File: epestfind.html

package info (click to toggle)
emboss 6.6.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 571,248 kB
  • ctags: 39,971
  • sloc: ansic: 460,578; java: 29,439; perl: 13,573; sh: 12,740; makefile: 3,275; csh: 706; asm: 351; xml: 239; pascal: 237; modula3: 8
file content (1209 lines) | stat: -rw-r--r-- 35,828 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
<HTML>
<HEAD>
  <TITLE>
  EMBOSS: epestfind
  </TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">

<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="/images/emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
epestfind
</font></b>
</td></tr>
</table>
<br>&nbsp;
<p>

<H2>
Wiki
</H2>

The master copies of EMBOSS documentation are available
at <a href="http://emboss.open-bio.org/wiki/Appdocs">
http://emboss.open-bio.org/wiki/Appdocs</a>
on the EMBOSS Wiki.

<p>
Please help by correcting and extending the Wiki pages.

<H2>
    Function
</H2>
Find PEST motifs as potential proteolytic cleavage sites
<H2>
    Description
</H2>

<p><b>epestfind</b> rapidly and objectively identifies PEST motifs in an input protein sequence. PEST motifs reduce the half-lives of proteins dramatically and hence, that they target proteins for proteolytic degradation.  <b>epestfind</b> writes an output file with putative PEST motifs and (optionally) the PEST scores are plotted for the whole sequence length.</p>

<p>The <b>epestfind</b> output file includes poor and potential PEST motifs together with their PEST score, mass percent of DEPST and their hydrophobicity index.  'Valid' PEST motifs below the specified threshold score are considered as 'poor', while PEST scores above the threshold score are of real biological interest. The higher the PEST score, the more likely is degradation of proteins mediated via 'potential' PEST motifs in eukaryotic cells.</p>

<H2>
    Algorithm
</H2>

PEST motifs were defined as hydrophilic stretches of at least 12 amino
acids length with a high local concentration of critical amino acids. 
Remarkably, negatively charged amino acids are clustered within these
motifs while positively charged amino acids, arginine (R), histidine (H)
and lysine (K) are generally forbidden. 

<p>

The <b>epestfind</b> algorithm defines the last criterion even more
stringently in that PEST motifs are required to be flanked by positively
charged amino acids.  Though this implication greatly facilitates
computer scanning, a few PEST sequences might be missed.  Especially
sequences with a high local concentration of critical amino acids but
with a long distance between positively charged amino acids are error
prone.  Due to their length, these PEST motifs might become diluted,
which results in scores apparently lower than initially expected. 
Another side effect of scanning for positively charged amino acids is
that very long PEST motifs are sub-divided into adjacent smaller ones. 
However, identification of PEST motifs is achieved by an initial scan
for positively charged amino acids arginine (R), histidine (H) and
lysine (K) within the specified protein sequence.  All amino acids
between the positively charged flanks are counted and only those motifs
are considered further, which contain a number of amino acids equal to
or higher than the window-size parameter.  Additionally, all 'valid'
PEST regions are required to contain at least one proline (P), one
aspartate (D) or glutamate (E) and at least one serine (S) or
threonine(T).  Sequences that do not meet the above criteria are
classified as 'invalid' PEST motifs and excluded from further analysis. 

<p>

The quality of 'valid' PEST motifs is refined by means of a scoring
parameter based on the local enrichment of critical amino acids as well
as the motif's hydrophobicity.  Enrichment of D, E, P, S and T is
expressed in mass percent (w/w) and corrected for one equivalent of D or
E, one of P and one of S or T.  Calculation of hydrophobicity follows in
principle the method of J.  Kyte and R.F.  Doolittle [4].  For
simplified calculations, Kyte-Doolittle hydropathy indices, which
originally ranged from -4.5 for arginine to +4.5 for isoleucine, were
converted to positive integers.  This was achieved by the following
linear transformation, which yielded values from 0 for arginine to 90
for isoleucine. 

