File: est2genome.html

package info (click to toggle)
emboss 6.6.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 571,248 kB
  • ctags: 39,971
  • sloc: ansic: 460,578; java: 29,439; perl: 13,573; sh: 12,740; makefile: 3,275; csh: 706; asm: 351; xml: 239; pascal: 237; modula3: 8
file content (1333 lines) | stat: -rw-r--r-- 46,474 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
<HTML>

<HEAD>
  <TITLE>
  EMBOSS: est2genome
  </TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">

<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="/images/emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
est2genome
</font></b>
</td></tr>
</table>
<br>&nbsp;
<p>

<H2>
Wiki
</H2>

The master copies of EMBOSS documentation are available
at <a href="http://emboss.open-bio.org/wiki/Appdocs">
http://emboss.open-bio.org/wiki/Appdocs</a>
on the EMBOSS Wiki.

<p>
Please help by correcting and extending the Wiki pages.

<H2>
    Function
</H2>
Align EST sequences to genomic DNA sequence
<H2>
    Description
</H2>

<p><b>est2genome</b> aids the prediction of genes by sequence homology.  It aligns a set of spliced nucleotide sequences (ESTs cDNAs or mRNAs) to an unspliced genomic DNA sequence, inserting introns of arbitrary length when needed. Where feasible introns start and stop at the splice consensus dinucleotides GT and AG.</p>

<p>By default, <b>est2genome</b> makes three alignments: First it compares both strands of the spliced sequence against the forward strand of the genomic sequence, assuming the splice consensus GT/AG (ie in the forward gene direction). The maximum-scoring orientation is then realigned assuming the splice consensus CT/AC (ie in the reversed gene direction). By default, only the overall maximum-scoring alignment is reported, and then if it scores higher than a specific minimum threshold score.  Optionally, all comparisons may be reported.</p>

<p>The program outputs a list of the exons and introns it has found. The format is like that of MSPcrunch, ie a list of matching segments. This format is easy to parse into other software. The program also indicates, based on the splice site information, the gene's predicted direction of transcription. Optionally the full sequence alignment is printed as well.</p>

<H2>
    Algorithm
</H2>
    

 The program uses a linear-space divide-and-conquer strategy (Myers and Miller, 1988; Huang, 1994) to limit memory use:

1. A first pass Smith-Waterman local alignment scan is done to find the start, end and score of the maximally scoring segments (including introns of course).  No other alignment information is retained.

2. Subsequences corresponding to these segments are extracted

3a. If the product of the subsequences' lengths is less than a user-defined threshold (<tt>-space</tt> parameter), i.e. they will fit in memory, the segments are realigned using the Needleman-Wunsch global alignment algorithm, which will give the same result as the Smith-Waterman since the subsequences are guaranteed to align end-to-end.

3b. If the product of the lengths exceeds the threshold (a full alignment will not fit in memory) the alignment is made recursively by splitting the spliced (EST) sequence in half and finding the genome sequence position which aligns with the EST mid-point. The process is repeated until the product of the lengths is less than the threshold. The problem reduces to aligning the left-hand and right-hand portions of the sequences separately and merging the result. 

4. The genome sequence is searched against the forward and reverse strands of the spliced (EST) sequence, assuming a forward gene splicing direction (i.e. <tt>GT/AG</tt> consensus).

5. Then the best-scoring orientation is realigned assuming reverse splicing (<tt>CT/AC</tt> consensus). The overall best alignment is reported. 


The worst-case run-time for the algorithm is about 3 times as long as would be taken to align using a quadratic-space program. In practice the maximal-scoring segment is often much shorter than the full genome length so the program runs only about 1.5 times slower.




<p>
The algorithm has the following steps:

<ol>
<li> A first-pass Smith-Waterman scan is done to locate the score, start
and end of the maximal scoring segment (including introns of
course). No other alignment information is retained.

<li> Subsequences corresponding to the maximal-scoring segments are
extracted.  If the product of these subsequences' lengths is less than
the area parameter then the segments are re-aligned using the
Needleman-Wunsch algorithm, which in this instance will give the same
result as the Smith-Waterman since they are guaranteed to align
end-to-end.

