1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
|
<HTML>
<HEAD>
<TITLE>
EMBOSS: eprimer32
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="/images/emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
eprimer32
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Wiki
</H2>
The master copies of EMBOSS documentation are available
at <a href="http://emboss.open-bio.org/wiki/Appdocs">
http://emboss.open-bio.org/wiki/Appdocs</a>
on the EMBOSS Wiki.
<p>
Please help by correcting and extending the Wiki pages.
<H2>
Function
</H2>
Pick PCR primers and hybridization oligos
<H2>
Description
</H2>
<b>eprimer32</b> is an interface to the 'primer3' program (2.x series)
from the Whitehead Institute.
<p>
The Whitehead program must be set up and on the path in order for
<b>eprimer32</b> to find and run it. The Whitehead executable must
be renamed to primer32_core (or a link added) to avoid conflict
with the <b>eprimer3</b> application.
<p>
Primer3 picks primers for PCR reactions, considering as criteria:
<p>
<UL>
<LI>oligonucleotide melting temperature, size, GC content,
and primer-dimer possibilities
<LI>PCR product size
<LI>positional constraints within the source sequence
<LI>miscellaneous other constraints.
</UL>
<p>
All of these criteria are user-specifiable as constraints.
<p>
<b>eprimer32</b> can also pick hybridisation oligos that are internal to
the product.
<H3>Advice for picking primers</H3>
We suggest referring to: Wojciech Rychlik, "Selection of Primers
for Polymerase Chain Reaction" in BA White, Ed., "Methods in
Molecular Biology, Vol. 15: PCR Protocols: Current Methods and
Applications", 1993, pp 31-40, Humana Press, Totowa NJ
<H4>Cautions</H4>
Some of the most important issues in primer picking can be
addressed only before using eprimer32. These are sequence quality
(including making sure the sequence is not vector and not
chimeric) and avoiding repetitive elements.
<p>
Techniques for avoiding problems include a thorough understanding
of possible vector contaminants and cloning artifacts coupled
with database searches using blast, fasta, or other similarity
searching program to screen for vector contaminants and possible
repeats. Repbase (J. Jurka, A.F.A. Smit, C. Pethiyagoda, and
others, 1995-1996, ftp://ncbi.nlm.nih.gov/repository/repbase)
is an excellent source of repeat sequences and pointers to the
literature. eprimer32 now allows you to screen candidate oligos
against a Mispriming Library (or a Mishyb Library in the case
of internal oligos).
<p>
Sequence quality can be controlled by manual trace viewing and
quality clipping or automatic quality clipping programs. Low-
quality bases should be changed to N's or can be made part of
Excluded Regions. The beginning of a sequencing read is often
problematic because of primer peaks, and the end of the read
often contains many low-quality or even meaningless called bases.
Therefore when picking primers from single-pass sequence it is
often best to use the INCLUDED_REGION parameter to ensure that
eprimer32 chooses primers in the high quality region of the read.
<p>
In addition, eprimer32 takes as input a Sequence Quality list for
use with those base calling programs
<p>
(e.g. Phred, Bass/Grace, Trout) that output this information.
<H4>What to do if eprimer32 cannot find a primers?</H4>
Try relaxing various parameters, including the
self-complementarity parameters and max and min oligo melting
temperatures. For example, for very A-T-rich regions you might
have to increase maximum primer size or decrease minimum melting
temperature. It is usually unwise to reduce the minimum primer
size if your template is complex (e.g. a mammalian genome), since
small primers are more likely to be non-specific. Make sure that
there are adequate stretches of non-Ns in the regions in which
you wish to pick primers. If necessary you can also allow an N
in your primer and use an oligo mixture containing all four bases
at that position.
<p>
Try setting the '-explainflag' option.
<H2>
Usage
</H2>
Here is a sample session with <b>eprimer32</b>
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>eprimer32 tembl:x65921 x65921.eprimer32 -explain </b>
Pick PCR primers and hybridization oligos
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Pick PCR primers and hybridization oligos
Version: EMBOSS:6.6.0.0
Standard (Mandatory) qualifiers:
[-sequence] seqall The sequence from which to choose primers.
The sequence must be presented 5' to 3'
[-outfile] outfile [*.eprimer32] Whitehead primer3_core program
output file
Additional (Optional) qualifiers (* if not always prompted):
-[no]primer toggle [Y] Tell Eprimer32 to pick primer(s)
* -task menu [1] Tell Eprimer32 what task to perform.
Legal values are 1: 'Pick PCR primers', 2:
'Pick forward primer only', 3: 'Pick reverse
primer only', 4: 'No primers needed'.
(Values: 1 (Pick PCR primers); 2 (Pick
forward primer only); 3 (Pick reverse primer
only); 4 (No primers needed))
-hybridprobe toggle [N] An 'internal oligo' is intended to be
used as a hybridization probe (hyb probe) to
detect the PCR product after amplification.
* -mishyblibraryfile infile Similar to MISPRIMING-LIBRARY, except that
the event we seek to avoid is hybridization
of the internal oligo to sequences in this
library rather than priming from them.
The file must be in (a slightly restricted)
FASTA format (W. B. Pearson and D.J. Lipman,
PNAS 85:8 pp 2444-2448 [1988]); we briefly
discuss the organization of this file below.
If this parameter is specified then
Eprimer32 locally aligns each candidate
oligo against each library sequence and
rejects those primers for which the local
alignment score times a specified weight
(see below) exceeds
INTERNAL-OLIGO-MAX-MISHYB. (The maximum
value of the weight is arbitrarily set to
12.0.)
Each sequence entry in the FASTA-format file
must begin with an 'id line' that starts
with '>'. The contents of the id line is
'slightly restricted' in that Eprimer32
parses everything after any optional
asterisk ('*') as a floating point number to
use as the weight mentioned above. If the
id line contains no asterisk then the weight
defaults to 1.0. The alignment scoring
system used is the same as for calculating
complementarity among oligos (e.g.
SELF-ANY). The remainder of an entry
contains the sequence as lines following the
id line up until a line starting with '>'
or the end of the file. Whitespace and
newlines are ignored. Characters 'A', 'T',
'G', 'C', 'a', 't', 'g', 'c' are retained
and any other character is converted to 'N'
(with the consequence that any IUB / IUPAC
codes for ambiguous bases are converted to
'N'). There are no restrictions on line
length.
An empty value for this parameter indicates
that no library should be used.
-numreturn integer [5] The maximum number of primer pairs to
return. Primer pairs returned are sorted by
their 'quality', in other words by the value
of the objective function (where a lower
number indicates a better primer pair).
Caution: setting this parameter to a large
value will increase running time. (Integer 0
or more)
-includedregion range [(full sequence)] A sub-region of the given
sequence in which to pick primers. For
example, often the first dozen or so bases
of a sequence are vector, and should be
excluded from consideration. The value for
this parameter has the form
(start),(end)
where (start) is the index of the first base
to consider, and (end) is the last in the
primer-picking region.
-targetregion range [(full sequence)] If one or more Targets is
specified then a legal primer pair must
flank at least one of them. A Target might
be a simple sequence repeat site (for
example a CA repeat) or a single-base-pair
polymorphism. The value should be a
space-separated list of
(start),(end)
pairs where (start) is the index of the
first base of a Target, and (end) is the
last
E.g. 50,51 requires primers to surround the
2 bases at positions 50 and 51.
-excludedregion range [(full sequence)] Primer oligos may not
overlap any region specified in this tag.
The associated value must be a
space-separated list of
(start),(end)
pairs where (start) is the index of the
first base of the excluded region, and and
(end) is the last. This tag is useful for
tasks such as excluding regions of low
sequence quality or for excluding regions
containing repetitive elements such as ALUs
or LINEs.
E.g. 401,407 68,70 forbids selection of
primers in the 7 bases starting at 401 and
the 3 bases at 68.
-forwardinput string The sequence of a forward primer to check
and around which to design reverse primers
and optional internal oligos. Must be a
substring of SEQUENCE. (Any string)
-reverseinput string The sequence of a reverse primer to check
and around which to design forward primers
and optional internal oligos. Must be a
substring of the reverse strand of SEQUENCE.
