1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
|
<HTML>
<HEAD>
<TITLE>
EMBOSS: emowse
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="/images/emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
emowse
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Wiki
</H2>
The master copies of EMBOSS documentation are available
at <a href="http://emboss.open-bio.org/wiki/Appdocs">
http://emboss.open-bio.org/wiki/Appdocs</a>
on the EMBOSS Wiki.
<p>
Please help by correcting and extending the Wiki pages.
<H2>
Function
</H2>
Search protein sequences by digest fragment molecular weight
<H2>
Description
</H2>
<p>Given an input file of molecular weights corresponding to peptides cut by proteolytic enzymes or reagents, <b>emowse</b> will search the supplied input protein sequences for digest fragments that match the molecular weights. For each input sequence, <b>emowse</b> derives both whole sequence molecular weight and calculated peptide molecular weights for complete digests. One of eight cutting enzymes/reagents can be specified and an optional whole sequence molecular weight (if known). Optionally, monoisotopic weights are used. <b>emowse</b> also incorporate calculated peptide Mw's resulting from incomplete or partial cleavages. At present, this is achieved by computing all nearest-neighbour pairs for each enzyme or reagent.</p>
<p><b>emowse</b> writes an output file that includes: i. The specified search parameters (digest reagent, specified error tolerance, specified intact protein Mw and Mw filter percentage). ii. Short 'hit' listing (the top 50 scoring proteins listed in descending order, the sequence ID name and brief text identifiers are included). iii. Detailed 'hit' listing (the top 50 entries listed in more detail).</p>
<H2>
Usage
</H2>
Here is a sample session with <b>emowse</b>
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>emowse </b>
Search protein sequences by digest fragment molecular weight
Input protein sequence(s): <b>tsw:*</b>
Peptide molecular weight values file: <b>test.mowse</b>
Whole sequence molwt [0]: <b></b>
Use monoisotopic weights [N]: <b></b>
Output file [cru4_arath.emowse]: <b></b>
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Search protein sequences by digest fragment molecular weight
Version: EMBOSS:6.6.0.0
Standard (Mandatory) qualifiers:
[-sequence] seqall Protein sequence(s) filename and optional
format, or reference (input USA)
[-infile] infile Peptide molecular weight values file
-weight integer [0] Whole sequence molwt (Any integer value)
-mono boolean [N] Use monoisotopic weights
[-outfile] outfile [*.emowse] Output file name
Additional (Optional) qualifiers: (none)
Advanced (Unprompted) qualifiers:
-mwdata datafile [Emolwt.dat] Molecular weights data file
-frequencies datafile [Efreqs.dat] Amino acid frequencies data
file
-enzyme menu [1] Enzyme or reagent (Values: 1 (Trypsin);
2 (Lys-C); 3 (Arg-C); 4 (Asp-N); 5
(V8-bicarb); 6 (V8-phosph); 7
(Chymotrypsin); 8 (CNBr))
-pcrange integer [25] Allowed whole sequence weight
variability (Integer from 0 to 75)
-tolerance float [0.1] Tolerance (Number from 0.100 to 1.000)
-partials float [0.4] Partials factor (Number from 0.100 to
1.000)
Associated qualifiers:
"-sequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-scircular1 boolean Sequence is circular
-squick1 boolean Read id and sequence only
-sformat1 string Input sequence format
-iquery1 string Input query fields or ID list
-ioffset1 integer Input start position offset
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outfile" associated qualifiers
-odirectory3 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write first file to standard output
-filter boolean Read first file from standard input, write
first file to standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options and exit. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
-version boolean Report version number and exit
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left">Qualifier</th>
<th align="left">Type</th>
<th align="left">Description</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Standard (Mandatory) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-sequence]<br>(Parameter 1)</td>
<td>seqall</td>
<td>Protein sequence(s) filename and optional format, or reference (input USA)</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-infile]<br>(Parameter 2)</td>
<td>infile</td>
<td>Peptide molecular weight values file</td>
<td>Input file</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-weight</td>
<td>integer</td>
<td>Whole sequence molwt</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-mono</td>
<td>boolean</td>
<td>Use monoisotopic weights</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-outfile]<br>(Parameter 3)</td>
<td>outfile</td>
<td>Output file name</td>
<td>Output file</td>
<td><i><*></i>.emowse</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Additional (Optional) qualifiers</th>
</tr>
<tr>
<td colspan=5>(none)</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Advanced (Unprompted) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>-mwdata</td>
<td>datafile</td>
<td>Molecular weights data file</td>
<td>Data file</td>
<td>Emolwt.dat</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-frequencies</td>
<td>datafile</td>
<td>Amino acid frequencies data file</td>
<td>Data file</td>
<td>Efreqs.dat</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-enzyme</td>
<td>list</td>
<td>Enzyme or reagent</td>
<td><table><tr><td>1</td> <td><i>(Trypsin)</i></td></tr><tr><td>2</td> <td><i>(Lys-C)</i></td></tr><tr><td>3</td> <td><i>(Arg-C)</i></td></tr><tr><td>4</td> <td><i>(Asp-N)</i></td></tr><tr><td>5</td> <td><i>(V8-bicarb)</i></td></tr><tr><td>6</td> <td><i>(V8-phosph)</i></td></tr><tr><td>7</td> <td><i>(Chymotrypsin)</i></td></tr><tr><td>8</td> <td><i>(CNBr)</i></td></tr></table></td>
