1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
|
<HTML>
<HEAD>
<TITLE>
EMBOSS: est2genome
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="/images/emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
est2genome
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Wiki
</H2>
The master copies of EMBOSS documentation are available
at <a href="http://emboss.open-bio.org/wiki/Appdocs">
http://emboss.open-bio.org/wiki/Appdocs</a>
on the EMBOSS Wiki.
<p>
Please help by correcting and extending the Wiki pages.
<H2>
Function
</H2>
Align EST sequences to genomic DNA sequence
<H2>
Description
</H2>
<p><b>est2genome</b> aids the prediction of genes by sequence homology. It aligns a set of spliced nucleotide sequences (ESTs cDNAs or mRNAs) to an unspliced genomic DNA sequence, inserting introns of arbitrary length when needed. Where feasible introns start and stop at the splice consensus dinucleotides GT and AG.</p>
<p>By default, <b>est2genome</b> makes three alignments: First it compares both strands of the spliced sequence against the forward strand of the genomic sequence, assuming the splice consensus GT/AG (ie in the forward gene direction). The maximum-scoring orientation is then realigned assuming the splice consensus CT/AC (ie in the reversed gene direction). By default, only the overall maximum-scoring alignment is reported, and then if it scores higher than a specific minimum threshold score. Optionally, all comparisons may be reported.</p>
<p>The program outputs a list of the exons and introns it has found. The format is like that of MSPcrunch, ie a list of matching segments. This format is easy to parse into other software. The program also indicates, based on the splice site information, the gene's predicted direction of transcription. Optionally the full sequence alignment is printed as well.</p>
<H2>
Algorithm
</H2>
The program uses a linear-space divide-and-conquer strategy (Myers and Miller, 1988; Huang, 1994) to limit memory use:
1. A first pass Smith-Waterman local alignment scan is done to find the start, end and score of the maximally scoring segments (including introns of course). No other alignment information is retained.
2. Subsequences corresponding to these segments are extracted
3a. If the product of the subsequences' lengths is less than a user-defined threshold (<tt>-space</tt> parameter), i.e. they will fit in memory, the segments are realigned using the Needleman-Wunsch global alignment algorithm, which will give the same result as the Smith-Waterman since the subsequences are guaranteed to align end-to-end.
3b. If the product of the lengths exceeds the threshold (a full alignment will not fit in memory) the alignment is made recursively by splitting the spliced (EST) sequence in half and finding the genome sequence position which aligns with the EST mid-point. The process is repeated until the product of the lengths is less than the threshold. The problem reduces to aligning the left-hand and right-hand portions of the sequences separately and merging the result.
4. The genome sequence is searched against the forward and reverse strands of the spliced (EST) sequence, assuming a forward gene splicing direction (i.e. <tt>GT/AG</tt> consensus).
5. Then the best-scoring orientation is realigned assuming reverse splicing (<tt>CT/AC</tt> consensus). The overall best alignment is reported.
The worst-case run-time for the algorithm is about 3 times as long as would be taken to align using a quadratic-space program. In practice the maximal-scoring segment is often much shorter than the full genome length so the program runs only about 1.5 times slower.
<p>
The algorithm has the following steps:
<ol>
<li> A first-pass Smith-Waterman scan is done to locate the score, start
and end of the maximal scoring segment (including introns of
course). No other alignment information is retained.
<li> Subsequences corresponding to the maximal-scoring segments are
extracted. If the product of these subsequences' lengths is less than
the area parameter then the segments are re-aligned using the
Needleman-Wunsch algorithm, which in this instance will give the same
result as the Smith-Waterman since they are guaranteed to align
end-to-end.
<li> If the product of lengths exceeds the area threshold then the
alignment is recursively broken down by splitting the EST in half and
finding the genome position which aligns with the EST mid-point. The
problem then reduces to aligning the left-hand and right-hand portions
of the sequences separately and merging the result.
</ol>
The worst-case run-time for the algorithm is about 3 times as long as
would be taken to align using a quadratic-space program. In practice
the maximal-scoring segment is often much shorter than the full genome
length so the program runs only about 1.5 times slower.