(Any string)
-okleftregion range [(full sequence)] Possible left primer of
pair location
-okrightregion range [(full sequence)] Possible right primer of
pair location
* -gcclamp integer [0] Require the specified number of
consecutive Gs and Cs at the 3' end of both
the forward and reverse primer. (This
parameter has no effect on the internal
oligo if one is requested.) (Integer 0 or
more)
* -optsize integer [20] Optimum length (in bases) of a primer
oligo. Eprimer32 will attempt to pick
primers close to this length. (Integer 0 or
more)
* -minsize integer [18] Minimum acceptable length of a primer.
Must be greater than 0 and less than or
equal to MAX-SIZE. (Integer 1 or more)
* -maxsize integer [27] Maximum acceptable length (in bases) of
a primer. Currently this parameter cannot
be larger than 35. This limit is governed by
the maximum oligo size for which
Eprimer32's melting-temperature is valid.
(Integer up to 35)
* -opttm float [60.0] Optimum melting temperature(Celsius)
for a primer oligo. Eprimer32 will try to
pick primers with melting temperatures are
close to this temperature. The oligo melting
temperature formula in Eprimer32 is that
given in Rychlik, Spencer and Rhoads,
Nucleic Acids Research, vol 18, num 21, pp
6409-6412 and Breslauer, Frank, Bloecker and
Marky, Proc. Natl. Acad. Sci. USA, vol 83,
pp 3746-3750. Please refer to the former
paper for background discussion. (Any
numeric value)
* -mintm float [57.0] Minimum acceptable melting
temperature(Celsius) for a primer oligo.
(Any numeric value)
* -maxtm float [63.0] Maximum acceptable melting
temperature(Celsius) for a primer oligo.
(Any numeric value)
* -maxdifftm float [100.0] Maximum acceptable (unsigned)
difference between the melting temperatures
of the forward and reverse primers. (Any
numeric value)
* -ogcpercent float [50.0] Primer optimum GC percent. (Any
numeric value)
* -mingc float [20.0] Minimum allowable percentage of Gs
and Cs in any primer. (Any numeric value)
* -maxgc float [80.0] Maximum allowable percentage of Gs
and Cs in any primer generated by Primer.
(Any numeric value)
* -saltconc float [50.0] The millimolar concentration of salt
(usually KCl) in the PCR. Eprimer32 uses
this argument to calculate oligo melting
temperatures. (Any numeric value)
* -dnaconc float [50.0] The nanomolar concentration of
annealing oligos in the PCR. Eprimer32 uses
this argument to calculate oligo melting
temperatures. The default (50nM) works well
with the standard protocol used at the
Whitehead/MIT Center for Genome
Research--0.5 microliters of 20 micromolar
concentration for each primer oligo in a 20
microliter reaction with 10 nanograms
template, 0.025 units/microliter Taq
polymerase in 0.1 mM each dNTP, 1.5mM MgCl2,
50mM KCl, 10mM Tris-HCL (pH 9.3) using 35
cycles with an annealing temperature of 56
degrees Celsius. This parameter corresponds
to 'c' in Rychlik, Spencer and Rhoads'
equation (ii) (Nucleic Acids Research, vol
18, num 21) where a suitable value (for a
lower initial concentration of template) is
'empirically determined'. The value of this
parameter is less than the actual
concentration of oligos in the reaction
because it is the concentration of annealing
oligos, which in turn depends on the amount
of template (including PCR product) in a
given cycle. This concentration increases a
great deal during a PCR; fortunately PCR
seems quite robust for a variety of oligo
melting temperatures.
See ADVICE FOR PICKING PRIMERS. (Any numeric
value)
* -maxpolyx integer [5] The maximum allowable length of a
mononucleotide repeat in a primer, for
example AAAAAA. (Integer 0 or more)
* -psizeopt integer [200] The optimum size for the PCR product.
0 indicates that there is no optimum product
size. (Integer 0 or more)
* -prange range [100-300] The associated values specify the
lengths of the product that the user wants
the primers to create, and is a space
separated list of elements of the form
(x)-(y)
where an (x)-(y) pair is a legal range of
lengths for the product. For example, if one
wants PCR products to be between 100 to 150
bases (inclusive) then one would set this
parameter to 100-150. If one desires PCR
products in either the range from 100 to 150
bases or in the range from 200 to 250 bases
then one would set this parameter to
100-150 200-250.
Eprimer32 favours ranges to the left side of
the parameter string. Eprimer32 will return
legal primers pairs in the first range
regardless the value of the objective
function for these pairs. Only if there are
an insufficient number of primers in the
first range will Eprimer32 return primers in
a subsequent range.
* -ptmopt float [0.0] The optimum melting temperature for
the PCR product. 0 indicates that there is
no optimum temperature. (Any numeric value)
* -ptmmin float [-1000000.0] The minimum allowed melting
temperature of the amplicon. Please see the
documentation on the maximum melting
temperature of the product for details. (Any
numeric value)
* -ptmmax float [1000000.0] The maximum allowed melting
temperature of the amplicon. Product Tm is
calculated using the formula from Bolton and
McCarthy, PNAS 84:1390 (1962) as presented
in Sambrook, Fritsch and Maniatis, Molecular
Cloning, p 11.46 (1989, CSHL Press).
Tm = 81.5 + 16.6(log10([Na+])) + .41*(%GC) -
600/length
Where [Na+} is the molar sodium
concentration, (%GC) is the percent of Gs
and Cs in the sequence, and length is the
length of the sequence.
A similar formula is used by the prime
primer selection program in GCG, which
instead uses 675.0/length in the last term
(after F. Baldino, Jr, M.-F. Chesselet, and
M.E. Lewis, Methods in Enzymology 168:766
(1989) eqn (1) on page 766 without the
mismatch and formamide terms). The formulas
here and in Baldino et al. assume Na+ rather
than K+. According to J.G. Wetmur, Critical
Reviews in BioChem. and Mol. Bio. 26:227
(1991) 50 mM K+ should be equivalent in
these formulae to .2 M Na+. Eprimer32 uses
the same salt concentration value for
calculating both the primer melting
temperature and the oligo melting
temperature. If you are planning to use the
PCR product for hybridization later this
behavior will not give you the Tm under
hybridization conditions. (Any numeric
value)
* -oexcludedregion range [(full sequence)] Middle oligos may not
overlap any region specified by this tag.
The associated value must be a
space-separated list of
(start),(end)
pairs, where (start) is the index of the
first base of an excluded region, and (end)
is the last. Often one would make Target
regions excluded regions for internal
oligos.
* -oligoinput string The sequence of an internal oligo to check
and around which to design forward and
reverse primers. Must be a substring of
SEQUENCE. (Any string)
* -osizeopt integer [20] Optimum length (in bases) of an
internal oligo. Eprimer32 will attempt to
pick primers close to this length. (Integer
0 or more)
* -ominsize integer [18] Minimum acceptable length of an
internal oligo. Must be greater than 0 and
less than or equal to
INTERNAL-OLIGO-MAX-SIZE. (Integer 0 or more)
* -omaxsize integer [27] Maximum acceptable length (in bases) of
an internal oligo. Currently this parameter
cannot be larger than 35. This limit is
governed by maximum oligo size for which
Eprimer32's melting-temperature is valid.
(Integer up to 35)
* -otmopt float [60.0] Optimum melting temperature (Celsius)
for an internal oligo. Eprimer32 will try
to pick oligos with melting temperatures
that are close to this temperature. The
oligo melting temperature formula in
Eprimer32 is that given in Rychlik, Spencer
and Rhoads, Nucleic Acids Research, vol 18,
num 21, pp 6409-6412 and Breslauer, Frank,
Bloecker and Marky, Proc. Natl. Acad. Sci.
USA, vol 83, pp 3746-3750. Please refer to
the former paper for background discussion.
(Any numeric value)
* -otmmin float [57.0] Minimum acceptable melting
temperature(Celsius) for an internal oligo.
(Any numeric value)
* -otmmax float [63.0] Maximum acceptable melting
temperature (Celsius) for an internal oligo.
