>-sformat_sequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -iquery1<br>-iquery_sequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -ioffset1<br>-ioffset_sequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sdbname1<br>-sdbname_sequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sid1<br>-sid_sequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -ufo1<br>-ufo_sequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fformat1<br>-fformat_sequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fopenfile1<br>-fopenfile_sequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-outfile" associated outfile qualifiers
</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -odirectory2<br>-odirectory_outfile</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>General qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td> -auto</td>
<td>boolean</td>
<td>Turn off prompts</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -stdout</td>
<td>boolean</td>
<td>Write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -filter</td>
<td>boolean</td>
<td>Read first file from standard input, write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -options</td>
<td>boolean</td>
<td>Prompt for standard and additional values</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -debug</td>
<td>boolean</td>
<td>Write debug output to program.dbg</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -verbose</td>
<td>boolean</td>
<td>Report some/full command line options</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -help</td>
<td>boolean</td>
<td>Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -warning</td>
<td>boolean</td>
<td>Report warnings</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -error</td>
<td>boolean</td>
<td>Report errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fatal</td>
<td>boolean</td>
<td>Report fatal errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -die</td>
<td>boolean</td>
<td>Report dying program messages</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -version</td>
<td>boolean</td>
<td>Report version number and exit</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

</table>

<H2>
    Input file format
</H2>

It reads in a normal multiple sequence alignment file.

<p>

The quality of the alignment is of paramount importance in obtaining
meaningful information from this analysis. 

<p>

<a name="input.1"></a>
<h3>Input files for usage example </h3>
<p><h3>File: pax.align</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
PileUp



   MSF:  603  Type: P    Check:  9004   .. 

 Name: PAX4_HUMAN oo  Len:  603  Check:  6594  Weight:  11.2
 Name: PAX6_HUMAN oo  Len:  603  Check:  7176  Weight:  9.1
 Name: PAX3_HUMAN oo  Len:  603  Check:  7760  Weight:  9.5
 Name: PAX7_HUMAN oo  Len:  603  Check:  4677  Weight:  13.7
 Name: PAX1_HUMAN oo  Len:  603  Check:  9671  Weight:  8.7
 Name: PAX9_HUMAN oo  Len:  603  Check:   565  Weight:  12.0
 Name: PAX2_HUMAN oo  Len:  603  Check:  9553  Weight:  8.7
 Name: PAX5_HUMAN oo  Len:  603  Check:   448  Weight:  11.2
 Name: PX8A_HUMAN oo  Len:  603  Check:  6763  Weight:  7.5
 Name: PX8D_HUMAN oo  Len:  603  Check:  5797  Weight:  7.9

//



PAX4_HUMAN      .......... .......... .........M HQDGISSMNQ LGGLFVNGRP 
PAX6_HUMAN      .......... .......... .......... MQNSHSGVNQ LGGVFVNGRP 
PAX3_HUMAN      MTTLAGAVPR MMRPGPGQNY PRSGFPLEVS TPLGQGRVNQ LGGVFINGRP 
PAX7_HUMAN      MAALPGTVPR MMRPAPGQNY PRTGFPLEVS TPLGQGRVNQ LGGVFINGRP 
PAX1_HUMAN      .......... .......... .......... MEQTYGEVNQ LGGVFVNGRP 
PAX9_HUMAN      .......... .......... .......... MEPAFGEVNQ LGGVFVNGRP 
PAX2_HUMAN      .......... ........MD MHCKADPFSA MHPGHGGVNQ LGGVFVNGRP 
PAX5_HUMAN      .......... ........MD LEKNYPTPRT SRTGHGGVNQ LGGVFVNGRP 
PX8A_HUMAN      .......... .......... .....MPHNS IRSGHGGLNQ LGGAFVNGRP 
PX8D_HUMAN      .......... .......... .....MPHNS IRSGHGGLNQ LGGAFVNGRP 