<H2>
Usage
</H2>
Here is a sample session with <b>est2genome</b>
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>est2genome </b>
Align EST sequences to genomic DNA sequence
Spliced EST nucleotide sequence(s): <b>tembl:h45989</b>
Unspliced genomic nucleotide sequence: <b>tembl:z69719</b>
Output file [h45989.est2genome]: <b></b>
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Align EST sequences to genomic DNA sequence
Version: EMBOSS:6.6.0.0
Standard (Mandatory) qualifiers:
[-estsequence] seqall Spliced EST nucleotide sequence(s)
[-genomesequence] sequence Unspliced genomic nucleotide sequence
[-outfile] outfile [*.est2genome] Output file name
Additional (Optional) qualifiers:
-match integer [1] Score for matching two bases (Any
integer value)
-mismatch integer [1] Cost for mismatching two bases (Any
integer value)
-gappenalty integer [2] Cost for deleting a single base in
either sequence, excluding introns (Any
integer value)
-intronpenalty integer [40] Cost for an intron, independent of
length. (Any integer value)
-splicepenalty integer [20] Cost for an intron, independent of
length and starting/ending on donor-acceptor
sites (Any integer value)
-minscore integer [30] Exclude alignments with scores below
this threshold score. (Any integer value)
Advanced (Unprompted) qualifiers:
-reverse boolean Reverse the orientation of the EST sequence
-[no]usesplice boolean [Y] Use donor and acceptor splice sites. If
you want to ignore donor-acceptor sites then
set this to be false.
-mode menu [both] This determines the comparison mode.
The default value is 'both', in which case
both strands of the est are compared
assuming a forward gene direction (ie GT/AG
splice sites), and the best comparison
redone assuming a reversed (CT/AC) gene
splicing direction. The other allowed modes
are 'forward', when just the forward strand
is searched, and 'reverse', ditto for the
reverse strand. (Values: both (Both
strands); forward (Forward strand only);
reverse (Reverse strand only))
-[no]best boolean [Y] You can print out all comparisons
instead of just the best one by setting this
to be false.
-space float [10.0] For linear-space recursion. If
product of sequence lengths divided by 4
exceeds this then a divide-and-conquer
strategy is used to control the memory
requirements. In this way very long
sequences can be aligned.
If you have a machine with plenty of memory
you can raise this parameter (but do not
exceed the machine's physical RAM) (Any
numeric value)
-shuffle integer [0] Shuffle (Any integer value)
-seed integer [20825] Random number seed (Any integer
value)
-align boolean Show the alignment. The alignment includes
the first and last 5 bases of each intron,
together with the intron width. The
direction of splicing is indicated by angle
brackets (forward or reverse) or ????
(unknown).
-width integer [50] Alignment width (Any integer value)
Associated qualifiers:
"-estsequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-scircular1 boolean Sequence is circular
-squick1 boolean Read id and sequence only
-sformat1 string Input sequence format
-iquery1 string Input query fields or ID list
-ioffset1 integer Input start position offset
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-genomesequence" associated qualifiers
-sbegin2 integer Start of the sequence to be used
-send2 integer End of the sequence to be used
-sreverse2 boolean Reverse (if DNA)
-sask2 boolean Ask for begin/end/reverse
-snucleotide2 boolean Sequence is nucleotide
-sprotein2 boolean Sequence is protein
-slower2 boolean Make lower case
-supper2 boolean Make upper case
-scircular2 boolean Sequence is circular
-squick2 boolean Read id and sequence only
-sformat2 string Input sequence format
-iquery2 string Input query fields or ID list
-ioffset2 integer Input start position offset
-sdbname2 string Database name
-sid2 string Entryname
-ufo2 string UFO features
-fformat2 string Features format
-fopenfile2 string Features file name
"-outfile" associated qualifiers
-odirectory3 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write first file to standard output
-filter boolean Read first file from standard input, write
first file to standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options and exit. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
-version boolean Report version number and exit
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left">Qualifier</th>
<th align="left">Type</th>
<th align="left">Description</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Standard (Mandatory) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-estsequence]<br>(Parameter 1)</td>
<td>seqall</td>
<td>Spliced EST nucleotide sequence(s)</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-genomesequence]<br>(Parameter 2)</td>
<td>sequence</td>
<td>Unspliced genomic nucleotide sequence</td>
<td>Readable sequence</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-outfile]<br>(Parameter 3)</td>
<td>outfile</td>
<td>Output file name</td>
<td>Output file</td>
<td><i><*></i>.est2genome</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Additional (Optional) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>-match</td>