(Any numeric value)
* -ogcopt float [50.0] Internal oligo optimum GC percent.
(Any numeric value)
* -ogcmin float [20.0] Minimum allowable percentage of Gs
and Cs in an internal oligo. (Any numeric
value)
* -ogcmax float [80.0] Maximum allowable percentage of Gs
and Cs in any internal oligo generated by
Primer. (Any numeric value)
* -osaltconc float [50.0] The millimolar concentration of salt
(usually KCl) in the hybridization.
Eprimer32 uses this argument to calculate
internal oligo melting temperatures. (Any
numeric value)
* -odnaconc float [50.0] The nanomolar concentration of
annealing internal oligo in the
hybridization. (Any numeric value)
* -oanyself float [12.00] The maximum allowable local
alignment score when testing an internal
oligo for (local) self-complementarity.
Local self-complementarity is taken to
predict the tendency of oligos to anneal to
themselves The scoring system gives 1.00 for
complementary bases, -0.25 for a match of
any base (or N) with an N, -1.00 for a
mismatch, and -2.00 for a gap. Only
single-base-pair gaps are allowed. For
example, the alignment
5' ATCGNA 3'
|| | |
3' TA-CGT 5'
is allowed (and yields a score of 1.75), but
the alignment
5' ATCCGNA 3'
|| | |
3' TA--CGT 5'
is not considered. Scores are non-negative,
and a score of 0.00 indicates that there is
no reasonable local alignment between two
oligos. (Number up to 9999.990)
* -oendself float [12.00] The maximum allowable 3'-anchored
global alignment score when testing a single
oligo for self-complementarity.
The scoring system is as for the Maximum
Complementarity argument. In the examples
above the scores are 7.00 and 6.00
respectively. Scores are non-negative, and a
score of 0.00 indicates that there is no
reasonable 3'-anchored global alignment
between two oligos. In order to estimate
3'-anchored global alignments for candidate
oligos, Primer assumes that the sequence
from which to choose oligos is presented 5'
to 3'.
INTERNAL-OLIGO-SELF-END is meaningless when
applied to internal oligos used for
hybridization-based detection, since
primer-dimer will not occur. We recommend
that INTERNAL-OLIGO-SELF-END be set at least
as high as INTERNAL-OLIGO-SELF-ANY. (Number
up to 9999.990)
* -opolyxmax integer [5] The maximum allowable length of an
internal oligo mononucleotide repeat, for
example AAAAAA. (Integer 0 or more)
* -omishybmax float [12.0] Similar to MAX-MISPRIMING except that
this parameter applies to the similarity of
candidate internal oligos to the library
specified in INTERNAL-OLIGO-MISHYB-LIBRARY.
(Number up to 9999.990)
Advanced (Unprompted) qualifiers:
-mispriminglibraryfile infile The name of a file containing a nucleotide
sequence library of sequences to avoid
amplifying (for example repetitive
sequences, or possibly the sequences of
genes in a gene family that should not be
amplified.) The file must be in (a slightly
restricted) FASTA format (W. B. Pearson and
D.J. Lipman, PNAS 85:8 pp 2444-2448 [1988]);
we briefly discuss the organization of this
file below. If this parameter is specified
then Eprimer32 locally aligns each candidate
primer against each library sequence and
rejects those primers for which the local
alignment score times a specified weight
(see below) exceeds MAX-MISPRIMING. (The
maximum value of the weight is arbitrarily
set to 100.0.)
Each sequence entry in the FASTA-format file
must begin with an 'id line' that starts
with '>'. The contents of the id line is
'slightly restricted' in that Eprimer32
parses everything after any optional
asterisk ('*') as a floating point number to
use as the weight mentioned above. If the
id line contains no asterisk then the weight
defaults to 1.0. The alignment scoring
system used is the same as for calculating
complementarity among oligos (e.g.
SELF-ANY). The remainder of an entry
contains the sequence as lines following the
id line up until a line starting with '>'
or the end of the file. Whitespace and
newlines are ignored. Characters 'A', 'T',
'G', 'C', 'a', 't', 'g', 'c' are retained
and any other character is converted to 'N'
(with the consequence that any IUB / IUPAC
codes for ambiguous bases are converted to
'N'). There are no restrictions on line
length.
An empty value for this parameter indicates
that no repeat library should be used.
-explainflag boolean [N] If this flag is true, produce
LEFT-EXPLAIN, RIGHT-EXPLAIN, and
INTERNAL-OLIGO-EXPLAIN output tags, which
are intended to provide information on the
number of oligos and primer pairs that
Eprimer32 examined, and statistics on the
number discarded for various reasons.
-fileflag boolean [N] If the associated value is true, then
Eprimer32 creates two output files for each
input SEQUENCE. File (sequence-id).for lists
all acceptable forward primers for
(sequence-id), and (sequence-id).rev lists
all acceptable reverse primers for
(sequence-id), where (sequence-id) is the
value of the SEQUENCE-ID tag (which must be
supplied). In addition, if the input tag
TASK is 1 or 4, Eprimer32 produces a file
(sequence-id).int, which lists all
acceptable internal oligos.
-pickanyway boolean [N] If true pick a primer pair even if
LEFT-INPUT, RIGHT-INPUT, or
INTERNAL-OLIGO-INPUT violates specific
constraints.
-maxmispriming float [12.00] The maximum allowed weighted
similarity with any sequence in
MISPRIMING-LIBRARY. (Number up to 9999.990)
-pairmaxmispriming float [24.00] The maximum allowed sum of weighted
similarities of a primer pair (one
similarity for each primer) with any single
sequence in MISPRIMING-LIBRARY. (Number up
to 9999.990)
-numnsaccepted integer [0] Maximum number of unknown bases (N)
allowable in any primer. (Integer 0 or more)
-selfany float [8.00] The maximum allowable local alignment
score when testing a single primer for
(local) self-complementarity and the maximum
allowable local alignment score when
testing for complementarity between forward
and reverse primers. Local
self-complementarity is taken to predict the
tendency of primers to anneal to each other
without necessarily causing self-priming in
the PCR. The scoring system gives 1.00 for
complementary bases, -0.25 for a match of
any base (or N) with an N, -1.00 for a
mismatch, and -2.00 for a gap. Only
single-base-pair gaps are allowed. For
example, the alignment
5' ATCGNA 3'
...|| | |
3' TA-CGT 5'
is allowed (and yields a score of 1.75), but
the alignment
5' ATCCGNA 3'
...|| | |
3' TA--CGT 5'
is not considered. Scores are non-negative,
and a score of 0.00 indicates that there is
no reasonable local alignment between two
oligos. (Number from 0.000 to 9999.990)
-selfend float [3.00] The maximum allowable 3'-anchored
global alignment score when testing a single
primer for self-complementarity, and the
maximum allowable 3'-anchored global
alignment score when testing for
complementarity between forward and reverse
primers. The 3'-anchored global alignment
score is taken to predict the likelihood of
PCR-priming primer-dimers, for example
5' ATGCCCTAGCTTCCGGATG 3'
.............||| |||||
..........3' AAGTCCTACATTTAGCCTAGT 5'
or
5' AGGCTATGGGCCTCGCGA 3'
...............||||||
............3' AGCGCTCCGGGTATCGGA 5'
The scoring system is as for the Maximum
Complementarity argument. In the examples
above the scores are 7.00 and 6.00
respectively. Scores are non-negative, and a
score of 0.00 indicates that there is no
reasonable 3'-anchored global alignment
between two oligos. In order to estimate
3'-anchored global alignments for candidate
primers and primer pairs, Primer assumes
that the sequence from which to choose
primers is presented 5' to 3'. It is
nonsensical to provide a larger value for
this parameter than for the Maximum (local)
Complementarity parameter because the score
of a local alignment will always be at least
as great as the score of a global
alignment. (Number 0.000 or more)
-scorrection menu [1] Specifies the salt correction formula
for the melting temperature calculation.