<td>1</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-pcrange</td>
<td>integer</td>
<td>Allowed whole sequence weight variability</td>
<td>Integer from 0 to 75</td>
<td>25</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-tolerance</td>
<td>float</td>
<td>Tolerance</td>
<td>Number from 0.100 to 1.000</td>
<td>0.1</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-partials</td>
<td>float</td>
<td>Partials factor</td>
<td>Number from 0.100 to 1.000</td>
<td>0.4</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Associated qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-sequence" associated seqall qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sbegin1<br>-sbegin_sequence</td>
<td>integer</td>
<td>Start of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -send1<br>-send_sequence</td>
<td>integer</td>
<td>End of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sreverse1<br>-sreverse_sequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sask1<br>-sask_sequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -snucleotide1<br>-snucleotide_sequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sprotein1<br>-sprotein_sequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -slower1<br>-slower_sequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -supper1<br>-supper_sequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -scircular1<br>-scircular_sequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -squick1<br>-squick_sequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sformat1<br>-sformat_sequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -iquery1<br>-iquery_sequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ioffset1<br>-ioffset_sequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sdbname1<br>-sdbname_sequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sid1<br>-sid_sequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ufo1<br>-ufo_sequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fformat1<br>-fformat_sequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fopenfile1<br>-fopenfile_sequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-outfile" associated outfile qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -odirectory3<br>-odirectory_outfile</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>General qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td> -auto</td>
<td>boolean</td>
<td>Turn off prompts</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -stdout</td>
<td>boolean</td>
<td>Write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -filter</td>
<td>boolean</td>
<td>Read first file from standard input, write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -options</td>
<td>boolean</td>
<td>Prompt for standard and additional values</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -debug</td>
<td>boolean</td>
<td>Write debug output to program.dbg</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -verbose</td>
<td>boolean</td>
<td>Report some/full command line options</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -help</td>
<td>boolean</td>
<td>Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -warning</td>
<td>boolean</td>
<td>Report warnings</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -error</td>
<td>boolean</td>
<td>Report errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fatal</td>
<td>boolean</td>
<td>Report fatal errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -die</td>
<td>boolean</td>
<td>Report dying program messages</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -version</td>
<td>boolean</td>
<td>Report version number and exit</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
</table>
<H2>
Input file format
</H2>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
'tsw:*' is a sequence entry in the example protein database 'tsw'
<p>
<p><h3>File: test.mowse</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
6082.8
5423.0
3086.3
2930.3
2424.7
2030.2
1399.6
1086.2
</pre>
</td></tr></table><p>
<p>
The input file is a list of molecular weights of the peptide fragments.
One weight is allowed per line. The example file above is a
Trypsin digest of the protein sw:100K_rat (produced by using the program
<b>digest</b>).
<p>
Each molecular weight must be on a line of its own. Masses (M not
M[H+]) are accepted in any order (ascending,descending or mixed).
Peptide masses can be entered as integers or floating-point values, the
latter being rounded to the nearest integer value for the search.
<p>
It is suggested that peptide masses should be selected from the range
700-4000 Daltons. This range balances the fact that very small peptides
give little discrimination and minimizes the frequency of
partially-cleaved peptides.
<p>
As a general rule, users are advised to identify and remove peptide
masses resulting from autodigestion of the cleavage enzyme (e.g tryptic
fragments of trypsin), best obtained by MS analysis of control digests
containing only the enzyme.
<p>
Further information on the partial sequence and/or composition of the
peptides can be given after the weight with a 'seq()' or 'comp()'
specification. This should be formatted like:
<p>
<pre>
mw seq(...) comp(...)
</pre>
<p>
where mw is the molecular mass of the fragment,
<TT>seq(...)</TT> is sequence information and
<TT>comp(...)</TT> is composition information.
A line may contain more than one sequence information qualifiers.
For example:
<p>
<hr>
<pre>
7176 seq(b-t[pqt]ln)
1744
1490
1433 comp(3[ed]1[p]) seq(gmde)
<pre>
<hr>
<p>
<H3>Sequence information</H3>
The sequence information should be given in standard
One-character code. It should be preceded by a prefix
as outlined in the table below, to indicate what type of sequence
it is.