<td>integer</td>
<td>Score for matching two bases</td>
<td>Any integer value</td>
<td>1</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-mismatch</td>
<td>integer</td>
<td>Cost for mismatching two bases</td>
<td>Any integer value</td>
<td>1</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-gappenalty</td>
<td>integer</td>
<td>Cost for deleting a single base in either sequence, excluding introns</td>
<td>Any integer value</td>
<td>2</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-intronpenalty</td>
<td>integer</td>
<td>Cost for an intron, independent of length.</td>
<td>Any integer value</td>
<td>40</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-splicepenalty</td>
<td>integer</td>
<td>Cost for an intron, independent of length and starting/ending on donor-acceptor sites</td>
<td>Any integer value</td>
<td>20</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-minscore</td>
<td>integer</td>
<td>Exclude alignments with scores below this threshold score.</td>
<td>Any integer value</td>
<td>30</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Advanced (Unprompted) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>-reverse</td>
<td>boolean</td>
<td>Reverse the orientation of the EST sequence</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-[no]usesplice</td>
<td>boolean</td>
<td>Use donor and acceptor splice sites. If you want to ignore donor-acceptor sites then set this to be false.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-mode</td>
<td>list</td>
<td>This determines the comparison mode. The default value is 'both', in which case both strands of the est are compared assuming a forward gene direction (ie GT/AG splice sites), and the best comparison redone assuming a reversed (CT/AC) gene splicing direction. The other allowed modes are 'forward', when just the forward strand is searched, and 'reverse', ditto for the reverse strand.</td>
<td><table><tr><td>both</td> <td><i>(Both strands)</i></td></tr><tr><td>forward</td> <td><i>(Forward strand only)</i></td></tr><tr><td>reverse</td> <td><i>(Reverse strand only)</i></td></tr></table></td>
<td>both</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-[no]best</td>
<td>boolean</td>
<td>You can print out all comparisons instead of just the best one by setting this to be false.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-space</td>
<td>float</td>
<td>For linear-space recursion. If product of sequence lengths divided by 4 exceeds this then a divide-and-conquer strategy is used to control the memory requirements. In this way very long sequences can be aligned.
If you have a machine with plenty of memory you can raise this parameter (but do not exceed the machine's physical RAM)</td>
<td>Any numeric value</td>
<td>10.0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-shuffle</td>
<td>integer</td>
<td>Shuffle</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-seed</td>
<td>integer</td>
<td>Random number seed</td>
<td>Any integer value</td>
<td>20825</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-align</td>
<td>boolean</td>
<td>Show the alignment. The alignment includes the first and last 5 bases of each intron, together with the intron width. The direction of splicing is indicated by angle brackets (forward or reverse) or ???? (unknown).</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-width</td>
<td>integer</td>
<td>Alignment width</td>
<td>Any integer value</td>
<td>50</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Associated qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-estsequence" associated seqall qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sbegin1<br>-sbegin_estsequence</td>
<td>integer</td>
<td>Start of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -send1<br>-send_estsequence</td>
<td>integer</td>
<td>End of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sreverse1<br>-sreverse_estsequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sask1<br>-sask_estsequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -snucleotide1<br>-snucleotide_estsequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sprotein1<br>-sprotein_estsequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -slower1<br>-slower_estsequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -supper1<br>-supper_estsequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -scircular1<br>-scircular_estsequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -squick1<br>-squick_estsequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sformat1<br>-sformat_estsequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -iquery1<br>-iquery_estsequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ioffset1<br>-ioffset_estsequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sdbname1<br>-sdbname_estsequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sid1<br>-sid_estsequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ufo1<br>-ufo_estsequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fformat1<br>-fformat_estsequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fopenfile1<br>-fopenfile_estsequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-genomesequence" associated sequence qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sbegin2<br>-sbegin_genomesequence</td>