(Values: 0 (Schildkraut & Lifson); 1
(SantaLucia); 2 (Owczarzy et al))
-tmformula menu [1] Specifies details of melting temperature
calculation. (Values: 0 (Breslauer et al);
1 (SantaLucia))
-maxendstability float [9.0] The maximum stability for the five 3'
bases of a forward or reverse primer. Bigger
numbers mean more stable 3' ends. The value
is the maximum delta G for duplex
disruption for the five 3' bases as
calculated using the nearest neighbor
parameters published in Breslauer, Frank,
Bloecker and Marky, Proc. Natl. Acad. Sci.
USA, vol 83, pp 3746-3750. Eprimer32 uses a
completely permissive default value for
backward compatibility (which we may change
in the next release). Rychlik recommends a
maximum value of 9 (Wojciech Rychlik,
'Selection of Primers for Polymerase Chain
Reaction' in BA White, Ed., 'Methods in
Molecular Biology, Vol. 15: PCR Protocols:
Current Methods and Applications', 1993, pp
31-40, Humana Press, Totowa NJ). (Number up
to 1000.000)
Associated qualifiers:
"-sequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-scircular1 boolean Sequence is circular
-squick1 boolean Read id and sequence only
-sformat1 string Input sequence format
-iquery1 string Input query fields or ID list
-ioffset1 integer Input start position offset
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outfile" associated qualifiers
-odirectory2 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write first file to standard output
-filter boolean Read first file from standard input, write
first file to standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options and exit. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
-version boolean Report version number and exit
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left">Qualifier</th>
<th align="left">Type</th>
<th align="left">Description</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Standard (Mandatory) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-sequence]<br>(Parameter 1)</td>
<td>seqall</td>
<td>The sequence from which to choose primers. The sequence must be presented 5' to 3'</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-outfile]<br>(Parameter 2)</td>
<td>outfile</td>
<td>Whitehead primer3_core program output file</td>
<td>Output file</td>
<td><i><*></i>.eprimer32</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Additional (Optional) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>-[no]primer</td>
<td>toggle</td>
<td>Tell Eprimer32 to pick primer(s)</td>
<td>Toggle value Yes/No</td>
<td>Yes</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-task</td>
<td>list</td>
<td>Tell Eprimer32 what task to perform. Legal values are 1: 'Pick PCR primers', 2: 'Pick forward primer only', 3: 'Pick reverse primer only', 4: 'No primers needed'.</td>
<td><table><tr><td>1</td> <td><i>(Pick PCR primers)</i></td></tr><tr><td>2</td> <td><i>(Pick forward primer only)</i></td></tr><tr><td>3</td> <td><i>(Pick reverse primer only)</i></td></tr><tr><td>4</td> <td><i>(No primers needed)</i></td></tr></table></td>
<td>1</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-hybridprobe</td>
<td>toggle</td>
<td>An 'internal oligo' is intended to be used as a hybridization probe (hyb probe) to detect the PCR product after amplification.</td>
<td>Toggle value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-mishyblibraryfile</td>
<td>infile</td>
<td>Similar to MISPRIMING-LIBRARY, except that the event we seek to avoid is hybridization of the internal oligo to sequences in this library rather than priming from them.
The file must be in (a slightly restricted) FASTA format (W. B. Pearson and D.J. Lipman, PNAS 85:8 pp 2444-2448 [1988]); we briefly discuss the organization of this file below. If this parameter is specified then Eprimer32 locally aligns each candidate oligo against each library sequence and rejects those primers for which the local alignment score times a specified weight (see below) exceeds INTERNAL-OLIGO-MAX-MISHYB. (The maximum value of the weight is arbitrarily set to 12.0.)
Each sequence entry in the FASTA-format file must begin with an 'id line' that starts with '>'. The contents of the id line is 'slightly restricted' in that Eprimer32 parses everything after any optional asterisk ('*') as a floating point number to use as the weight mentioned above. If the id line contains no asterisk then the weight defaults to 1.0. The alignment scoring system used is the same as for calculating complementarity among oligos (e.g. SELF-ANY). The remainder of an entry contains the sequence as lines following the id line up until a line starting with '>' or the end of the file. Whitespace and newlines are ignored. Characters 'A', 'T', 'G', 'C', 'a', 't', 'g', 'c' are retained and any other character is converted to 'N' (with the consequence that any IUB / IUPAC codes for ambiguous bases are converted to 'N'). There are no restrictions on line length.
An empty value for this parameter indicates that no library should be used.</td>
<td>Input file</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-numreturn</td>
<td>integer</td>
<td>The maximum number of primer pairs to return. Primer pairs returned are sorted by their 'quality', in other words by the value of the objective function (where a lower number indicates a better primer pair). Caution: setting this parameter to a large value will increase running time.</td>
<td>Integer 0 or more</td>
<td>5</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-includedregion</td>
<td>range</td>
<td>A sub-region of the given sequence in which to pick primers. For example, often the first dozen or so bases of a sequence are vector, and should be excluded from consideration. The value for this parameter has the form
(start),(end)
where (start) is the index of the first base to consider, and (end) is the last in the primer-picking region.</td>
<td>Sequence range</td>
<td><i>full sequence</i></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-targetregion</td>
<td>range</td>
<td>If one or more Targets is specified then a legal primer pair must flank at least one of them. A Target might be a simple sequence repeat site (for example a CA repeat) or a single-base-pair polymorphism. The value should be a space-separated list of
(start),(end)
pairs where (start) is the index of the first base of a Target, and (end) is the last
E.g. 50,51 requires primers to surround the 2 bases at positions 50 and 51.</td>
<td>Sequence range</td>
<td><i>full sequence</i></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-excludedregion</td>
<td>range</td>
<td>Primer oligos may not overlap any region specified in this tag. The associated value must be a space-separated list of
(start),(end)
pairs where (start) is the index of the first base of the excluded region, and and (end) is the last. This tag is useful for tasks such as excluding regions of low sequence quality or for excluding regions containing repetitive elements such as ALUs or LINEs.