<p>
<Table border="1">
<Caption><B>Prefixes to use with sequence information for
<b>emowse</b></B></caption>
<TR align="center"><TH>Prefix</TH><TH>Meaning</TH><TH>Example</TH></TR>
<TR align="center"><TD><TT>b-</TT></TD><TD>N->C sequence</TD>
<TD><TT>seq(b-DEFG)</TT></TD></TR>
<TR align="center"><TD><TT>y-</TT></TD><TD>C->N sequence</TD>
<TD><TT>seq(y-GFED)</TT></TD></TR>
<TR align="center"><TD><TT>*-</TT></TD>
<TD>Orientation unknown</TD>
<TD><TT>seq(*-DEFG)<br>seq(*-GFED)</TT></TD></TR>
<TR align="center"><TD><TT>n-</TT></TD><TD>N terminal sequence</TD>
<TD><TT>seq(n-ACDE)</TT></TD></TR>
<TR align="center"><TD><TT>c-</TT></TD><TD>C terminal sequence</TD>
<TD><TT>seq(c-FGHI)</TT></TD></TR>
<TR align="center"><TD colspan=3>The examples are all correct data for a
peptide with a sequence ACDEFGHI.<BR> Note that *-DEFG
will search for both DEFG and GFED</TD></TR>
</TABLE>
<p>
Both lower and upper case characters may be used for amino-acids.
An unknown amino acid may be indicated by an '<TT>X</TT>'.
More than one amino acid may be specified for a position by
putting them between square brackets.
A line may contain several sequence information
qualifiers. An example for a peptide with the actual
sequence ACDEFGHI might look like:
<pre>
12345 seq(n-AC[DE]) seq(c-HI)
</pre>
<H3>Composition Information</H3>
Composition should consist of a number, followed by the
corresponding amino acid between square brackets.
For example
<PRE>comp(2[H]0[M]3[DE]*[K])</PRE> indicates
a peptide which contains 2 histidines, no methionines,
3 acidic residues (glutamic or aspartic acid) and
at least 1 lysine.
<p>
<H2>
Output file format
</H2>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: cru4_arath.emowse</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
Using data fragments of:
1086.2
1399.6
2030.2
2424.7
2930.3
3086.3
5423.0
6082.8
1 UBR5_RAT E3 ubiquitin-protein ligase UBR5 (6.3.2.-) (100 kDa protein) (
2 SYVC_TAKRU Valine--tRNA ligase (6.1.1.9) (Valyl-tRNA synthetase) (ValRS)
3 TCPD_TAKRU T-complex protein 1 subunit delta (TCP-1-delta) (CCT-delta)
4 OPS2_DROME Opsin Rh2 (Ocellar opsin)
5 FLAV_ECO57 Flavodoxin-1
6 FLAV_ECOL6 Flavodoxin-1
7 FLAV_ECOLI Flavodoxin-1
8 FLAV_KLEPN Flavodoxin
9 FLAV_SYNY3 Flavodoxin
10 EI2BB_TAKRU Translation initiation factor eIF-2B subunit beta (S20I15) (eI
11 FLAV_HAEIN Flavodoxin
12 HIRA_TAKRU Protein HIRA (TUP1-like enhancer of split protein 1)
13 OPS2_SCHGR Opsin-2
14 LACY_ECOLI Lactose permease (Lactose-proton symport)
15 FLAV_CLOSA Flavodoxin
16 AMIC_PSEAE Aliphatic amidase expression-regulating protein
17 PAX3_HUMAN Paired box protein Pax-3 (HuP2)
18 PAX4_HUMAN Paired box protein Pax-4
19 CO9_TAKRU Complement component C9 (Precursor)
20 SYHC_TAKRU Histidine--tRNA ligase, cytoplasmic (6.1.1.21) (Histidyl-tRNA
21 BGAL_ECOLI Beta-galactosidase (Beta-gal) (3.2.1.23) (Lactase)
22 HD_TAKRU Huntingtin (Huntington disease protein homolog) (HD protein ho
1 : UBR5_RAT 1.212e+05 308026.9 0.750
E3 ubiquitin-protein ligase UBR5 (6.3.2.-) (100 kDa protein) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog)
Mw Start End Seq
1086.3 2257 2266 CATTPMAVHR
1399.6 1905 1916 GDFLNYALSLMR
2424.7 2189 2211 VFMEDVGAEPGSILTELGGFEVK
2930.3 2570 2597 QLILASQSSDADAVFSAMDLAFAVDLCK
3086.3 2357 2384 QLSIDTRPFRPASEGNPSDDPDPLPAHR
*6082.9 2716 2769 QDLVYFWTSSPSLPASEEGFQPMPSITIRPPDDQHLPTANTCISR...