PAX4_HUMAN      LPLDTRQQIV RLAVSGMRPC DISRILKVSN GCVSKILGRY YRTGVLEPKG 
PAX6_HUMAN      LPDSTRQKIV ELAHSGARPC DISRILQVSN GCVSKILGRY YETGSIRPRA 
PAX3_HUMAN      LPNHIRHKIV EMAHHGIRPC VISRQLRVSH GCVSKILCRY QETGSIRPGA 
PAX7_HUMAN      LPNHIRHKIV EMAHHGIRPC VISRQLRVSH GCVSKILCRY QETGSIRPGA 
PAX1_HUMAN      LPNAIRLRIV ELAQLGIRPC DISRQLRVSH GCVSKILARY NETGSILPGA 
PAX9_HUMAN      LPNAIRLRIV ELAQLGIRPC DISRQLRVSH GCVSKILARY NETGSILPGA 
PAX2_HUMAN      LPDVVRQRIV ELAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIKPGV 
PAX5_HUMAN      LPDVVRQRIV ELAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIKPGV 
PX8A_HUMAN      LPEVVRQRIV DLAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIRPGV 
PX8D_HUMAN      LPEVVRQRIV DLAHQGVRPC DISRQLRVSH GCVSKILGRY YETGSIRPGV 


PAX4_HUMAN      IGGSKPR.LA TPPVVARIAQ LKGECPALFA WEIQRQLCAE GLCTQDKTPS 
PAX6_HUMAN      IGGSKPR.VA TPEVVSKIAQ YKRECPSIFA WEIRDRLLSE GVCTNDNIPS 
PAX3_HUMAN      IGGSKPKQVT TPDVEKKIEE YKRENPGMFS WEIRDKLLKD AVCDRNTVPS 
PAX7_HUMAN      IGGSKPRQVA TPDVEKKIEE YKRENPGMFS WEIRDRLLKD GHCDRSTVPS 
PAX1_HUMAN      IGGSKPR.VT TPNVVKHIRD YKQGDPGIFA WEIRDRLLAD GVCDKYNVPS 


<font color=red>  [Part of this file has been deleted for brevity]</font>

PX8A_HUMAN      VSSSSSTPSS LSSSAFLDLQ QVGSGVPPFN AFPHAASVYG QFTGQALLSG 
PX8D_HUMAN      ....KSAPGS RPS....... .....MP... .FPMLPPCTG SSRARPSSQG 


PAX4_HUMAN      .......... .......... .....ERCLS DTPPKACLKP CWDCGSFLLP 
PAX6_HUMAN      .......... .......... .SFTMANNLP MQPPVPSQTS SYSCMLPTSP 
PAX3_HUMAN      NGL.SPQVM. .......... GLLTNHGGVP HQPQTDYALS PLTGGLEPTT 
PAX7_HUMAN      NGL.SPQVM. .......... SILGNPSAVP PQPQADFSIS PLHGGLDSAT 
PAX1_HUMAN      .......... .......... GAGVAVHGGE LAAAMTFKHR EGTDRKPP.. 
PAX9_HUMAN      .......... .......... ......HNCD IPASLAFKGM QAARE..... 
PAX2_HUMAN      .......... .......... GSYPTSTLAG MVPGSEFSGN PYSHPQYTAY 
PAX5_HUMAN      .......... .......... GSYSAPTLTG MVPGSEFSGS PYSHPQYSSY 
PX8A_HUMAN      REMVGPTLPG YPPHIPTSGQ GSYASSAIAG MVAGSEYSGN AYGHTPYSSY 
PX8D_HUMAN      ERWWGPRCP. .......... DTHPTSPPAD RAAMPPLPSQ AWWQEVN... 


PAX4_HUMAN      VIAPSCVDVA WP.CLDASLA HHLIGGAGKA TPTHFS.... .......... 
PAX6_HUMAN      SVNGRSYDTY TPPHMQTHMN SQPMGTSGTT STGLISPGVS VPVQVPGSEP 
PAX3_HUMAN      TVSASCSQRL DHMKSLDSLP TSQSYCPPTY STTGYSMDPV TGYQYGQYGQ 
PAX7_HUMAN      SISASCSQRA DSIKPGDSLP TSQAYCPPTY STTGYSVDPV AGYQYGQYGQ 
PAX1_HUMAN      ..SSGSKAPD ALSSLH.... ....GLPIPA STS....... .......... 
PAX9_HUMAN      ..GSHSVTAS AL........ .......... .......... .......... 
PAX2_HUMAN      NEAWRFSNPA LLSSPYYYSA APR.SAPAAR AAAYDRH... .......... 
PAX5_HUMAN      NDSWRFPNPG LLGSPYYYSA AARGAAPPAA ATAYDRH... .......... 
PX8A_HUMAN      SEAWGFPNSS LLSSPYYYSS TSRPSAPPTT ATAFDHL... .......... 
PX8D_HUMAN      ..TLAMPMAT PPTPP..... TARPGASPTP AC........ .......... 