<td>integer</td>
<td>Start of the sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -send2<br>-send_genomesequence</td>
<td>integer</td>
<td>End of the sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sreverse2<br>-sreverse_genomesequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sask2<br>-sask_genomesequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -snucleotide2<br>-snucleotide_genomesequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sprotein2<br>-sprotein_genomesequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -slower2<br>-slower_genomesequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -supper2<br>-supper_genomesequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -scircular2<br>-scircular_genomesequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -squick2<br>-squick_genomesequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sformat2<br>-sformat_genomesequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -iquery2<br>-iquery_genomesequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ioffset2<br>-ioffset_genomesequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sdbname2<br>-sdbname_genomesequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sid2<br>-sid_genomesequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ufo2<br>-ufo_genomesequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fformat2<br>-fformat_genomesequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fopenfile2<br>-fopenfile_genomesequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-outfile" associated outfile qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -odirectory3<br>-odirectory_outfile</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>General qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td> -auto</td>
<td>boolean</td>
<td>Turn off prompts</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -stdout</td>
<td>boolean</td>
<td>Write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -filter</td>
<td>boolean</td>
<td>Read first file from standard input, write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -options</td>
<td>boolean</td>
<td>Prompt for standard and additional values</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -debug</td>
<td>boolean</td>
<td>Write debug output to program.dbg</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -verbose</td>
<td>boolean</td>
<td>Report some/full command line options</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -help</td>
<td>boolean</td>
<td>Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -warning</td>
<td>boolean</td>
<td>Report warnings</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -error</td>
<td>boolean</td>
<td>Report errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fatal</td>
<td>boolean</td>
<td>Report fatal errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -die</td>
<td>boolean</td>
<td>Report dying program messages</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -version</td>
<td>boolean</td>
<td>Report version number and exit</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
</table>
<H2>
Input file format
</H2>
<b>est2genome</b> reads two nucleotide sequences. The first is an EST
sequence (a single read or a finished cDNA). The second is a genomic
finished sequence.
<p>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
'tembl:h45989' is a sequence entry in the example nucleic acid database 'tembl'
<p>
<p><h3>Database entry: tembl:h45989</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID H45989; SV 1; linear; mRNA; EST; HUM; 495 BP.
XX
AC H45989;
XX
DT 18-NOV-1995 (Rel. 45, Created)
DT 04-MAR-2000 (Rel. 63, Last updated, Version 2)
XX
DE yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone
DE IMAGE:177794 3', mRNA sequence.
XX
KW EST.
XX
OS Homo sapiens (human)
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC Homo.
XX
RN [1]
RP 1-495
RA Hillier L., Clark N., Dubuque T., Elliston K., Hawkins M., Holman M.,
RA Hultman M., Kucaba T., Le M., Lennon G., Marra M., Parsons J., Rifkin L.,
RA Rohlfing T., Soares M., Tan F., Trevaskis E., Waterston R., Williamson A.,
RA Wohldmann P., Wilson R.;
RT "The WashU-Merck EST Project";
RL Unpublished.
XX
DR GDB; 3839990.
DR GDB; 4193257.
DR UNILIB; 555; 300.
XX
CC On May 8, 1995 this sequence version replaced gi:800819.
CC Contact: Wilson RK
CC Washington University School of Medicine
CC 4444 Forest Park Parkway, Box 8501, St. Louis, MO 63108
CC Tel: 314 286 1800
CC Fax: 314 286 1810
CC Email: est@watson.wustl.edu
CC Insert Size: 544
CC High quality sequence stops: 265
CC Source: IMAGE Consortium, LLNL
CC This clone is available royalty-free through LLNL ; contact the
CC IMAGE Consortium (info@image.llnl.gov) for further information.
CC Possible reversed clone: polyT not found
CC Insert Length: 544 Std Error: 0.00
CC Seq primer: SP6
CC High quality sequence stop: 265.