<p>

      <center>Hydropathy index = 10 * Kyte-Doolittle hydropathy index + 45</center>

<p>

The motif's hydrophobicity is calculated as the sum over the products of
mole percent and hydrophobicity index for each amino acid species.  The
desired PEST score is obtained as combination of local enrichment term
and hydrophobicity term as expressed by the following equation:

<p>

      <center>PEST score = 0.55 * DEPST - 0.5 * hydrophobicity index.</center>

<p>

Although, the formula above differs from the publication [1], it is in
fact the correct one, which was also implemented in the original BASIC
programme (personal communication).  In addition, the programme includes
a correction for the hydropathy index of tyrosine, introduced by Robert
H.  Stellwagen from the University of Southern California.  However,
PEST scores can range from -45 for poly-isoleucine to about +50 for
poly-aspartate plus one proline and one serine.  'Valid' PEST motifs
below the threshold score (5.0) are considered as 'poor', while PEST
scores above the threshold score are of real biological interest.  The
higher the PEST score, the more likely is degradation of proteins
mediated via 'potential' PEST motifs in eukaryotic cells. 

<p>

Presently, all modified Kyte-Doolittle hydropathy indices are
hard-coded into the programme, which might change in future.

<p>

The array of linear transformed Kyte-Doolittle hydropathy
indices (ltkdhi) is listed in alphabetical order below.
(A-M and N-Z as well as N-terminus and C-terminus)

<p>

63, 10, 70, 10, 10, 72, 41, 13, 90,  0,  6, 82, 64,
10,  0, 29, 10,  0, 36, 38,  0, 87, 36, 45, 58, 10,
 0,  0

<p>

The linear transformation was ltkdhi = 10 * kdhi + 45
<br>
All values range from Argine R = 0 to Isoleucine I = 90
<br>
B=(N|D)=10 since N=10 and D=10
<br>
Z=(Q|E)=10 since Q=10 and E=10
<br>
X=10*0+45=45

<H2>
    Usage
</H2>
Here is a sample session with <b>epestfind</b>
<p>

<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>

% <b>epestfind -graph cps -invalid </b>
Find PEST motifs as potential proteolytic cleavage sites
Input protein sequence: <b>exu2_drops.sw</b>
Window length [10]: <b></b>
Sort order of results
      1 : length
      2 : position
      3 : score
Sort order of results [score]: <b></b>
Output file [exu2_drops.epestfind]: <b></b>

Created epestfind.ps

</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>


<H2>
    Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Find PEST motifs as potential proteolytic cleavage sites
Version: EMBOSS:6.6.0.0

   Standard (Mandatory) qualifiers:
  [-sequence]          sequence   Protein sequence USA to be analysed.
   -window             integer    [10] Minimal distance between positively
                                  charged amino acids. (Integer 2 or more)
   -order              selection  [score] Name of the output file which holds
                                  the results of the analysis. Results may be
                                  sorted by length, position and score.
  [-outfile]           outfile    [*.epestfind] Name of file to which results
                                  will be written.
   -graph              xygraph    [$EMBOSS_GRAPHICS value, or x11] Graph type
                                  (ps, hpgl, hp7470, hp7580, meta, cps, x11,
                                  tek, tekt, none, data, xterm, png, gif, pdf,
                                  svg)

   Additional (Optional) qualifiers:
   -mwdata             datafile   [Emolwt.dat] Molecular weights data file
   -threshold          float      [+5.0] Threshold value to discriminate weak
                                  from potential PEST motifs. Valid PEST
                                  motifs are discriminated into 'poor' and
                                  'potential' motifs depending on this
                                  threshold score. By default, the default
                                  value is set to +5.0 based on experimental
                                  data. Alterations are not recommended since
                                  significance is a matter of biology, not
                                  mathematics. (Number from -55.00 to 55.00)

   Advanced (Unprompted) qualifiers:
   -mono               boolean    [N] Use monoisotopic weights
   -[no]potential      boolean    [Y] Decide whether potential PEST motifs
                                  should be printed.
   -[no]poor           boolean    [Y] Decide whether poor PEST motifs should
                                  be printed.
   -invalid            boolean    [N] Decide whether invalid PEST motifs
                                  should be printed.
   -[no]map            boolean    [Y] Decide whether PEST motifs should be
                                  mapped to sequence.