E.g. 401,407 68,70 forbids selection of primers in the 7 bases starting at 401 and the 3 bases at 68.</td>
<td>Sequence range</td>
<td><i>full sequence</i></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-forwardinput</td>
<td>string</td>
<td>The sequence of a forward primer to check and around which to design reverse primers and optional internal oligos. Must be a substring of SEQUENCE.</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-reverseinput</td>
<td>string</td>
<td>The sequence of a reverse primer to check and around which to design forward primers and optional internal oligos. Must be a substring of the reverse strand of SEQUENCE.</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-okleftregion</td>
<td>range</td>
<td>Possible left primer of pair location</td>
<td>Sequence range</td>
<td><i>full sequence</i></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-okrightregion</td>
<td>range</td>
<td>Possible right primer of pair location</td>
<td>Sequence range</td>
<td><i>full sequence</i></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-gcclamp</td>
<td>integer</td>
<td>Require the specified number of consecutive Gs and Cs at the 3' end of both the forward and reverse primer. (This parameter has no effect on the internal oligo if one is requested.)</td>
<td>Integer 0 or more</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-optsize</td>
<td>integer</td>
<td>Optimum length (in bases) of a primer oligo. Eprimer32 will attempt to pick primers close to this length.</td>
<td>Integer 0 or more</td>
<td>20</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-minsize</td>
<td>integer</td>
<td>Minimum acceptable length of a primer. Must be greater than 0 and less than or equal to MAX-SIZE.</td>
<td>Integer 1 or more</td>
<td>18</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-maxsize</td>
<td>integer</td>
<td>Maximum acceptable length (in bases) of a primer. Currently this parameter cannot be larger than 35. This limit is governed by the maximum oligo size for which Eprimer32's melting-temperature is valid.</td>
<td>Integer up to 35</td>
<td>27</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-opttm</td>
<td>float</td>
<td>Optimum melting temperature(Celsius) for a primer oligo. Eprimer32 will try to pick primers with melting temperatures are close to this temperature. The oligo melting temperature formula in Eprimer32 is that given in Rychlik, Spencer and Rhoads, Nucleic Acids Research, vol 18, num 21, pp 6409-6412 and Breslauer, Frank, Bloecker and Marky, Proc. Natl. Acad. Sci. USA, vol 83, pp 3746-3750. Please refer to the former paper for background discussion.</td>
<td>Any numeric value</td>
<td>60.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-mintm</td>
<td>float</td>
<td>Minimum acceptable melting temperature(Celsius) for a primer oligo.</td>
<td>Any numeric value</td>
<td>57.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-maxtm</td>
<td>float</td>
<td>Maximum acceptable melting temperature(Celsius) for a primer oligo.</td>
<td>Any numeric value</td>
<td>63.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-maxdifftm</td>
<td>float</td>
<td>Maximum acceptable (unsigned) difference between the melting temperatures of the forward and reverse primers.</td>
<td>Any numeric value</td>
<td>100.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-ogcpercent</td>
<td>float</td>
<td>Primer optimum GC percent.</td>
<td>Any numeric value</td>
<td>50.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-mingc</td>
<td>float</td>
<td>Minimum allowable percentage of Gs and Cs in any primer.</td>
<td>Any numeric value</td>
<td>20.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-maxgc</td>
<td>float</td>
<td>Maximum allowable percentage of Gs and Cs in any primer generated by Primer.</td>
<td>Any numeric value</td>
<td>80.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-saltconc</td>
<td>float</td>
<td>The millimolar concentration of salt (usually KCl) in the PCR. Eprimer32 uses this argument to calculate oligo melting temperatures.</td>
<td>Any numeric value</td>
<td>50.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-dnaconc</td>
<td>float</td>
<td>The nanomolar concentration of annealing oligos in the PCR. Eprimer32 uses this argument to calculate oligo melting temperatures. The default (50nM) works well with the standard protocol used at the Whitehead/MIT Center for Genome Research--0.5 microliters of 20 micromolar concentration for each primer oligo in a 20 microliter reaction with 10 nanograms template, 0.025 units/microliter Taq polymerase in 0.1 mM each dNTP, 1.5mM MgCl2, 50mM KCl, 10mM Tris-HCL (pH 9.3) using 35 cycles with an annealing temperature of 56 degrees Celsius. This parameter corresponds to 'c' in Rychlik, Spencer and Rhoads' equation (ii) (Nucleic Acids Research, vol 18, num 21) where a suitable value (for a lower initial concentration of template) is 'empirically determined'. The value of this parameter is less than the actual concentration of oligos in the reaction because it is the concentration of annealing oligos, which in turn depends on the amount of template (including PCR product) in a given cycle. This concentration increases a great deal during a PCR; fortunately PCR seems quite robust for a variety of oligo melting temperatures.
See ADVICE FOR PICKING PRIMERS.</td>
<td>Any numeric value</td>
<td>50.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-maxpolyx</td>
<td>integer</td>
<td>The maximum allowable length of a mononucleotide repeat in a primer, for example AAAAAA.</td>
<td>Integer 0 or more</td>
<td>5</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-psizeopt</td>
<td>integer</td>
<td>The optimum size for the PCR product. 0 indicates that there is no optimum product size.</td>
<td>Integer 0 or more</td>
<td>200</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-prange</td>
<td>range</td>
<td>The associated values specify the lengths of the product that the user wants the primers to create, and is a space separated list of elements of the form
(x)-(y)
where an (x)-(y) pair is a legal range of lengths for the product. For example, if one wants PCR products to be between 100 to 150 bases (inclusive) then one would set this parameter to 100-150. If one desires PCR products in either the range from 100 to 150 bases or in the range from 200 to 250 bases then one would set this parameter to 100-150 200-250.
Eprimer32 favours ranges to the left side of the parameter string. Eprimer32 will return legal primers pairs in the first range regardless the value of the objective function for these pairs. Only if there are an insufficient number of primers in the first range will Eprimer32 return primers in a subsequent range.</td>
<td>Sequence range</td>
<td>100-300</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-ptmopt</td>
<td>float</td>
<td>The optimum melting temperature for the PCR product. 0 indicates that there is no optimum temperature.</td>
<td>Any numeric value</td>
<td>0.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-ptmmin</td>
<td>float</td>
<td>The minimum allowed melting temperature of the amplicon. Please see the documentation on the maximum melting temperature of the product for details.</td>
<td>Any numeric value</td>
<td>-1000000.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-ptmmax</td>
<td>float</td>
<td>The maximum allowed melting temperature of the amplicon. Product Tm is calculated using the formula from Bolton and McCarthy, PNAS 84:1390 (1962) as presented in Sambrook, Fritsch and Maniatis, Molecular Cloning, p 11.46 (1989, CSHL Press).
Tm = 81.5 + 16.6(log10([Na+])) + .41*(%GC) - 600/length
Where [Na+} is the molar sodium concentration, (%GC) is the percent of Gs and Cs in the sequence, and length is the length of the sequence.
A similar formula is used by the prime primer selection program in GCG, which instead uses 675.0/length in the last term (after F. Baldino, Jr, M.-F. Chesselet, and M.E. Lewis, Methods in Enzymology 168:766 (1989) eqn (1) on page 766 without the mismatch and formamide terms). The formulas here and in Baldino et al. assume Na+ rather than K+. According to J.G. Wetmur, Critical Reviews in BioChem. and Mol. Bio. 26:227 (1991) 50 mM K+ should be equivalent in these formulae to .2 M Na+. Eprimer32 uses the same salt concentration value for calculating both the primer melting temperature and the oligo melting temperature. If you are planning to use the PCR product for hybridization later this behavior will not give you the Tm under hybridization conditions.</td>
<td>Any numeric value</td>
<td>1000000.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-oexcludedregion</td>
<td>range</td>
<td>Middle oligos may not overlap any region specified by this tag. The associated value must be a space-separated list of
(start),(end)
pairs, where (start) is the index of the first base of an excluded region, and (end) is the last. Often one would make Target regions excluded regions for internal oligos.</td>
<td>Sequence range</td>
<td><i>full sequence</i></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-oligoinput</td>
<td>string</td>
<td>The sequence of an internal oligo to check and around which to design forward and reverse primers. Must be a substring of SEQUENCE.</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-osizeopt</td>
<td>integer</td>
<td>Optimum length (in bases) of an internal oligo. Eprimer32 will attempt to pick primers close to this length.</td>
<td>Integer 0 or more</td>
<td>20</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-ominsize</td>
<td>integer</td>
<td>Minimum acceptable length of an internal oligo. Must be greater than 0 and less than or equal to INTERNAL-OLIGO-MAX-SIZE.</td>
<td>Integer 0 or more</td>
<td>18</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-omaxsize</td>
<td>integer</td>
<td>Maximum acceptable length (in bases) of an internal oligo. Currently this parameter cannot be larger than 35. This limit is governed by maximum oligo size for which Eprimer32's melting-temperature is valid.</td>
<td>Integer up to 35</td>
<td>27</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-otmopt</td>
<td>float</td>
<td>Optimum melting temperature (Celsius) for an internal oligo. Eprimer32 will try to pick oligos with melting temperatures that are close to this temperature. The oligo melting temperature formula in Eprimer32 is that given in Rychlik, Spencer and Rhoads, Nucleic Acids Research, vol 18, num 21, pp 6409-6412 and Breslauer, Frank, Bloecker and Marky, Proc. Natl. Acad. Sci. USA, vol 83, pp 3746-3750. Please refer to the former paper for background discussion.</td>
<td>Any numeric value</td>
<td>60.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-otmmin</td>
<td>float</td>
<td>Minimum acceptable melting temperature(Celsius) for an internal oligo.</td>
<td>Any numeric value</td>
<td>57.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-otmmax</td>
<td>float</td>
<td>Maximum acceptable melting temperature (Celsius) for an internal oligo.</td>
<td>Any numeric value</td>
<td>63.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-ogcopt</td>
<td>float</td>
<td>Internal oligo optimum GC percent.</td>
<td>Any numeric value</td>
<td>50.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-ogcmin</td>
<td>float</td>
<td>Minimum allowable percentage of Gs and Cs in an internal oligo.</td>
<td>Any numeric value</td>
<td>20.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-ogcmax</td>
<td>float</td>
<td>Maximum allowable percentage of Gs and Cs in any internal oligo generated by Primer.</td>
<td>Any numeric value</td>
<td>80.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-osaltconc</td>
<td>float</td>
<td>The millimolar concentration of salt (usually KCl) in the hybridization. Eprimer32 uses this argument to calculate internal oligo melting temperatures.</td>
<td>Any numeric value</td>
<td>50.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-odnaconc</td>
<td>float</td>
<td>The nanomolar concentration of annealing internal oligo in the hybridization.</td>
<td>Any numeric value</td>
<td>50.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-oanyself</td>
<td>float</td>
<td>The maximum allowable local alignment score when testing an internal oligo for (local) self-complementarity. Local self-complementarity is taken to predict the tendency of oligos to anneal to themselves The scoring system gives 1.00 for complementary bases, -0.25 for a match of any base (or N) with an N, -1.00 for a mismatch, and -2.00 for a gap. Only single-base-pair gaps are allowed. For example, the alignment
5' ATCGNA 3'
|| | |
3' TA-CGT 5'
is allowed (and yields a score of 1.75), but the alignment
5' ATCCGNA 3'
|| | |
3' TA--CGT 5'
is not considered. Scores are non-negative, and a score of 0.00 indicates that there is no reasonable local alignment between two oligos.</td>
<td>Number up to 9999.990</td>
<td>12.00</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-oendself</td>
<td>float</td>
<td>The maximum allowable 3'-anchored global alignment score when testing a single oligo for self-complementarity.