XX
FH Key Location/Qualifiers
FH
FT source 1..495
FT /organism="Homo sapiens"
FT /lab_host="DH10B (ampicillin resistant)"
FT /mol_type="mRNA"
FT /sex="Male"
FT /dev_stage="55-year old"
FT /clone_lib="Soares adult brain N2b5HB55Y"
FT /clone="IMAGE:177794"
FT /note="Organ: brain; Vector: pT7T3D (Pharmacia) with a
FT modified polylinker; Site_1: Not I; Site_2: Eco RI; 1st
FT strand cDNA was primed with a Not I - oligo(dT) primer [5'
FT TGTTACCAATCTGAAGTGGGAGCGGCCGCGCTTTTTTTTTTTTTTTTTTT 3'],
FT double-stranded cDNA was size selected, ligated to Eco RI
FT adapters (Pharmacia), digested with Not I and cloned into
FT the Not I and Eco RI sites of a modified pT7T3 vector
FT (Pharmacia). Library went through one round of
FT normalization to a Cot = 53. Library constructed by Bento
FT Soares and M.Fatima Bonaldo. The adult brain RNA was
FT provided by Dr. Donald H. Gilden. Tissue was acquired 17-18
FT hours after death which occurred in consequence of a
FT ruptured aortic aneurysm. RNA was prepared from a pool of
FT tissues representing the following areas of the brain:
FT frontal, parietal, temporal and occipital cortex from the
FT left and right hemispheres, subcortical white matter, basal
FT ganglia, thalamus, cerebellum, midbrain, pons and medulla."
FT /db_xref="taxon:9606"
FT /db_xref="UNILIB:555"
XX
SQ Sequence 495 BP; 73 A; 135 C; 169 G; 104 T; 14 other;
ccggnaagct cancttggac caccgactct cgantgnntc gccgcgggag ccggntggan 60
aacctgagcg ggactggnag aaggagcaga gggaggcagc acccggcgtg acggnagtgt 120
gtggggcact caggccttcc gcagtgtcat ctgccacacg gaaggcacgg ccacgggcag 180
gggggtctat gatcttctgc atgcccagct ggcatggccc cacgtagagt ggnntggcgt 240
ctcggtgctg gtcagcgaca cgttgtcctg gctgggcagg tccagctccc ggaggacctg 300
gggcttcagc ttcccgtagc gctggctgca gtgacggatg ctcttgcgct gccatttctg 360
ggtgctgtca ctgtccttgc tcactccaaa ccagttcggc ggtccccctg cggatggtct 420
gtgttgatgg acgtttgggc tttgcagcac cggccgccga gttcatggtn gggtnaagag 480
atttgggttt tttcn 495
//
</pre>
</td></tr></table><p>
<p><h3>Database entry: tembl:z69719</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID Z69719; SV 1; linear; genomic DNA; STD; HUM; 33760 BP.
XX
AC Z69719;
XX
DT 26-FEB-1996 (Rel. 46, Created)
DT 13-JAN-2009 (Rel. 99, Last updated, Version 7)
XX
DE Human DNA sequence from clone XX-CNFG9 on chromosome 16
XX
KW C16orf33; HTG; POLR3K; RHBDF1.
XX
OS Homo sapiens (human)
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC Homo.
XX
RN [1]
RP 1-33760
RA Kershaw J.;
RT ;
RL Submitted (09-JAN-2009) to the INSDC.
RL Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
RL E-mail enquiries: vega@sanger.ac.uk Clone requests: Geneservice
RL (http://www.geneservice.co.uk/) and BACPAC Resources
RL (http://bacpac.chori.org/)
XX
DR EMBL-CON; GL000124.
DR Ensembl-Gn; ENSG00000007384; Homo_sapiens.
DR Ensembl-Gn; ENSG00000161980; Homo_sapiens.
DR Ensembl-Gn; ENSG00000161981; Homo_sapiens.
DR Ensembl-Tr; ENST00000262316; Homo_sapiens.
DR Ensembl-Tr; ENST00000293860; Homo_sapiens.
DR Ensembl-Tr; ENST00000293861; Homo_sapiens.
DR Ensembl-Tr; ENST00000338527; Homo_sapiens.
DR Ensembl-Tr; ENST00000383018; Homo_sapiens.
DR Ensembl-Tr; ENST00000417043; Homo_sapiens.
DR Ensembl-Tr; ENST00000417493; Homo_sapiens.
DR Ensembl-Tr; ENST00000419764; Homo_sapiens.
DR Ensembl-Tr; ENST00000420545; Homo_sapiens.
DR Ensembl-Tr; ENST00000428730; Homo_sapiens.
DR Ensembl-Tr; ENST00000448893; Homo_sapiens.
DR Ensembl-Tr; ENST00000450643; Homo_sapiens.
DR Ensembl-Tr; ENST00000454039; Homo_sapiens.
DR GDB; 11502921.
DR GOA; E9PGJ1.
DR GOA; F5GWL4.
DR GOA; F8WBS4.
DR GOA; H0Y6L9.