   Associated qualifiers:

   "-sequence" associated qualifiers
   -sbegin1            integer    Start of the sequence to be used
   -send1              integer    End of the sequence to be used
   -sreverse1          boolean    Reverse (if DNA)
   -sask1              boolean    Ask for begin/end/reverse
   -snucleotide1       boolean    Sequence is nucleotide
   -sprotein1          boolean    Sequence is protein
   -slower1            boolean    Make lower case
   -supper1            boolean    Make upper case
   -scircular1         boolean    Sequence is circular
   -squick1            boolean    Read id and sequence only
   -sformat1           string     Input sequence format
   -iquery1            string     Input query fields or ID list
   -ioffset1           integer    Input start position offset
   -sdbname1           string     Database name
   -sid1               string     Entryname
   -ufo1               string     UFO features
   -fformat1           string     Features format
   -fopenfile1         string     Features file name

   "-outfile" associated qualifiers
   -odirectory2        string     Output directory

   "-graph" associated qualifiers
   -gprompt            boolean    Graph prompting
   -gdesc              string     Graph description
   -gtitle             string     Graph title
   -gsubtitle          string     Graph subtitle
   -gxtitle            string     Graph x axis title
   -gytitle            string     Graph y axis title
   -goutfile           string     Output file for non interactive displays
   -gdirectory         string     Output directory

   General qualifiers:
   -auto               boolean    Turn off prompts
   -stdout             boolean    Write first file to standard output
   -filter             boolean    Read first file from standard input, write
                                  first file to standard output
   -options            boolean    Prompt for standard and additional values
   -debug              boolean    Write debug output to program.dbg
   -verbose            boolean    Report some/full command line options
   -help               boolean    Report command line options and exit. More
                                  information on associated and general
                                  qualifiers can be found with -help -verbose
   -warning            boolean    Report warnings
   -error              boolean    Report errors
   -fatal              boolean    Report fatal errors
   -die                boolean    Report dying program messages
   -version            boolean    Report version number and exit