No Match 2030.2 5423.0
2 : SYVC_TAKRU 3.791e+01 138218.2 0.375
Valine--tRNA ligase (6.1.1.9) (Valyl-tRNA synthetase) (ValRS)
Mw Start End Seq
1087.3 510 518 TVLHPFCDR
*1399.6 1184 1195 VPVKVQEQDTEK
<font color=red> [Part of this file has been deleted for brevity]</font>
No Match 1086.2 1399.6 2030.2 2424.7 2930.3 5423.0 6082.8
15 : FLAV_CLOSA 4.938e+00 17763.4 0.125
Flavodoxin
Mw Start End Seq
*1085.3 17 26 VAKLIEEGVK
No Match 1399.6 2030.2 2424.7 2930.3 3086.3 5423.0 6082.8
16 : AMIC_PSEAE 3.859e+00 42807.1 0.125
Aliphatic amidase expression-regulating protein
Mw Start End Seq
*2423.7 308 328 VEDVQRHLYDICIDAPQGPVR
No Match 1086.2 1399.6 2030.2 2930.3 3086.3 5423.0 6082.8
17 : PAX3_HUMAN 3.494e+00 52967.5 0.125
Paired box protein Pax-3 (HuP2)
Mw Start End Seq
*2930.4 11 37 MMRPGPGQNYPRSGFPLEVSTPLGQGR
No Match 1086.2 1399.6 2030.2 2424.7 3086.3 5423.0 6082.8
18 : PAX4_HUMAN 3.488e+00 37832.7 0.125
Paired box protein Pax-4
Mw Start End Seq
*2029.4 28 45 QQIVRLAVSGMRPCDISR
No Match 1086.2 1399.6 2424.7 2930.3 3086.3 5423.0 6082.8
19 : CO9_TAKRU 3.007e+00 65197.9 0.125
Complement component C9 (Precursor)
Mw Start End Seq
*2930.2 135 162 TCPPTVLDTNEQGRTAGYGINILGADPR
No Match 1086.2 1399.6 2030.2 2424.7 3086.3 5423.0 6082.8
20 : SYHC_TAKRU 2.821e+00 57913.0 0.125
Histidine--tRNA ligase, cytoplasmic (6.1.1.21) (Histidyl-tRNA synthetase) (HisRS)
Mw Start End Seq
1087.2 124 133 DQGGELLSLR
No Match 1399.6 2030.2 2424.7 2930.3 3086.3 5423.0 6082.8
21 : BGAL_ECOLI 2.280e+00 116482.9 0.125
Beta-galactosidase (Beta-gal) (3.2.1.23) (Lactase)
Mw Start End Seq
1400.6 601 612 QFCMNGLVFADR
No Match 1086.2 2030.2 2424.7 2930.3 3086.3 5423.0 6082.8
22 : HD_TAKRU 2.169e+00 348936.6 0.375
Huntingtin (Huntington disease protein homolog) (HD protein homolog)
Mw Start End Seq
*1400.6 2899 2911 VDGEALVKLSVDR
*2031.3 645 663 LLSASFLLTGQKNGLTPDR
*3085.6 1573 1597 LVQYHQVLEMFILVLQQCHKENEDK
No Match 1086.2 2424.7 2930.3 5423.0 6082.8
</pre>
</td></tr></table><p>
<p>
The <b>emowse</b> search program outputs a listing file containing the
following information.
<p>
<h3>Specified search parameters</h3>
Includes all specified parameters such as digest reagent,
specified error tolerance, specified intact protein Mw and Mw filter
percentage. All supplied peptide Mws are listed in descending order,
followed by the total number of entries scanned during the search.
<h3>Short 'hit' listing</h3>
The top 50 scoring proteins are then listed in descending
order, details include the sequence ID name and brief text
identifiers. Details are limited to the top 50 scores as a deliberate
compromise to keep the result listings as short as possible.
<h3>Detailed 'hit' listing</h3>
The top 50 entries are then listed in more detail.The first
line includes the sequence ID name, the <b>emowse</b> search score
(typically a few powers of 10), the 'hit' protein Mw and finally
an 'accuracy' ratio calculated by dividing 'hits' by the total
number of peptides used for the search. This cannot be used to
ascribe significance, but experience has shown that anything below
0.3 is generally not worth pursuing. Line 2 is the protein
text identifier. Subsequent lines list 'hit' and 'miss' peptides,
with the appropriate start, end and corresponding sequences of correct
peptide matches. 'miss' peptides are indicated by 'No match' at the
start of the last line for that protein.
<p>
Matching peptides marked with a '*' denote partially-cleaved
fragments.
<p>
<H2>
Data files
</H2>
<b>emowse</b> reads in the pre-computed "Frequencies" data file
'Efreqs.dat', (See the section "<b>emowse</b> Scoring scheme", above for
a description of the frequency scores.)