DR InterPro; IPR022241; Rhomboid_SP.
DR InterPro; IPR022764; Peptidase_S54_rhomboid_dom.
<font color=red> [Part of this file has been deleted for brevity]</font>
gagacagcag agtgctcagc tcatgaagga ggcaccagcc gccatgcctc tacatccagg 30840
tctcctgggg ttcccacctc cacaaaaacc cccactgcta ggagtgcagg caggagggga 30900
cctgagaacc gacagttata ggtcctgcgg gtgggcagtg ctgggtgttc tggtctgccc 30960
cacccctgtg tgcctagatc cccatctggg cctcaagtgg gtgggattcc aaaggaagag 31020
ccggagtagg cgtggggagg ggcaggccca ggctggacaa agagtctggc cagggagcgg 31080
cacattgccc tcccagagac agtggctcag tgtccaggcc ttccccaggc gcacagtggg 31140
ctcttgttcc cagaaagccc ctcgggggga tccaaacagt gtctccccca ccccgctgac 31200
ccctcagtgt atggggaaac cgtggcccac ggaaggcctc actgcctggg gtcacacagc 31260
atctgagtca ctgcagcagc ctcacagctg ccagcccagg cccagcccca tcaggagaca 31320
cccaaagcca cagtgcatcc caggaccagc tgggggggct gcgggcagga ctctcgatga 31380
ggctgaggga cgaggagggt caagggagcc actggcgcca tgcatgctga cgtcccctct 31440
ggctgcctgc agagcctggt gtggaagggc tgagtggggg atggtggaga gtcctgttaa 31500
ctcaggtttc tgctctgggg atgtctgggc acccatcaag ctggccgcgt gcacaggtgc 31560
agggagagcc agaaagcagg agccgatgca gggaggccac tggggacagc ccaggctgat 31620
gcttgggccc catgtgtctc caccacctac aaccctaagc aagcctcagc tttcccatct 31680
ggaaatcagg ggtcacagca gtgcctggca cagtagcagc ggctgactcc atcacagggt 31740
ggtgtagcct gtgggtactt ggcactctct gaggggcagg agctgggggg tgaaaggacc 31800
ctagagcata tgcaacaaga gggcagccct ggggacacct ggggacagaa ccctccaaag 31860
gtgtcgagtt tgggaagaga ctagagagaa gctctggcca gtccaggcat agacagtggc 31920
cacagccagt ggagagctgc atcctcaggt gtgagcagca accacctctg tactcaggcc 31980
tgccctgcac actcacagga ccatgctggc agggacaact ggcggcggag ttgactgcca 32040
accccggggc cagaaccatc aagcctgggc tctgctccgc ccaaggaact gcctgctgcc 32100
gaggtcagct ggagcaaggg gcctcacccc gggacacctt cccagacgtg tcctcagctc 32160
acatgagcct catcccaggg ggatgtggct cctccagcat ccccacccac acgctgctct 32220
ctgaccctca gtcttctgtt tgactcctaa tctgaagctc aatcctagat ctcccttgag 32280
aagggggtca ccagctgtct ggcagcccag cctccaggtc ttctggatta atgaagggaa 32340
agtcacctgg cctctctgcc ttgtctatta atggcatcat gctgagaatg atatttgcta 32400
ggccctttgc aaaccccaaa gtgctcttca accctcccag tgaagcctct tcttttctgt 32460
ggaagaaatg aggttcaggg tggagcaggg caggcctgag acctttgcag ggttctctcc 32520
aggtccccag caggacagac tggcaccctg cctcccctca tcaccctaga caaggagaca 32580
gaacaagagg ttccctgcta caggccatct gtgagggaag ccgccctagg gcctgtagac 32640
acaggaatcc ctgaggacct gacctgtgag ggtagtgcac aaaggggcca gcacttggca 32700
ggaggggggg gggcactgcc ccaaggctca gctagcaaat gtggcacagg ggtcaccaga 32760
gctaaacccc tgactcagtt gggtctgaca ggggctgaca tggcagacac acccaggaat 32820
caggggacac caagtgcagc tcagggcacc tgtccaggcc acacagtcag aaaggggatg 32880
gcagcaagga cttagctaca ctagattctg ggggtaaact gcctggtatg ctggtcactg 32940
ctagtcccca gtctggagtc tagctgggtc tcaggagtta ggcgaaaaca ccctccccag 33000
gctgcaggtg ggagaggccc acatcccctg cacacgtctg gccagaggac agatgggcag 33060
cccagtcacc agtcagagcc ctccagaggt gtccctgact gaccctacac acatgcaccc 33120
aggtgcccag gcacccttgg gctcagcaac cctgcaaccc cctcccagga cccaccagaa 33180
gcaggatagg actagagagg ccacaggagg gaaaccaagt cagagcagaa atggcttcgg 33240
tcctcagcag cctggctcag cttcctcaaa ccagatcctg actgatcaca ctggtctgtc 33300
taacccctgg gaggggtcct ctgtatccat cttacagata aggaaactga ggctcagaga 33360
agcccatcac tgcctaaggt cccagggcct ataagggagc tcaaagcctt gggccaggtc 33420
tgcccaggag ctgcagtgga agggaccctg tctgcagacc cccagaagac aaggcagacc 33480