</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left">Qualifier</th>
<th align="left">Type</th>
<th align="left">Description</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Standard (Mandatory) qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td>[-sequence]<br>(Parameter 1)</td>
<td>sequence</td>
<td>Protein sequence USA to be analysed.</td>
<td>Readable sequence</td>
<td><b>Required</b></td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-window</td>
<td>integer</td>
<td>Minimal distance between positively charged amino acids.</td>
<td>Integer 2 or more</td>
<td>10</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-order</td>
<td>selection</td>
<td>Name of the output file which holds the results of the analysis. Results may be sorted by length, position and score.</td>
<td>Choose from selection list of values</td>
<td>score</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>[-outfile]<br>(Parameter 2)</td>
<td>outfile</td>
<td>Name of file to which results will be written.</td>
<td>Output file</td>
<td><i>&lt;*&gt;</i>.epestfind</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-graph</td>
<td>xygraph</td>
<td>Graph type</td>
<td>EMBOSS has a list of known devices, including ps, hpgl, hp7470, hp7580, meta, cps, x11, tek, tekt, none, data, xterm, png, gif, pdf, svg</td>
<td><i>EMBOSS_GRAPHICS</i> value, or x11</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Additional (Optional) qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td>-mwdata</td>
<td>datafile</td>
<td>Molecular weights data file</td>
<td>Data file</td>
<td>Emolwt.dat</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-threshold</td>
<td>float</td>
<td>Threshold value to discriminate weak from potential PEST motifs. Valid PEST motifs are discriminated into 'poor' and 'potential' motifs depending on this threshold score. By default, the default value is set to +5.0 based on experimental data. Alterations are not recommended since significance is a matter of biology, not mathematics.</td>
<td>Number from -55.00 to 55.00</td>
<td>+5.0</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Advanced (Unprompted) qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td>-mono</td>
<td>boolean</td>
<td>Use monoisotopic weights</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-[no]potential</td>
<td>boolean</td>
<td>Decide whether potential PEST motifs should be printed.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-[no]poor</td>
<td>boolean</td>
<td>Decide whether poor PEST motifs should be printed.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-invalid</td>
<td>boolean</td>
<td>Decide whether invalid PEST motifs should be printed.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-[no]map</td>
<td>boolean</td>
<td>Decide whether PEST motifs should be mapped to sequence.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Associated qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-sequence" associated sequence qualifiers
</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sbegin1<br>-sbegin_sequence</td>
<td>integer</td>
<td>Start of the sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -send1<br>-send_sequence</td>
<td>integer</td>
<td>End of the sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sreverse1<br>-sreverse_sequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sask1<br>-sask_sequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -snucleotide1<br>-snucleotide_sequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sprotein1<br>-sprotein_sequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -slower1<br>-slower_sequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -supper1<br>-supper_sequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -scircular1<br>-scircular_sequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -squick1<br>-squick_sequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sformat1<br>-sformat_sequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -iquery1<br>-iquery_sequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -ioffset1<br>-ioffset_sequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sdbname1<br>-sdbname_sequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sid1<br>-sid_sequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -ufo1<br>-ufo_sequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fformat1<br>-fformat_sequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fopenfile1<br>-fopenfile_sequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-outfile" associated outfile qualifiers
</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -odirectory2<br>-odirectory_outfile</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-graph" associated xygraph qualifiers
</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -gprompt</td>
<td>boolean</td>
<td>Graph prompting</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -gdesc</td>
<td>string</td>
<td>Graph description</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -gtitle</td>
<td>string</td>
<td>Graph title</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -gsubtitle</td>
<td>string</td>
<td>Graph subtitle</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -gxtitle</td>
<td>string</td>
<td>Graph x axis title</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -gytitle</td>
<td>string</td>
<td>Graph y axis title</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -goutfile</td>
<td>string</td>
<td>Output file for non interactive displays</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -gdirectory</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>General qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td> -auto</td>
<td>boolean</td>
<td>Turn off prompts</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -stdout</td>
<td>boolean</td>
<td>Write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -filter</td>
<td>boolean</td>
<td>Read first file from standard input, write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -options</td>
<td>boolean</td>
<td>Prompt for standard and additional values</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -debug</td>
<td>boolean</td>
<td>Write debug output to program.dbg</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -verbose</td>
<td>boolean</td>
<td>Report some/full command line options</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -help</td>
<td>boolean</td>
<td>Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -warning</td>
<td>boolean</td>
<td>Report warnings</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -error</td>
<td>boolean</td>
<td>Report errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fatal</td>
<td>boolean</td>
<td>Report fatal errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -die</td>
<td>boolean</td>
<td>Report dying program messages</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -version</td>
<td>boolean</td>
<td>Report version number and exit</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

</table>

<H2>
    Input file format
</H2>

<b>epestfind</b> reads a single protein sequence.
<p>
<p>

The input is a standard EMBOSS sequence query (also known as a 'USA').

<p>
Major sequence database sources defined as standard in EMBOSS
installations include srs:embl, srs:uniprot and ensembl

<p>

Data can also be read from sequence output in any supported format
written by an EMBOSS or third-party application.

<p>
The input format can be specified by using the
command-line qualifier <tt>-sformat xxx</tt>, where 'xxx' is replaced
by the name of the required format.  The available format names are:
gff (gff3), gff2, embl (em), genbank (gb, refseq), ddbj, refseqp, pir
(nbrf), swissprot (swiss, sw), dasgff and debug.

<p>

See:
<A href="http://emboss.sf.net/docs/themes/SequenceFormats.html">
http://emboss.sf.net/docs/themes/SequenceFormats.html</A>
for further information on sequence formats.