The scoring system is as for the Maximum Complementarity argument. In the examples above the scores are 7.00 and 6.00 respectively. Scores are non-negative, and a score of 0.00 indicates that there is no reasonable 3'-anchored global alignment between two oligos. In order to estimate 3'-anchored global alignments for candidate oligos, Primer assumes that the sequence from which to choose oligos is presented 5' to 3'.
INTERNAL-OLIGO-SELF-END is meaningless when applied to internal oligos used for hybridization-based detection, since primer-dimer will not occur. We recommend that INTERNAL-OLIGO-SELF-END be set at least as high as INTERNAL-OLIGO-SELF-ANY.</td>
<td>Number up to 9999.990</td>
<td>12.00</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-opolyxmax</td>
<td>integer</td>
<td>The maximum allowable length of an internal oligo mononucleotide repeat, for example AAAAAA.</td>
<td>Integer 0 or more</td>
<td>5</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-omishybmax</td>
<td>float</td>
<td>Similar to MAX-MISPRIMING except that this parameter applies to the similarity of candidate internal oligos to the library specified in INTERNAL-OLIGO-MISHYB-LIBRARY.</td>
<td>Number up to 9999.990</td>
<td>12.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Advanced (Unprompted) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>-mispriminglibraryfile</td>
<td>infile</td>
<td>The name of a file containing a nucleotide sequence library of sequences to avoid amplifying (for example repetitive sequences, or possibly the sequences of genes in a gene family that should not be amplified.) The file must be in (a slightly restricted) FASTA format (W. B. Pearson and D.J. Lipman, PNAS 85:8 pp 2444-2448 [1988]); we briefly discuss the organization of this file below. If this parameter is specified then Eprimer32 locally aligns each candidate primer against each library sequence and rejects those primers for which the local alignment score times a specified weight (see below) exceeds MAX-MISPRIMING. (The maximum value of the weight is arbitrarily set to 100.0.)
Each sequence entry in the FASTA-format file must begin with an 'id line' that starts with '>'. The contents of the id line is 'slightly restricted' in that Eprimer32 parses everything after any optional asterisk ('*') as a floating point number to use as the weight mentioned above. If the id line contains no asterisk then the weight defaults to 1.0. The alignment scoring system used is the same as for calculating complementarity among oligos (e.g. SELF-ANY). The remainder of an entry contains the sequence as lines following the id line up until a line starting with '>' or the end of the file. Whitespace and newlines are ignored. Characters 'A', 'T', 'G', 'C', 'a', 't', 'g', 'c' are retained and any other character is converted to 'N' (with the consequence that any IUB / IUPAC codes for ambiguous bases are converted to 'N'). There are no restrictions on line length.
An empty value for this parameter indicates that no repeat library should be used.</td>
<td>Input file</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-explainflag</td>
<td>boolean</td>
<td>If this flag is true, produce LEFT-EXPLAIN, RIGHT-EXPLAIN, and INTERNAL-OLIGO-EXPLAIN output tags, which are intended to provide information on the number of oligos and primer pairs that Eprimer32 examined, and statistics on the number discarded for various reasons.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-fileflag</td>
<td>boolean</td>
<td>If the associated value is true, then Eprimer32 creates two output files for each input SEQUENCE. File (sequence-id).for lists all acceptable forward primers for (sequence-id), and (sequence-id).rev lists all acceptable reverse primers for (sequence-id), where (sequence-id) is the value of the SEQUENCE-ID tag (which must be supplied). In addition, if the input tag TASK is 1 or 4, Eprimer32 produces a file (sequence-id).int, which lists all acceptable internal oligos.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-pickanyway</td>
<td>boolean</td>
<td>If true pick a primer pair even if LEFT-INPUT, RIGHT-INPUT, or INTERNAL-OLIGO-INPUT violates specific constraints.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-maxmispriming</td>
<td>float</td>
<td>The maximum allowed weighted similarity with any sequence in MISPRIMING-LIBRARY.</td>
<td>Number up to 9999.990</td>
<td>12.00</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-pairmaxmispriming</td>
<td>float</td>
<td>The maximum allowed sum of weighted similarities of a primer pair (one similarity for each primer) with any single sequence in MISPRIMING-LIBRARY.</td>
<td>Number up to 9999.990</td>
<td>24.00</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-numnsaccepted</td>
<td>integer</td>
<td>Maximum number of unknown bases (N) allowable in any primer.</td>
<td>Integer 0 or more</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-selfany</td>
<td>float</td>
<td>The maximum allowable local alignment score when testing a single primer for (local) self-complementarity and the maximum allowable local alignment score when testing for complementarity between forward and reverse primers. Local self-complementarity is taken to predict the tendency of primers to anneal to each other without necessarily causing self-priming in the PCR. The scoring system gives 1.00 for complementary bases, -0.25 for a match of any base (or N) with an N, -1.00 for a mismatch, and -2.00 for a gap. Only single-base-pair gaps are allowed. For example, the alignment
5' ATCGNA 3'
...|| | |
3' TA-CGT 5'
is allowed (and yields a score of 1.75), but the alignment
5' ATCCGNA 3'
...|| | |
3' TA--CGT 5'
is not considered. Scores are non-negative, and a score of 0.00 indicates that there is no reasonable local alignment between two oligos.</td>
<td>Number from 0.000 to 9999.990</td>
<td>8.00</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-selfend</td>
<td>float</td>
<td>The maximum allowable 3'-anchored global alignment score when testing a single primer for self-complementarity, and the maximum allowable 3'-anchored global alignment score when testing for complementarity between forward and reverse primers. The 3'-anchored global alignment score is taken to predict the likelihood of PCR-priming primer-dimers, for example
5' ATGCCCTAGCTTCCGGATG 3'
.............||| |||||
..........3' AAGTCCTACATTTAGCCTAGT 5'
or
5' AGGCTATGGGCCTCGCGA 3'
...............||||||
............3' AGCGCTCCGGGTATCGGA 5'
The scoring system is as for the Maximum Complementarity argument. In the examples above the scores are 7.00 and 6.00 respectively. Scores are non-negative, and a score of 0.00 indicates that there is no reasonable 3'-anchored global alignment between two oligos. In order to estimate 3'-anchored global alignments for candidate primers and primer pairs, Primer assumes that the sequence from which to choose primers is presented 5' to 3'. It is nonsensical to provide a larger value for this parameter than for the Maximum (local) Complementarity parameter because the score of a local alignment will always be at least as great as the score of a global alignment.</td>