acctgggttc ttcagccttg tggctgtgga cggctgtcag acccttctaa gaccccttgc 33540
cacctgctcc atcaggggca tctcagttga agaaggaagg actcaccccc aaaatcgtcc 33600
aactcagaaa aaaaggcaga agccaaggaa tccaatcact gggcaaaatg tgatcctggc 33660
acagacactg aggtggggga actggagccg gtgtggcgga ggccctcaca gccaagagca 33720
actgggggtg ccctgggcag ggactgtagc tgggaagatc 33760
//
</pre>
</td></tr></table><p>
<H2>
Output file format
</H2>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: h45989.est2genome</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
Note Best alignment is between forward est and forward genome, but splice sites imply REVERSED GENE
Exon 163 91.8 25685 25874 Z69719 1 193 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
-Intron -20 0.0 25875 26278 Z69719
Exon 207 98.1 26279 26492 Z69719 194 407 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
-Intron -20 0.0 26493 27390 Z69719
Exon 63 86.4 27391 27476 Z69719 408 494 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Span 393 93.6 25685 27476 Z69719 1 494 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 14 83.3 25685 25702 Z69719 1 18 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 28 85.7 25703 25737 Z69719 20 54 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 4 100.0 25738 25741 Z69719 56 59 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 13 100.0 25742 25754 Z69719 61 73 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 4 100.0 25756 25759 Z69719 74 77 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 110 97.4 25760 25874 Z69719 79 193 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 37 100.0 26279 26315 Z69719 194 230 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 162 98.8 26317 26480 Z69719 231 394 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 12 100.0 26481 26492 Z69719 396 407 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 16 100.0 27391 27406 Z69719 408 423 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 10 91.7 27407 27418 Z69719 425 436 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 19 95.2 27419 27439 Z69719 438 458 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment 24 80.6 27441 27476 Z69719 459 494 H45989 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
</pre>
</td></tr></table><p>
<p>
<h3>MSP type segments</h3>
There are four types of segment,
<ol>
<li>each gapped <b>Exon</b>
<li>each <b>Intron</b> (marked with a ? if it does not start GT and end AG)
<li>the complete alignment <b>Span</b>
<li>individual ungapped matching <b>Segments</b>.
</ol>
<p>
The score for <b>Exon</b> segments is the alignment score excluding
flanking intron penalties. The <b>Span</b> score is the total
including the intron costs.
<p>
The coordinates of the genomic sequence always refer to the positive
strand, but are swapped if the est has been reversed. The splice
direction of Introns are indicated as <b>+Intron</b> (forward, splice
sites GT/AG) or <b>-Intron</b> (reverse, splice sites CT/AC), or
<b>?Intron</b> (unknown direction). <b>Segment</b> entries give the
alignment as a series of ungapped matching segments.
<h3>Full alignment</h3>
You get the alignment if the -align switch is set. The alignment
includes the first and last 5 bases of each intron, together with the
intron width. The direction of splicing is indicated by
>>>> (forward) or <<<< (reverse) or ????