<p>

<a name="input.1"></a>
<h3>Input files for usage example </h3>
<p><h3>File: exu2_drops.sw</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID   EXU2_DROPS     STANDARD;      PRT;   477 AA.
AC   Q24617;
DT   01-NOV-1997 (Rel. 35, Created)
DT   01-NOV-1997 (Rel. 35, Last sequence update)
DT   01-NOV-1997 (Rel. 35, Last annotation update)
DE   Maternal exuperantia 2 protein.
GN   EXU2.
OS   Drosophila pseudoobscura (Fruit fly).
OC   Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
OC   Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
OC   Ephydroidea; Drosophilidae; Drosophila.
OX   NCBI_TaxID=7237;
RN   [1]
RP   SEQUENCE FROM N.A.
RX   MEDLINE=94350208; PubMed=8070663;
RA   Luk S.K.-S., Kilpatrick M., Kerr K., Macdonald P.M.;
RT   "Components acting in localization of bicoid mRNA are conserved among
RT   Drosophila species.";
RL   Genetics 137:521-530(1994).
CC   -!- FUNCTION: ENSURES THE PROPER LOCALIZATION OF THE MRNA OF THE
CC       BICOID GENE TO THE ANTERIOR REGIONS OF THE OOCYTE THUS PLAYING
CC       A FUNDAMENTAL ROLE IN THE ESTABLISHMENT OF THE POLARITY OF THE
CC       OOCYTE. MAY BIND THE BCD MRNA (BY SIMILARITY).
CC   --------------------------------------------------------------------------
CC   This SWISS-PROT entry is copyright. It is produced through a collaboration
CC   between  the Swiss Institute of Bioinformatics  and the  EMBL outstation -
CC   the European Bioinformatics Institute.  There are no  restrictions on  its
CC   use  by  non-profit  institutions as long  as its content  is  in  no  way
CC   modified and this statement is not removed.  Usage  by  and for commercial
CC   entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC   or send an email to license@isb-sib.ch).
CC   --------------------------------------------------------------------------
DR   EMBL; L22553; AAA28523.1; -.
DR   FlyBase; FBgn0014783; Dpse\exu2.
KW   Developmental protein; RNA-binding.
FT   DOMAIN      249    271       GLU/SER/PRO/THR-RICH (PEST REGION).
SQ   SEQUENCE   477 AA;  53194 MW;  8B5334A77DB9467B CRC64;
     MVSAISEDSA SATASGQCEV VKEELPAGNY ILVAVEIDTT GRRLIDEIVQ LAGYTSKGNF
     QQYIMPYMNL NQAARQRHQI RVISIGFYRM LKSMQTYKII KSKSEVAALM DFLNWLETLL
     AKQPNKEGIV MLYHDDRKFI PYMILEALKK YSLIDRFNRS VKAFANTCPM AKTFLGKHGI
     KNCGLRKLSM LLAKSKDGNS TKEDEHENPE GNSSITDNSG HKNQKQGAFE GSANVRAKMV
     YEMALQLIES ESTESPESFE SPESSESSEA EVKLLNAVRP FSQLLSSTIL ELKDQNHSLG
     RQNSFRPVFL NYFRTTLNYR VRAVKYRIGL AEHGFTLKSL KAIWSDKRKP GLELVLTAID
     SLKTEETAEL LDLLDSYYDP SKTTIKPRCK RSGNGTRRRN RAKGAASSKN GAIGAGGDNS
     VPDSATKPGG RPRRKRNNIR NNILGPQNTE KGSPKAEMKT STPKSMSIKP PSEFADI
//
</pre>
</td></tr></table><p>


<H2>
    Output file format
</H2>

<p>

The output is to the specified graphics device.

<p>

The results can be output in one of several formats by using the
command-line qualifier <b>-graph xxx</b>, where 'xxx' is replaced by
the name of the required device. Support depends on the availability
of third-party software packages.

<p>
The device names that output to a file are:
ps (postscript), cps (colourps), png, gif, pdf, svg, hpgl, hp7470,
hp7580, das, data.

<p> The other available device names are: meta, x11 (xwindows), tek
(tek4107t), tekt (tektronix), xterm, text.

<p>
Output can be turned off by specifying none (null).