PAX4_HUMAN      .....HWP.. .......... .......... .......... .......... 
PAX6_HUMAN      DMS.QYWPRL Q......... .......... .......... .......... 
PAX3_HUMAN      S...KPWTF. .......... .......... .......... .......... 
PAX7_HUMAN      SECLVPWASP VPIPSPTPRA SCLFMESYKV VSGWGMSISQ MEKLKSSQME 
PAX1_HUMAN      .......... .......... .......... .......... .......... 
PAX9_HUMAN      .......... .......... .......... .......... .......... 
PAX2_HUMAN      .......... .......... .......... .......... .......... 
PAX5_HUMAN      .......... .......... .......... .......... .......... 
PX8A_HUMAN      .......... .......... .......... .......... .......... 
PX8D_HUMAN      .......... .......... .......... .......... .......... 


PAX4_HUMAN      ...
PAX6_HUMAN      ...
PAX3_HUMAN      ...
PAX7_HUMAN      QFT
PAX1_HUMAN      ...
PAX9_HUMAN      ...
PAX2_HUMAN      ...
PAX5_HUMAN      ...
PX8A_HUMAN      ...
PX8D_HUMAN      ...

</pre>
</td></tr></table><p>


<H2>
    Output file format
</H2>

The output from the program is a file containing a matrix of the
calculated distances between each of the input aligned sequences.  The
distances are expressed in terms of the number of substitutions per 100
bases or amino acids. 

<p>

<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: pax.distmat</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
Distance Matrix
---------------

Using the Kimura correction method
Gap weighting is 0.000000

	    1	    2	    3	    4	    5	    6	    7	    8	    9	    10
	  0.00	 96.15	137.48	128.72	161.14	160.37	157.55	154.23	164.32	152.68		PAX4_HUMAN 1
		  0.00	111.86	109.96	156.25	149.70	143.75	135.71	150.60	146.87		PAX6_HUMAN 2
			  0.00	 26.21	131.54	143.54	162.95	151.39	163.56	159.78		PAX3_HUMAN 3
				  0.00	145.45	138.76	158.79	149.96	167.26	161.82		PAX7_HUMAN 4
					  0.00	 44.29	120.84	123.00	131.69	130.22		PAX1_HUMAN 5
						  0.00	123.56	130.21	131.64	130.17		PAX9_HUMAN 6
							  0.00	 36.43	 53.12	 64.32		PAX2_HUMAN 7
								  0.00	 60.88	 73.82		PAX5_HUMAN 8
									  0.00	 20.37		PX8A_HUMAN 9
										  0.00		PX8D_HUMAN 10
</pre>
</td></tr></table><p>

<H2>
    Data files
</H2>

None.

<H2>
    Notes
</H2>
<p>The input sequences must of course be aligned before running this program. The quality of the alignment is of paramount importance in obtaining meaningful information from this analysis.</p>

<p>For nucleotides, the <tt>-position</tt> flag selects base positions to analyse in each codon, i.e. 123 (all bases), 12 (the first two bases), 1, 2, or 3 individual bases.</p>



<H2>
    References
</H2>

See the following for details of the methods used:

<p>

<ol>

<li>"Phylogenetic Inference", Swofford, Olsen, Waddell, and Hillis, in
Molecular Systematics, 2nd ed., Sinauer Ass., Inc., 1996, Ch. 11.

<li>F. Tajima and M. Nei, Mol. Biol. Evol. 1984, 1, 269.

<li>M. Kimura, J. Mol. Evol. 1980, 16, 111.

<li>K. Tamura, Mol. Biol. Evol. 1992, 9, 678.

<li>L. Jin and M. Nei, Mol. Biol. Evol. 1990, 7, 82.

<li>M. Kimura, The Neutral Theory of Molecular Evolution,
Camb. Uni. Press, Camb., 1983.

</ol>

<H2>
    Warnings
</H2>

The quality of the alignment is of paramount importance in obtaining
meaningful information from this analysis. 

<H2>
    Diagnostic Error Messages
</H2>

None.

<H2>
    Exit status
</H2>


It always exits with status 0.

<H2>
    Known bugs
</H2>

None.

<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th>
<th>Description</th></tr>
</table>

<H2>
    Author(s)
</H2>

Tim Carver formerly at:
<br>
MRC Rosalind Franklin Centre for Genomics Research
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK

<p>
Please report all bugs to the EMBOSS bug team (emboss-bug&nbsp;&copy;&nbsp;emboss.open-bio.org) not to the original author.
<H2>
    History
</H2>

Written (March 2001) - Tim Carver

<H2>
    Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.

<H2>
    Comments
</H2>
None


</BODY>
</HTML>