(unknown)
<H2>
Data files
</H2>
None
<H2>
Notes
</H2>
<b>est2genome</b> uses a linear-space dynamic-programming
algorithm. It has the following parameters:
<pre>
parameter default description
match 1 score for matching two bases
mismatch 1 cost for mismatching two bases
gap_penalty 2 cost for deleting a single base in
either sequence,
excluding introns
intron_penalty 40 cost for an intron, independent of
length.
splice_penalty 20 cost for an intron, independent of
length and starting/ending on
donor-acceptor sites.
space 10 Space threshold (in megabytes)
for linear-space recursion. If the
product of the two sequence
lengths divided by 4 exceeds this then
a divide-and-conquer strategy is used
to control the memory requirements.
In this way very long sequences can
be aligned.
If you have a machine with plenty of
memory you can raise this parameter
(but do not exceed the machine's
physical RAM)
However, normally you should not need
to change this parameter.
</pre>
There is no gap initiation cost for short gaps, just a penalty
proportional to the length of the gap. Thus the cost of inserting a
gap of length L in the EST is <pre> L*gap_penalty </pre> and the cost
in the genome is
<pre>
min { L*gap_penalty, intron_penalty } or
min { L*gap_penalty, splice_penalty } if the gap starts with GT and ends with AG
(or CT/AC if splice direction reversed)
</pre>
Introns are not allowed in the EST. The difference between the
intron_penalty and splice_penalty allows for some slack in marking the
intron end-points. It is often the case that the best intron
boundaries, from the point of view of minimising mismatches, will not
coincide exactly with the splice consensus, so provided the difference
between the intron/splice penalties outweighs the extra mismatch/indel
costs the alignment will respect the proper boundaries. If the
alignment still prefers boundaries which don't start and end with the
splice consensus then this may indicate errors in the sequences.
<p> The default parameters work well, except for very short exons
(length less than the splice_penalty, approx) which may be
skipped. The intron penalties should not be set to less that the
maximum expected random match between the sequences (typically 10-15
bp) in order to avoid spurious matches.
<H2>
References
</H2>
<ol>
<li>Mott R. (1997) EST_GENOME: a program to align spliced DNA sequences to
unspliced genomic DNA. Comput. Applic. 13:477-478
<li>Huang X (1994) On global sequence alignment. Comput. Applic. Biosci.
10:227-235.
<li>Myers, EW and Miller, W (1988) Optimal alignments in linear space.
Comput. Applic. Biosci. 4:11-17
<li>Smith, TE and Waterman, MS (1981) Identification of common molecular
subsequences. J. Mol. Biol. 147:195-197
</ol>
<H2>
Warnings
</H2>
None.
<H2>
Diagnostic Error Messages
</H2>
None.
<H2>
Exit status
</H2>
It returns 0 unless an error occurs.
<H2>
Known bugs
</H2>
None.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th>
<th>Description</th></tr>
<tr>
<td><a href="needle.html">needle</a></td>
<td>Needleman-Wunsch global alignment of two sequences</td>
</tr>
<tr>
<td><a href="needleall.html">needleall</a></td>
<td>Many-to-many pairwise alignments of two sequence sets</td>
</tr>
<tr>
<td><a href="stretcher.html">stretcher</a></td>
<td>Needleman-Wunsch rapid global alignment of two sequences</td>
</tr>
</table>
<H2>
Author(s)
</H2>
This application was modified for inclusion in EMBOSS by
Peter Rice
<br>
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
<p>
Please report all bugs to the EMBOSS bug team (emboss-bug © emboss.open-bio.org) not to the original author.
<p>
The original program was est_genome, written by Richard Mott at the Sanger
Centre. The original version is available from <a
href="ftp://ftp.sanger.ac.uk/pub/pmr/est_genome.4.tar.Z">
ftp://ftp.sanger.ac.uk/pub/pmr/est_genome.4.tar.Z</a>
<H2>
History
</H2>
<H2>
Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
Comments
</H2>
<h3>Thu, 29 Mar 2001</h3>
I found est2genome having problems finding very short exons with the
default parameters.
<p>
With the folowing changes it detects also a 14bp exon correctly:
<p>
<pre>
mismatch 1 -> 3
intronpenalty 40 -> 20
splicepenalty 20 -> 10
minscore 30 -> 10
</pre>
<pre>
Dr. David Bauer
GenProfile AG, Max-Delbrueck-Center, Erwin-Negelein-Haus
Robert-Roessle-Str. 10, D-13125 Berlin, Germany
bauer@genprofile.com, Tel:49-30-94892165, FAX:49-30-94892151
</pre>
</BODY>
</HTML>
|