<p>

See:
<A href="http://emboss.sf.net/docs/themes/GraphicsDevices.html">
http://emboss.sf.net/docs/themes/GraphicsDevices.html</A>
for further information on supported devices.

<p>


<p>

<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: exu2_drops.epestfind</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
PEST-find: Finds PEST motifs as potential proteolytic cleavage sites.

    14 PEST motifs were identified in EXU2_DROPS
       from positions 1 to 477 and sorted by score.

Potential PEST motif with 34 amino acids between position 238 and 273.
   238 KMVYEMALQLIESESTESPESFESPESSESSEAEVK 273
       DEPST: 54.46 % (w/w)
       Hydrophobicity index: 38.31
       PEST score: 10.80  

Potential PEST motif with 14 amino acids between position 206 and 221.
   206 HENPEGNSSITDNSGH 221
       DEPST: 36.04 % (w/w)
       Hydrophobicity index: 27.16
       PEST score: 6.25  

Poor PEST motif with 18 amino acids between position 363 and 382.
   363 KTEETAELLDLLDSYYDPSK 382
       PEST score: 2.93  

Poor PEST motif with 17 amino acids between position 409 and 427.
   409 KNGAIGAGGDNSVPDSATK 427
       PEST score: -9.71  

Poor PEST motif with 19 amino acids between position 22 and 42.
    22 KEELPAGNYILVAVEIDTTGR 42
       PEST score: -11.01  

Poor PEST motif with 10 amino acids between position 440 and 451.
   440 RNNILGPQNTEK 451
       PEST score: -15.94  

Poor PEST motif with 13 amino acids between position 279 and 293.
   279 RPFSQLLSSTILELK 293
       PEST score: -16.72  

Poor PEST motif with 13 amino acids between position 349 and 363.
   349 KPGLELVLTAIDSLK 363
       PEST score: -19.94  

Invalid PEST motif with 20 amino acids between position 1 and 22.
     1 MVSAISEDSASATASGQCEVVK 22

Invalid PEST motif with 13 amino acids between position 43 and 57.
    43 RLIDEIVQLAGYTSK 57

Invalid PEST motif with 17 amino acids between position 57 and 75.
    57 KGNFQQYIMPYMNLNQAAR 75

Invalid PEST motif with 18 amino acids between position 103 and 122.
   103 KSEVAALMDFLNWLETLLAK 122

Invalid PEST motif with 10 amino acids between position 138 and 149.
   138 KFIPYMILEALK 149

Invalid PEST motif with 10 amino acids between position 225 and 236.
   225 KQGAFEGSANVR 236


       ---------+---------+---------+---------+---------+---------+

     1 MVSAISEDSASATASGQCEVVKEELPAGNYILVAVEIDTTGRRLIDEIVQLAGYTSKGNF 60
        -------------------- OOOOOOOOOOOOOOOOOOO  ------------- ---

    61 QQYIMPYMNLNQAARQRHQIRVISIGFYRMLKSMQTYKIIKSKSEVAALMDFLNWLETLL 120
       --------------                             -----------------

   121 AKQPNKEGIVMLYHDDRKFIPYMILEALKKYSLIDRFNRSVKAFANTCPMAKTFLGKHGI 180
       -                 ----------                                

   181 KNCGLRKLSMLLAKSKDGNSTKEDEHENPEGNSSITDNSGHKNQKQGAFEGSANVRAKMV 240
                                 ++++++++++++++     ----------   ++

   241 YEMALQLIESESTESPESFESPESSESSEAEVKLLNAVRPFSQLLSSTILELKDQNHSLG 300
       ++++++++++++++++++++++++++++++++       OOOOOOOOOOOOO        

   301 RQNSFRPVFLNYFRTTLNYRVRAVKYRIGLAEHGFTLKSLKAIWSDKRKPGLELVLTAID 360
                                                        OOOOOOOOOOO

   361 SLKTEETAELLDLLDSYYDPSKTTIKPRCKRSGNGTRRRNRAKGAASSKNGAIGAGGDNS 420
       OO OOOOOOOOOOOOOOOOOO                            OOOOOOOOOOO