<p>
EMBOSS data files are distributed with the application and stored
in the standard EMBOSS data directory, which is defined
by the EMBOSS environment variable EMBOSS_DATA.
<p>
To see the available EMBOSS data files, run:
<p>
<pre>
% embossdata -showall
</pre>
<p>
To fetch one of the data files (for example 'Exxx.dat') into your
current directory for you to inspect or modify, run:
<pre>
% embossdata -fetch -file Exxx.dat
</pre>
<p>
Users can provide their own data files in their own directories.
Project specific files can be put in the current directory, or for
tidier directory listings in a subdirectory called
".embossdata". Files for all EMBOSS runs can be put in the user's home
directory, or again in a subdirectory called ".embossdata".
<p>
The directories are searched in the following order:
<ul>
<li> . (your current directory)
<li> .embossdata (under your current directory)
<li> ~/ (your home directory)
<li> ~/.embossdata
</ul>
<p>
<H2>
Notes
</H2>
Peptide mass information can provide a 'fingerprint' signature
sufficiently discriminating to allow for the unique and rapid
identification of unknown sample proteins, independent of other
analytical methods such as protein sequence analysis. Practical
experience has shown that sample proteins can be uniquely identified
using as few as 3-4 experimentally determined peptide masses when
screened against a fragment database derived from over 50,000 proteins.
<p>
Given a one-per-line file of molecular weights cut by enzymes/reagents,
<b>emowse</b> will search a protein database for matches with the mass
spectrometry data.
<p>
One of eight cutting enzymes/reagents can be specified and an optional whole
sequence molecular weight.
<p>
Determination of molecular weight has always been an important aspect of
the characterization of biological molecules. Protein molecular weight
data, historically obtained by SDS gel electrophoresis or gel permeation
chromatography, has been used establish purity, detect
post-translational modification (such as phosphorylation or
glycosylation) and aid identification. Until just over a decade ago,
mass spectrometric techniques were typically limited to relatively small
biomolecules, as proteins and nucleic acids were too large and fragile
to withstand the harsh physical processes required to induce ionization.
This began to change with the development of 'soft' ionization methods
such as fast atom bombardment (FAB)[1], electrospray ionisation (ESI)
[2,3] and matrix-assisted laser desorption ionisation (MALDI)[4], which
can effect the efficient transition of large macromolecules from
solution or solid crystalline state into intact, naked molecular ions in
the gas phase. As an added bonus to the protein chemist, sample
handling requirements are minimal and the amounts required for MS
analysis are in the same range, or less, than existing analytical
methods.
<p>
As well as providing accurate mass information for intact proteins, such
techniques have been routinely used to produce accurate peptide
molecular weight 'fingerprint' maps following digestion of known
proteins with specific proteases. Such maps have been used to confirm
protein sequences (allowing the detection of errors of translation,
mutation or insertion), characterise post-translational modifications or
processing events and assign disulphide bonds [5,6].
<p>
Less well appreciated, however, is the extent to which such peptide mass
information can provide a 'fingerprint' signature sufficiently
discriminating to allow for the unique and rapid identification of
unknown sample proteins, independent of other analytical methods such as
protein sequence analysis.
<p>
Practical experience has shown that sample proteins can be uniquely
identified using as few as 3- 4 experimentally determined peptide masses
when screened against a fragment database derived from over 50,000
proteins. Experimental errors of a few Daltons are tolerated by the
scoring algorithms, permitting the use of inexpensive time-of-flight
mass spectrometers. As with other types of physical data, such as amino
acid composition or linear sequence, peptide masses can clearly provide
a set of determinants sufficiently unique to identify or match unknown
sample proteins. Peptide mass fingerprints can prove as discriminating
as linear peptide sequence, but can be obtained in a fraction of the
time using less material. In many cases, this allows for a rapid
identification of a sample protein before committing to protein sequence
analysis. Fragment masses also provide structural information, at the
protein level, fully complementary to large-scale DNA sequencing or
mapping projects [7,8,9].
<p>
For each entry in the specified set of sequences to search,
<b>emowse</b> derives both whole sequence molecular weight and
calculated peptide molecular weights for complete digests using the
range of cleavage reagents and rules detailed in Table 1. Cleavage is
disallowed if the target residue is followed by proline (except for CNBr
or Asp N). Glu C (S. aureus V8 protease) cleavages are also inhibited
if the adjacent residue is glutamic acid. Peptide mass calculations are
based entirely on the linear sequence and use the average isotopic
masses of amide-bonded amino acid residues (IUPAC 1987 relative atomic
masses). To allow for N-terminal hydrogen and C-terminal hydroxyl the
final calculated molecular weight of a peptide of N residues is given by
the equation:
<p>
<pre>
N
__
\
/ Residue mass + 18.0153
--
n=1
</pre>
Molecular weights are rounded to the nearest integer value before being
used. Cysteine residues are calculated as the free thiol, anticipating
that samples are reduced prior to mass analysis. CNBr fragments are
calculated as the homoserine lactone form. Information relating to
post- translational modification (phosphorylation, glycosylation etc.)
is not incorporated into calculation of peptide masses.