<td>Number 0.000 or more</td>
<td>3.00</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-scorrection</td>
<td>list</td>
<td>Specifies the salt correction formula for the melting temperature calculation.</td>
<td><table><tr><td>0</td> <td><i>(Schildkraut & Lifson)</i></td></tr><tr><td>1</td> <td><i>(SantaLucia)</i></td></tr><tr><td>2</td> <td><i>(Owczarzy et al)</i></td></tr></table></td>
<td>1</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-tmformula</td>
<td>list</td>
<td>Specifies details of melting temperature calculation.</td>
<td><table><tr><td>0</td> <td><i>(Breslauer et al)</i></td></tr><tr><td>1</td> <td><i>(SantaLucia)</i></td></tr></table></td>
<td>1</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-maxendstability</td>
<td>float</td>
<td>The maximum stability for the five 3' bases of a forward or reverse primer. Bigger numbers mean more stable 3' ends. The value is the maximum delta G for duplex disruption for the five 3' bases as calculated using the nearest neighbor parameters published in Breslauer, Frank, Bloecker and Marky, Proc. Natl. Acad. Sci. USA, vol 83, pp 3746-3750. Eprimer32 uses a completely permissive default value for backward compatibility (which we may change in the next release). Rychlik recommends a maximum value of 9 (Wojciech Rychlik, 'Selection of Primers for Polymerase Chain Reaction' in BA White, Ed., 'Methods in Molecular Biology, Vol. 15: PCR Protocols: Current Methods and Applications', 1993, pp 31-40, Humana Press, Totowa NJ).</td>
<td>Number up to 1000.000</td>
<td>9.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Associated qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-sequence" associated seqall qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sbegin1<br>-sbegin_sequence</td>
<td>integer</td>
<td>Start of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -send1<br>-send_sequence</td>
<td>integer</td>
<td>End of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sreverse1<br>-sreverse_sequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sask1<br>-sask_sequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -snucleotide1<br>-snucleotide_sequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sprotein1<br>-sprotein_sequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -slower1<br>-slower_sequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -supper1<br>-supper_sequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -scircular1<br>-scircular_sequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -squick1<br>-squick_sequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sformat1<br>-sformat_sequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -iquery1<br>-iquery_sequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ioffset1<br>-ioffset_sequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sdbname1<br>-sdbname_sequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sid1<br>-sid_sequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ufo1<br>-ufo_sequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fformat1<br>-fformat_sequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fopenfile1<br>-fopenfile_sequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-outfile" associated outfile qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -odirectory2<br>-odirectory_outfile</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>General qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td> -auto</td>
<td>boolean</td>
<td>Turn off prompts</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -stdout</td>
<td>boolean</td>
<td>Write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -filter</td>
<td>boolean</td>
<td>Read first file from standard input, write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -options</td>
<td>boolean</td>
<td>Prompt for standard and additional values</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -debug</td>
<td>boolean</td>
<td>Write debug output to program.dbg</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -verbose</td>
<td>boolean</td>
<td>Report some/full command line options</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -help</td>
<td>boolean</td>
<td>Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -warning</td>
<td>boolean</td>
<td>Report warnings</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -error</td>
<td>boolean</td>
<td>Report errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fatal</td>
<td>boolean</td>
<td>Report fatal errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -die</td>
<td>boolean</td>
<td>Report dying program messages</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -version</td>
<td>boolean</td>
<td>Report version number and exit</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
</table>
<H2>
Input file format
</H2>
<b>eprimer32</b> reads one or more nucleotide sequences.
<p>
<p>
The input is a standard EMBOSS sequence query (also known as a 'USA').
<p>
Major sequence database sources defined as standard in EMBOSS
installations include srs:embl, srs:uniprot and ensembl
<p>
Data can also be read from sequence output in any supported format
written by an EMBOSS or third-party application.
<p>
The input format can be specified by using the
command-line qualifier <tt>-sformat xxx</tt>, where 'xxx' is replaced
by the name of the required format. The available format names are:
gff (gff3), gff2, embl (em), genbank (gb, refseq), ddbj, refseqp, pir
(nbrf), swissprot (swiss, sw), dasgff and debug.
<p>
See:
<A href="http://emboss.sf.net/docs/themes/SequenceFormats.html">
http://emboss.sf.net/docs/themes/SequenceFormats.html</A>
for further information on sequence formats.
<p>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
'tembl:x65921' is a sequence entry in the example nucleic acid database 'tembl'
<p>
<p><h3>Database entry: tembl:x65921</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID X65921; SV 1; linear; genomic DNA; STD; HUM; 2016 BP.
XX
AC X65921; S45242;
XX
DT 13-MAY-1992 (Rel. 31, Created)
DT 14-NOV-2006 (Rel. 89, Last updated, Version 7)
XX
DE H.sapiens fau 1 gene
XX
KW fau 1 gene.
XX
OS Homo sapiens (human)
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC Homo.
XX
RN [1]
RP 1-2016
RA Kas K.;
RT ;
RL Submitted (29-APR-1992) to the INSDC.
RL K. Kas, University of Antwerp, Dept of Biochemistry T3.22,
RL Universiteitsplein 1, 2610 Wilrijk, BELGIUM
XX
RN [2]
RP 1-2016
RX DOI; 10.1016/0006-291X(92)91286-Y.
RX PUBMED; 1326960.
RA Kas K., Michiels L., Merregaert J.;
RT "Genomic structure and expression of the human fau gene: encoding the
RT ribosomal protein S30 fused to a ubiquitin-like protein";
RL Biochem. Biophys. Res. Commun. 187(2):927-933(1992).
XX
DR Ensembl-Gn; ENSG00000149806; Homo_sapiens.
DR Ensembl-Tr; ENST00000279259; Homo_sapiens.
DR Ensembl-Tr; ENST00000434372; Homo_sapiens.
DR Ensembl-Tr; ENST00000525297; Homo_sapiens.
DR Ensembl-Tr; ENST00000526555; Homo_sapiens.
DR Ensembl-Tr; ENST00000527548; Homo_sapiens.
DR Ensembl-Tr; ENST00000529259; Homo_sapiens.
DR Ensembl-Tr; ENST00000529639; Homo_sapiens.
DR Ensembl-Tr; ENST00000531743; Homo_sapiens.
DR GDB; 191789.
DR GDB; 191790.
DR GDB; 354872.
DR GDB; 4590236.