   421 VPDSATKPGGRPRRKRNNIRNNILGPQNTEKGSPKAEMKTSTPKSMSIKPPSEFADI 477
       OOOOOO              OOOOOOOOOO                           

       Symbols   PEST motifs
       +++++++   potential
       OOOOOOO   poor     
       -------   invalid  

</pre>
</td></tr></table><p>
<p><h3>Graphics File: epestfind.ps</h3>
<p><img src="epestfind.1.epestfind.gif" alt="[epestfind results]">
<p>

The output from <b>epestfind</b> is a simple text one.  It reports poor
and potential PEST motifs together with their PEST score, mass percent
of DEPST and their hydrophobicity index. 

<p>

'Valid' PEST motifs below the threshold score (5.0) are considered as
'poor', while PEST scores above the threshold score are of real
biological interest.  The higher the PEST score, the more likely is
degradation of proteins mediated via 'potential' PEST motifs in
eukaryotic cells. 

<p>


<H2>
    Data files
</H2>

The physico-chemical properties of the residues are read from the EMBOSS
data file 'Eamino.dat'.  This file can be copied into your current
directory and inspected or altered by using the application 'embossdata
-fetch'.  Another file can be specified using the qualifier '-aadata'. 

<p>

<p>
EMBOSS data files are distributed with the application and stored
in the standard EMBOSS data directory, which is defined
by the EMBOSS environment variable EMBOSS_DATA.

<p>

To see the available EMBOSS data files, run:
<p>
<pre>
% embossdata -showall
</pre>
<p>
To fetch one of the data files (for example 'Exxx.dat') into your
current directory for you to inspect or modify, run:

<pre>

% embossdata -fetch -file Exxx.dat

</pre>
<p>

Users can provide their own data files in their own directories.
Project specific files can be put in the current directory, or for
tidier directory listings in a subdirectory called
".embossdata". Files for all EMBOSS runs can be put in the user's home
directory, or again in a subdirectory called ".embossdata".

<p>
The directories are searched in the following order:

<ul>
   <li> . (your current directory)
   <li> .embossdata (under your current directory)
   <li> ~/ (your home directory)
   <li> ~/.embossdata
</ul>
<p>

<p>

Here is the default Eamino.dat file:

<p>

<pre>
# Molecular weights of amino acids
# Also classified as:
#  Tiny, Small, Aliphatic, Aromatic, Non-polar, Polar, Charge, +ve, -ve
#
A        71.0786         1 1 0 0 1 0 0   0 0
B       114.5960         0 1 0 0 0 0 -.5 0 1
C       103.1386         1 1 0 0 1 0 0   0 0
D       115.0884         0 1 0 0 0 1 -1  0 1
E       129.1152         0 0 0 0 0 1 -1  0 1
F       147.1762         0 0 0 1 1 0 0   0 0
G        57.0518         1 1 0 0 1 0 0   0 0
H       137.1408         0 0 0 1 0 1 .5  1 0
I       113.1590         0 0 1 0 1 0 0   0 0
J         0.0            0 0 0 0 0 0 0   0 0
K       128.1736         0 0 0 0 0 1 1   1 0
L       113.1590         0 0 1 0 1 0 0   0 0
# If met gets oxidised to the sulphoxide replace by 147.1926
M       131.1926         0 0 0 0 1 0 0   0 0
N       114.1036         0 1 0 0 0 1 0   0 0
O         0.0            0 0 0 0 0 0 0   0 0
P        97.1164         0 1 0 0 1 0 0   0 0
Q       128.1304         0 0 0 0 0 1 0   0 0
R       156.1870         0 0 0 0 0 1 1   1 0
S        87.0780         1 1 0 0 0 1 0   0 0
T       101.1048         1 1 0 0 0 1 0   0 0
U         0.0            0 0 0 0 0 0 0   0 0
V        99.1322         0 1 1 0 1 0 0   0 0
W       186.2128         0 0 0 1 1 0 0   0 0
X       144.0000         0 0 0 0 0 0 0   0 0
Y       163.1756         0 0 0 1 1 0 0   0 0
Z       128.6228         0 0 0 0 0 1 -.5 0 1
</pre>