<p>
<h3>Table 1: Cleavage reagents modelled by <b>emowse</b>.</h3>
<pre>
Reagent no. Reagent Cleavage rule
1 Trypsin C-term to K/R
2 Lys-C C-term to K
3 Arg-C C-term to R
4 Asp-N N-term to D
5 V8-bicarb C-term to E
6 V8-phosph C-term to E/D
7 Chymotrypsin C-term to F/W/Y/L/M
8 CNBr C-term to M
</pre>
<p>
Current versions of <b>emowse</b> also incorporate calculated peptide
Mw's resulting from incomplete or partial cleavages. At present, this
is achieved by computing all nearest-neighbour pairs for each enzyme or
reagent detailed in table 1.
<p>
<h3>Tolerance</h3>
The supplied number specifies the error allowed for mass accuracy of
experimental mass determination. If no figure is specified, a default
tolerance of 2 Daltons will be assumed. If you wish to specify a
different tolerance then follow the qualifier '-tolerance' with the
required number of Daltons. eg: '-tolerance 1'. In this case, supplied
peptide masses will be matched to +/- 1 Daltons. Values of 2-4 are
suggested for data obtained by laser- desorption TOF instruments.
Accuracies of +/- 2 Daltons or better are generally only possible using
an appropriate internal standard (e.g. oxidised insulin B chain) with
TOF instruments. For electrospray or FAB data, a value of 1 can be
selected in most cases. If you have real confidence in mass
determination, specify '0' (zero) to limit matches to the nearest
integer value (effectively +/- 0.5 Daltons). Discrimination is
significantly improved by the selection of a small error tolerance.
<h3>Whole sequence molecular weight</h3>
This option allows you to give the molwt of the whole protein (if
known). This allows you to limit the search to proteins of this molwt
plus/minus a 'limit' (see below). If unspecified, a whole protein molwt
of 0 is assumed which <b>emowse</b> interprets as "search the whole database".
This will include all proteins up to the maximum size of just under
700,000 Daltons. You can specify any molwt in Daltons with this command
e.g. '-weight 90000'.
<h3>Allowed whole sequence weight variability</h3>
This option is used in conjunction with the '-weight' option and is
meaningless without it. It specifies a percentage. Only proteins of
the given Sequence molecular weight +/- this percentage will be
searched. If a Sequence molecular weight is specified but '-pcrange' is
unspecified then '-pcrange ' will default to 25%. To specify a
percentage of 30% use: '-pcrange 30'. In this case, a molecular weight
of 90,000 Daltons was specified and the selection of 30 for the filter
restricts the search to those proteins with masses from 63,000 to
117,000 Daltons. A value of 25 is suggested for initial searches, which
can be progressively widened for subsequent search attempts if no
matches are found. Discrimination is best when the filter percentage is
narrow, but some Mw estimates (particularly from SDS gels) should be
given considerable allowance for error.
<h3>Partials factor</h3>
This specifies the weighting given to partially-cleaved peptide
fragments, with a range from 0.1 to 1.0. If not specified, the default
value is 0.4. The factor effectively down-weights the score awarded to
a partial fragment by the specified amount. For example, a '-partials'
of 0.25 will reduce the score of partial fragments to 25% (one quarter)
of the score of a complete ('perfect') peptide cleavage fragment of
equal mass.
<p>
Computing all possible nearest-neighbour partial fragments adds
significantly to the number of peptides entered in the database (by a
factor of two). The major effect of this is to increase the background
score by increasing the number of random Mw matches, which can
significantly reduce discrimination. The use of a low '-partials'
factor (eg 0.1 - 0.3) is a useful way of limiting this effect - partial
peptide matches will add a little to the cumulative frequency score, but
without compromising discrimination.
<p>
More experienced users can utilise the '-partials' factor to optimize
searches where the peptide Mw data contain a significant proportion of
partial cleavage fragments (eg > 30%). In such cases, setting the
'-partials' factor within the range 0.4 - 0.6 can help to improve
discrimination. Conversely, if the digestion is perfect, with no
partial fragments present, the lowest '-partials' factor of 0.1 will
give maximum discrimination.