XX
FH Key Location/Qualifiers
FH
FT source 1..2016
<font color=red> [Part of this file has been deleted for brevity]</font>
FT RAKRRMQYNRRFVNVVPTFGKKKGPNANS"
FT intron 857..950
FT /number=2
FT exon 951..1095
FT /number=3
FT intron 1096..1556
FT /number=3
FT exon 1557..1612
FT /number=4
FT intron 1613..1786
FT /number=4
FT exon 1787..>1912
FT /number=5
FT polyA_signal 1938..1943
XX
SQ Sequence 2016 BP; 421 A; 562 C; 538 G; 495 T; 0 other;
ctaccatttt ccctctcgat tctatatgta cactcgggac aagttctcct gatcgaaaac 60
ggcaaaacta aggccccaag taggaatgcc ttagttttcg gggttaacaa tgattaacac 120
tgagcctcac acccacgcga tgccctcagc tcctcgctca gcgctctcac caacagccgt 180
agcccgcagc cccgctggac accggttctc catccccgca gcgtagcccg gaacatggta 240
gctgccatct ttacctgcta cgccagcctt ctgtgcgcgc aactgtctgg tcccgccccg 300
tcctgcgcga gctgctgccc aggcaggttc gccggtgcga gcgtaaaggg gcggagctag 360
gactgccttg ggcggtacaa atagcaggga accgcgcggt cgctcagcag tgacgtgaca 420
cgcagcccac ggtctgtact gacgcgccct cgcttcttcc tctttctcga ctccatcttc 480
gcggtagctg ggaccgccgt tcaggtaaga atggggcctt ggctggatcc gaagggcttg 540
tagcaggttg gctgcggggt cagaaggcgc ggggggaacc gaagaacggg gcctgctccg 600
tggccctgct ccagtcccta tccgaactcc ttgggaggca ctggccttcc gcacgtgagc 660
cgccgcgacc accatcccgt cgcgatcgtt tctggaccgc tttccactcc caaatctcct 720
ttatcccaga gcatttcttg gcttctctta caagccgtct tttctttact cagtcgccaa 780
tatgcagctc tttgtccgcg cccaggagct acacaccttc gaggtgaccg gccaggaaac 840
ggtcgcccag atcaaggtaa ggctgcttgg tgcgccctgg gttccatttt cttgtgctct 900
tcactctcgc ggcccgaggg aacgcttacg agccttatct ttccctgtag gctcatgtag 960
cctcactgga gggcattgcc ccggaagatc aagtcgtgct cctggcaggc gcgcccctgg 1020
aggatgaggc cactctgggc cagtgcgggg tggaggccct gactaccctg gaagtagcag 1080
gccgcatgct tggaggtgag tgagagagga atgttctttg aagtaccggt aagcgtctag 1140
tgagtgtggg gtgcatagtc ctgacagctg agtgtcacac ctatggtaat agagtacttc 1200
tcactgtctt cagttcagag tgattcttcc tgtttacatc cctcatgttg aacacagacg 1260
tccatgggag actgagccag agtgtagttg tatttcagtc acatcacgag atcctagtct 1320
ggttatcagc ttccacacta aaaattaggt cagaccaggc cccaaagtgc tctataaatt 1380
agaagctgga agatcctgaa atgaaactta agatttcaag gtcaaatatc tgcaactttg 1440
ttctcattac ctattgggcg cagcttctct ttaaaggctt gaattgagaa aagaggggtt 1500
ctgctgggtg gcaccttctt gctcttacct gctggtgcct tcctttccca ctacaggtaa 1560
agtccatggt tccctggccc gtgctggaaa agtgagaggt cagactccta aggtgagtga 1620
gagtattagt ggtcatggtg ttaggacttt ttttcctttc acagctaaac caagtccctg 1680
ggctcttact cggtttgcct tctccctccc tggagatgag cctgagggaa gggatgctag 1740
gtgtggaaga caggaaccag ggcctgatta accttccctt ctccaggtgg ccaaacagga 1800
gaagaagaag aagaagacag gtcgggctaa gcggcggatg cagtacaacc ggcgctttgt 1860
caacgttgtg cccacctttg gcaagaagaa gggccccaat gccaactctt aagtcttttg 1920
taattctggc tttctctaat aaaaaagcca cttagttcag tcatcgcatt gtttcatctt 1980
tacttgcaag gcctcaggga gaggtgtgct tctcgg 2016
//
</pre>
</td></tr></table><p>
<H2>
Output file format
</H2>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: x65921.eprimer32</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
# EPRIMER32 RESULTS FOR X65921
# FORWARD PRIMER STATISTICS:
# considered 18855
# GC content failed 156
# low tm 3890
# high tm 9325
# high hairpin stability 23
# long poly-x seq 45
# ok 5416
# REVERSE PRIMER STATISTICS:
# considered 18706
# GC content failed 161
# low tm 3834
# high tm 9289
# high hairpin stability 8
# long poly-x seq 66
# ok 5348
# PRIMER PAIR STATISTICS:
# considered 3726
# unacceptable product size 3429
# ok 297
# Start Len Tm GC% Sequence
1 PRODUCT SIZE: 201
FORWARD PRIMER 981 20 60.11 55.00 CCGGAAGATCAAGTCGTGCT
REVERSE PRIMER 1162 20 59.90 55.00 GGTGTGACACTCAGCTGTCA
2 PRODUCT SIZE: 199
FORWARD PRIMER 802 20 60.11 60.00 CCAGGAGCTACACACCTTCG
REVERSE PRIMER 981 20 60.11 55.00 AGCACGACTTGATCTTCCGG
3 PRODUCT SIZE: 200
FORWARD PRIMER 1489 20 59.89 55.00 AAAAGAGGGGTTCTGCTGGG
REVERSE PRIMER 1669 20 60.18 55.00 TAAGAGCCCAGGGACTTGGT
4 PRODUCT SIZE: 200
FORWARD PRIMER 801 20 59.75 60.00 CCCAGGAGCTACACACCTTC
REVERSE PRIMER 981 20 60.11 55.00 AGCACGACTTGATCTTCCGG
5 PRODUCT SIZE: 200
FORWARD PRIMER 1084 20 60.32 55.00 GCATGCTTGGAGGTGAGTGA
REVERSE PRIMER 1264 20 59.96 55.00 ACTCTGGCTCAGTCTCCCAT
</pre>
</td></tr></table><p>
<p>
If the '-explain' flag has been used, as in the example, then statistics
are output describing the number of primers that were considered and
rejected for various reasons.
<p>
Headers describing the input file name and the names of the output
columns are displayed.
<p>
The best 5 primer pairs are displayed with the product size.
<p>
The reverse sequence is displayed as the reverse complement to the input
forward sense sequence.
<p>
The 'Start' positions are given counting from the start of the sequence
for both the forward and reverse primer (and for the internal oligos).
<p>
Note that if you compare the results to the output from the public
Primer3 web site you will see a difference in the reverse primer
positions - this is because the original Primer3 program reports the
reverse primer positions as counted from the 3' end. The convention in
EMBOSS is to report both forward and reverse features as counted from
the 5' end, so the reverse primer positions are given counted from the
5' start of the sequence.
<H2>
Data files
</H2>
None.
<H2>
Notes
</H2>
The Whitehead Institute's primer3 program is not part of this program,
but it must be set up on your system and on your path.
<p>
The Whitehead Institute program that is run by this program is available from:
http://primer3.sourceforge.net/
<br>
(Then see the link Download and then 'Release 1.1.4')
<p>
Earlier versions are also supported. We expect later versions to also
work - please contact the EMBOSS team if you find any problems.
<p>
The Whitehead Institute's primer3 program states:
<br>
We request but do not require that use of this software be cited in
publications as:
<p>
Steve Rozen and Helen J. Skaletsky (2000)
Primer3 on the WWW for general users and for biologist programmers.
In: Krawetz S, Misener S (eds)
Bioinformatics Methods and Protocols: Methods in Molecular Biology.
Humana Press, Totowa, NJ, pp 365-386
<p>
Source code available at http://fokker.wi.mit.edu/primer3/.
The paper above is available at
http://jura.wi.mit.edu/rozen/papers/rozen-and-skaletsky-2000-primer3.pdf
<H2>
References
</H2>
None.
<H2>
Warnings
</H2>
None.
<H2>
Diagnostic Error Messages
</H2>
The message: "EMBOSS An error in eprimer32.c at line 346: The program
'primer32_core' must be on the path. It is part of the 'primer3'
package, available from the Whitehead Institute. See:
http://primer3.sourceforge.net/" is output if you do not have the
Whitehead Institute's primer3 program set up and on your path.
Note that compiling the primer3 package will produce an executable
called primer3_core. This must be renamed to primer32_core (or a link
of that name added) for eprimer32 to work. This is to avoid conflict
with the primer3 version 1.x series primer3_core executables required
by the EMBOOS application eprimer3.
<H2>
Exit status
</H2>
It always exits with status 0.
<H2>
Known bugs
</H2>
None.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th>
<th>Description</th></tr>
<tr>
<td><a href="eprimer3.html">eprimer3</a></td>
<td>Pick PCR primers and hybridization oligos</td>
</tr>
<tr>
<td><a href="primersearch.html">primersearch</a></td>
<td>Search DNA sequences for matches with primer pairs</td>
</tr>
<tr>
<td><a href="stssearch.html">stssearch</a></td>
<td>Search a DNA database for matches with a set of STS primers</td>
</tr>
</table>
<H2>
History
</H2>
<H2>
Author(s)
</H2>
Gary Williams formerly at:
<br>
MRC Rosalind Franklin Centre for Genomics Research
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
<p>
Please report all bugs to the EMBOSS bug team (emboss-bug © emboss.open-bio.org) not to the original author.
<H2>
History
</H2>
<H2>
Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
Comments
</H2>
None
</BODY>
</HTML>
|