<H2>
    Notes
</H2>

<p>Briefly, the PEST hypothesis was based on a literature survey that combined both information on protein stability as well as protein primary sequence information. Initially, the study relied on 12 short-lived proteins with well-known properties [1], but was continually extended later [2,3]. The initial group of proteins included E1A, c-myc, p53, c-fos, v-myb, P730 phytochrome, heat shock protein 70 (HSP 70), HMG-CoA reductase, tyrosine aminotransferase (TAT), ornithine decarboxylase (ODC), alpha-Casein and beta-Casein. Although all these proteins exerted various different cellular functions it became apparent that they shared high local concentrations of amino acids proline (P), glutamic acid (E), serine (S), threonine (T) and to a lesser extent aspartic acid (D). From that it was concluded that PEST motifs reduce the half-lives of proteins dramatically and hence, that they target proteins for proteolytic degradation.</p>
<p>PEST means Black Death in German, so that the name of this programme sounds a bit strange, at least in our ears.</p>


<H2>
    References
</H2>

<ol>

<li>Rogers S.W., Wells R., Rechsteiner M.
      Amino acid sequences common to rapidly degraded proteins:
      The PEST hypothesis
      Science 234, 364-368 (1986)

<li>Rechsteiner M., Rogers S., Rote K.
      Protein structure and intracellular stability
      Trends Biochem. Sci. 12, 390-394 (1987)

<li>Rechsteiner M. and Rogers S.W.
      PEST sequences and regulation by proteolysis
      Trends Biochem. Sci. 21, 267-271 (1996)

<li>J. Kyte and R.F. Dootlittle
      A simple method for displaying the hydropathic character of a protein
      J. Mol. Biol. 157, 105 (1982)

</ol>

<H2>
    Warnings
</H2>

None.

<H2>
    Diagnostic Error Messages
</H2>

None.

<H2>
    Exit status
</H2>

It always exits with status 0.

<H2>
    Known bugs
</H2>

None.


<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th>
<th>Description</th></tr>
<tr>
<td><a href="antigenic.html">antigenic</a></td>
<td>Find antigenic sites in proteins</td>
</tr>

<tr>
<td><a href="fuzzpro.html">fuzzpro</a></td>
<td>Search for patterns in protein sequences</td>
</tr>

<tr>
<td><a href="fuzztran.html">fuzztran</a></td>
<td>Search for patterns in protein sequences (translated)</td>
</tr>

<tr>
<td><a href="patmatdb.html">patmatdb</a></td>
<td>Search protein sequences with a sequence motif</td>
</tr>

<tr>
<td><a href="patmatmotifs.html">patmatmotifs</a></td>
<td>Scan a protein sequence with motifs from the PROSITE database</td>
</tr>

<tr>
<td><a href="preg.html">preg</a></td>
<td>Regular expression search of protein sequence(s)</td>
</tr>

<tr>
<td><a href="pscan.html">pscan</a></td>
<td>Scan protein sequence(s) with fingerprints from the PRINTS database</td>
</tr>

<tr>
<td><a href="sigcleave.html">sigcleave</a></td>
<td>Report on signal cleavage sites in a protein sequence</td>
</tr>

</table>

<H2>
    Author(s)
</H2>

Michael K. Schuster and Martin Grabner formerly at:
<br>
Austrian National EMBnet node.

<p>
Please report all bugs to the EMBOSS bug team (emboss-bug&nbsp;&copy;&nbsp;emboss.open-bio.org) not to the original author.<p>

Original program 'epestfind' by Scott Rogers and Martin Rechsteiner
(C)1986. 

<H2>
    History
</H2>


This is based on the algorithm used in the QuickBasic program by Rodgers et al.

<p>

Written (March 2002).

<H2>
    Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.

<H2>
    Comments
</H2>
None
</BODY>
</HTML>