<h3>Program requirements</h3>
The <b>emowse</b> search program accepts a single text file
containing a list of experimentally-determined masses, generally
selected from the range 700-4,000 Daltons to reduce the influence
of partial cleavage products. The program outputs a ranked hit
list comprising the top 30 scores, with information including the
protein entry name, text identifiers, final accumulated scores, matching
peptide sequences and hit versus miss tallies. User-selectable search
parameters include an error tolerance (default +/- 2 Daltons), selection
of the enzyme or reagent used and an intact protein Mw (optional, if
known).
<p>
For each peptide Mw entry in the data file, <b>emowse</b> matches
individual fragment molecular weights (FMWs) with database entry
molecular weights (DBMWs). A 'hit' is scored when the following
criterion is met:
<p>
<pre>
DBMW-tolerance-1 < FMW < DBMW+tolerance+1
</pre>
<p>
If an intact protein Mw is specified (SMW) then the program
prompts for a molecular weight filter percentage (MWFP). <b>emowse</b>
then restricts the search to those entries which match the
following criteria:
<p>
<pre>
R = SMW x MWFP / 100
0 < SMW-R < <b>emowse</b> entry Mol.wt. < SMW+R
</pre>
<p>
Default search parameters are a tolerance of +/- 2 Daltons,
intact Mw specified and the MWFP set to 25.
<h3><b>emowse</b> Scoring scheme</h3>
The final scoring scheme is based on the frequency of a
fragment molecular weight being found in a protein of a given
range of molecular weight. OWL database sequence entries were
initially grouped into 10 kDalton intact molecular weight
intervals. For each 10 kDalton protein interval, peptide fragment
molecular weights were assigned to cells of 100 Dalton intervals.
The cells therefore contained the number of times a particular
fragment molecular weight occurred in a protein of any given size.
This operation was performed for each enzyme. Cell frequency
values were calculated by dividing each cell value by the total
number of peptides in each 10 kD protein interval. Cell frequency
values for each 10 kDalton interval were then normalised to the
largest cell value (Fmax), with all the cell values recalculated
as:
<p>
<pre>
Cell value = Old value / Fmax
</pre>
<p>
to yield floating point numbers between 0 and 1. These
distribution frequency values, calculated for each cleavage
reagent, were then built into the <b>emowse</b> search program. For
every database entry scanned, all matching fragments contribute to
the final score. In the current implementation, non-matching
fragments are ignored (neutral). For each matching peptide Mw a
score is assigned by looking up the appropriate normalised
distribution frequency value. In the case of multiple 'hits' in
any one target protein (i.e. more than one matching peptide Mw),
the distribution frequency scores are multiplied. The final
product score is inverted and then normalised to an 'average'
protein Mw of 50 kDaltons to reduce the influence of random score
accumulation in large proteins (>200 kDaltons). The final score is
thus calculated as:
<p>
<pre>
Score = 50/(Pn x H)
</pre>
<p>
Where Pn is the product of n distribution scores and H the 'hit'
protein molecular weight in kD.
<p>
Important consequences of this type of scoring scheme
are that matches with peptides of higher Mw carry more scoring
weight, and that the non-random distribution of fragment molecular
weights in proteins of different sizes is compensated for.
<h3>Simulation studies</h3>
In a simulation of scoring properties, 100 test proteins with
masses between 10 kD and 100 kD were randomly selected from the
OWL sequence database. The sets of all possible tryptic peptide
masses for each protein were randomized and database searches
performed with increasing numbers of fragments (default search
parameters) until the test protein reached the top of the ranked
scoring list. 99% of the test proteins were correctly identified
using only five peptides or less (mean=3.6 peptides), with one
example requiring six. These figures were surprisingly small
considering that some of the proteins in the test sample generated
more than 100 possible tryptic fragments. All 100 test examples were
identified using 30% or less of the maximum number of available peptides.
<p>
This distribution was somewhat dependent on protein size, as
smaller proteins generally yield fewer peptide fragments. Thus,
all proteins of 30 kD and over were identified using 13% or less
of possible fragments (1 in 8), with all proteins of 40 kD and
above requiring less than 10% (1 in 10). In this latter group,
therefore, more than 90% of the potential information (all
possible peptides) was redundant. For the simulation a 'unique'
identification required matching not only of protein type (e.g.
globin) but correct discrimination of type, species, and isoform
or isozyme. Discrimination could be further improved by reducing
the error tolerance to only +/- 1 Dalton (mean=2.7 peptides). Such
accuracies are easily bettered using more sophisticated
ESI/quadrupole or high-field FAB
spectrometers, but the default search value (+/- 2 Daltons)
compensates for the reduced accuracy obtainable from the smaller
time-of-flight (TOF) instruments. Mass accuracies better than +/- 1
Dalton were not essential, and in fact the error tolerance could be
relaxed to +/- 5 Daltons in many cases with little degradation in
performance. The simulation thus clearly demonstrated the high
degree of discrimination afforded by relatively few peptide
masses, even with generous allowance for error.
<H2>
References
</H2>
<ol>
The paper describing the original 'MOWSE' program is:
<li>D.J.C. Pappin, P. Hojrup and A.J. Bleasby 'Rapid Identification of
Proteins by Peptide-Mass Fingerprinting'. Current Biology (1993), vol
3, 327-332.
<p>Other references:
<LI>Barber M, Bordoli RS, Sedgwick RD, Tyler AN: Fast atom
bombardment of solids: a new ion source for mass spectrometry. J
Chem Soc Chem Commun 1981, 7: 325-327.
<LI>Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB:
Molecular beams of macroions. J Chem Phys 1968, 49:2240-2249.
<LI>Meng CK, Mann M, Fenn JB: Of protons or proteins. Z Phys D
1988, 10: 361-368.
<LI>Karas M, Hillenkamp F: Laser desorption ionisation of proteins
with molecular masses exceeding 10,000 Daltons. Analytical
Chemistry 1988, 60:2299-2301.
<LI>Morris H, Panico M, Taylor GW: FAB-mapping of recombinant-DNA
protein products. Biochem Biophys Res Commun 1983, 117:299-305.
<LI>Morris H, Greer FM: Mass spectrometry of natural and
recombinant proteins and glycoproteins. Trends in Biotechnology
1988, 6:140-147.
<LI>Weissenbach J, Gyapay G, Dib C, Vignal J, Morissette J,
Millasseau P, Vaysseix G, Lathrop M: A second generation linkage
map of the human genome. Nature 1992, 359:794-801.
<LI>Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH,
Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie
WR, Venter JC: Complementary DNA sequencing: expressed sequence
tags and human genome project. Science 1991, 252:1651-1656.
<LI>Lehrach H, Drmanac R, Hoheisel J, Larin Z, Lennon G, Monaco AP,
Nizetic D, Zehetner G, Poustka A: Hybridization fingerprinting in
genome mapping and sequencing. In Genome Analysis Volume 1:
Genetic and Physical Mapping. Cold Spring Harbor Laboratory Press;
1990:39-81 .
<LI>Akrigg D, Bleasby AJ, Dix NIM, Findlay JBC, North ACT, Parry-
Smith D, Wootton JC, Blundell TI, Gardner SP, Hayes F, Sternberg
MJE, Thornton JM, Tickle IJ, Murray-Rust P: A protein
sequence/structure database. Nature 1988, 335:745-746.
<LI>Bleasby AJ, Wootton JC: Construction of validated, non-
redundant composite protein databases. Protein Engineering 1990,
3:153-159.
</ol>
<H2>
Warnings
</H2>
None.
<H2>
Diagnostic Error Messages
</H2>
None.
<H2>
Exit status
</H2>
It always exits with status 0.
<H2>
Known bugs
</H2>
None.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th>
<th>Description</th></tr>
<tr>
<td><a href="backtranambig.html">backtranambig</a></td>
<td>Back-translate a protein sequence to ambiguous nucleotide sequence</td>
</tr>
<tr>
<td><a href="backtranseq.html">backtranseq</a></td>
<td>Back-translate a protein sequence to a nucleotide sequence</td>
</tr>
<tr>
<td><a href="compseq.html">compseq</a></td>
<td>Calculate the composition of unique words in sequences</td>
</tr>
<tr>
<td><a href="freak.html">freak</a></td>
<td>Generate residue/base frequency table or plot</td>
</tr>
<tr>
<td><a href="mwcontam.html">mwcontam</a></td>
<td>Find weights common to multiple molecular weights files</td>
</tr>
<tr>
<td><a href="mwfilter.html">mwfilter</a></td>
<td>Filter noisy data from molecular weights file</td>
</tr>
<tr>
<td><a href="oddcomp.html">oddcomp</a></td>
<td>Identify proteins with specified sequence word composition</td>
</tr>
<tr>
<td><a href="pepdigest.html">pepdigest</a></td>
<td>Report on protein proteolytic enzyme or reagent cleavage sites</td>
</tr>
<tr>
<td><a href="pepinfo.html">pepinfo</a></td>
<td>Plot amino acid properties of a protein sequence in parallel</td>
</tr>
<tr>
<td><a href="pepstats.html">pepstats</a></td>
<td>Calculate statistics of protein properties</td>
</tr>
<tr>
<td><a href="wordcount.html">wordcount</a></td>
<td>Count and extract unique words in molecular sequence(s)</td>
</tr>
</table>
<H2>
Author(s)
</H2>
Alan Bleasby
<br>
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
<p>
Please report all bugs to the EMBOSS bug team (emboss-bug © emboss.open-bio.org) not to the original author.
<H2>
History
</H2>
Written (Sept 2000) - Alan Bleasby.
<H2>
Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
Comments
</H2>
None
</BODY>
</HTML>
|