<li> If the product of lengths exceeds the area threshold then the
alignment is recursively broken down by splitting the EST in half and
finding the genome position which aligns with the EST mid-point. The
problem then reduces to aligning the left-hand and right-hand portions
of the sequences separately and merging the result. 
</ol>

The worst-case run-time for the algorithm is about 3 times as long as
would be taken to align using a quadratic-space program. In practice
the maximal-scoring segment is often much shorter than the full genome
length so the program runs only about 1.5 times slower.


<H2>
    Usage
</H2>
Here is a sample session with <b>est2genome</b>
<p>

<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>

% <b>est2genome </b>
Align EST sequences to genomic DNA sequence
Spliced EST nucleotide sequence(s): <b>tembl:h45989</b>
Unspliced genomic nucleotide sequence: <b>tembl:z69719</b>
Output file [h45989.est2genome]: <b></b>

</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>

<H2>
    Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Align EST sequences to genomic DNA sequence
Version: EMBOSS:6.6.0.0

   Standard (Mandatory) qualifiers:
  [-estsequence]       seqall     Spliced EST nucleotide sequence(s)
  [-genomesequence]    sequence   Unspliced genomic nucleotide sequence
  [-outfile]           outfile    [*.est2genome] Output file name

   Additional (Optional) qualifiers:
   -match              integer    [1] Score for matching two bases (Any
                                  integer value)
   -mismatch           integer    [1] Cost for mismatching two bases (Any
                                  integer value)
   -gappenalty         integer    [2] Cost for deleting a single base in
                                  either sequence, excluding introns (Any
                                  integer value)
   -intronpenalty      integer    [40] Cost for an intron, independent of
                                  length. (Any integer value)
   -splicepenalty      integer    [20] Cost for an intron, independent of
                                  length and starting/ending on donor-acceptor
                                  sites (Any integer value)
   -minscore           integer    [30] Exclude alignments with scores below
                                  this threshold score. (Any integer value)

   Advanced (Unprompted) qualifiers:
   -reverse            boolean    Reverse the orientation of the EST sequence
   -[no]usesplice      boolean    [Y] Use donor and acceptor splice sites. If
                                  you want to ignore donor-acceptor sites then
                                  set this to be false.
   -mode               menu       [both] This determines the comparison mode.
                                  The default value is 'both', in which case
                                  both strands of the est are compared
                                  assuming a forward gene direction (ie GT/AG
                                  splice sites), and the best comparison
                                  redone assuming a reversed (CT/AC) gene
                                  splicing direction. The other allowed modes
                                  are 'forward', when just the forward strand
                                  is searched, and 'reverse', ditto for the
                                  reverse strand. (Values: both (Both
                                  strands); forward (Forward strand only);
                                  reverse (Reverse strand only))
   -[no]best           boolean    [Y] You can print out all comparisons
                                  instead of just the best one by setting this
                                  to be false.
   -space              float      [10.0] For linear-space recursion. If
                                  product of sequence lengths divided by 4
                                  exceeds this then a divide-and-conquer
                                  strategy is used to control the memory
                                  requirements. In this way very long
                                  sequences can be aligned.
                                  If you have a machine with plenty of memory
                                  you can raise this parameter (but do not
                                  exceed the machine's physical RAM) (Any
                                  numeric value)
   -shuffle            integer    [0] Shuffle (Any integer value)
   -seed               integer    [20825] Random number seed (Any integer
                                  value)
   -align              boolean    Show the alignment. The alignment includes
                                  the first and last 5 bases of each intron,
                                  together with the intron width. The
                                  direction of splicing is indicated by angle
                                  brackets (forward or reverse) or ????
                                  (unknown).
   -width              integer    [50] Alignment width (Any integer value)

   Associated qualifiers:

   "-estsequence" associated qualifiers
   -sbegin1            integer    Start of each sequence to be used
   -send1              integer    End of each sequence to be used
   -sreverse1          boolean    Reverse (if DNA)
   -sask1              boolean    Ask for begin/end/reverse
   -snucleotide1       boolean    Sequence is nucleotide
   -sprotein1          boolean    Sequence is protein
   -slower1            boolean    Make lower case
   -supper1            boolean    Make upper case
   -scircular1         boolean    Sequence is circular
   -squick1            boolean    Read id and sequence only
   -sformat1           string     Input sequence format
   -iquery1            string     Input query fields or ID list
   -ioffset1           integer    Input start position offset
   -sdbname1           string     Database name
   -sid1               string     Entryname
   -ufo1               string     UFO features
   -fformat1           string     Features format
   -fopenfile1         string     Features file name

   "-genomesequence" associated qualifiers
   -sbegin2            integer    Start of the sequence to be used
   -send2              integer    End of the sequence to be used
   -sreverse2          boolean    Reverse (if DNA)
   -sask2              boolean    Ask for begin/end/reverse
   -snucleotide2       boolean    Sequence is nucleotide
   -sprotein2          boolean    Sequence is protein
   -slower2            boolean    Make lower case
   -supper2            boolean    Make upper case
   -scircular2         boolean    Sequence is circular
   -squick2            boolean    Read id and sequence only
   -sformat2           string     Input sequence format
   -iquery2            string     Input query fields or ID list
   -ioffset2           integer    Input start position offset
   -sdbname2           string     Database name
   -sid2               string     Entryname
   -ufo2               string     UFO features
   -fformat2           string     Features format
   -fopenfile2         string     Features file name

   "-outfile" associated qualifiers
   -odirectory3        string     Output directory

   General qualifiers:
   -auto               boolean    Turn off prompts
   -stdout             boolean    Write first file to standard output
   -filter             boolean    Read first file from standard input, write
                                  first file to standard output
   -options            boolean    Prompt for standard and additional values
   -debug              boolean    Write debug output to program.dbg
   -verbose            boolean    Report some/full command line options
   -help               boolean    Report command line options and exit. More
                                  information on associated and general
                                  qualifiers can be found with -help -verbose
   -warning            boolean    Report warnings
   -error              boolean    Report errors
   -fatal              boolean    Report fatal errors
   -die                boolean    Report dying program messages
   -version            boolean    Report version number and exit

</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left">Qualifier</th>
<th align="left">Type</th>
<th align="left">Description</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Standard (Mandatory) qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td>[-estsequence]<br>(Parameter 1)</td>
<td>seqall</td>
<td>Spliced EST nucleotide sequence(s)</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>

<tr bgcolor="#FFFFCC">
<td>[-genomesequence]<br>(Parameter 2)</td>
<td>sequence</td>
<td>Unspliced genomic nucleotide sequence</td>
<td>Readable sequence</td>
<td><b>Required</b></td>
</tr>

<tr bgcolor="#FFFFCC">
<td>[-outfile]<br>(Parameter 3)</td>
<td>outfile</td>
<td>Output file name</td>
<td>Output file</td>
<td><i>&lt;*&gt;</i>.est2genome</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Additional (Optional) qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td>-match</td>
<td>integer</td>
<td>Score for matching two bases</td>
<td>Any integer value</td>
<td>1</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-mismatch</td>
<td>integer</td>
<td>Cost for mismatching two bases</td>
<td>Any integer value</td>
<td>1</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-gappenalty</td>
<td>integer</td>
<td>Cost for deleting a single base in either sequence, excluding introns</td>
<td>Any integer value</td>
<td>2</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-intronpenalty</td>
<td>integer</td>
<td>Cost for an intron, independent of length.</td>
<td>Any integer value</td>
<td>40</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-splicepenalty</td>
<td>integer</td>
<td>Cost for an intron, independent of length and starting/ending on donor-acceptor sites</td>
<td>Any integer value</td>
<td>20</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-minscore</td>
<td>integer</td>
<td>Exclude alignments with scores below this threshold score.</td>
<td>Any integer value</td>
<td>30</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Advanced (Unprompted) qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td>-reverse</td>
<td>boolean</td>
<td>Reverse the orientation of the EST sequence</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-[no]usesplice</td>
<td>boolean</td>
<td>Use donor and acceptor splice sites. If you want to ignore donor-acceptor sites then set this to be false.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-mode</td>
<td>list</td>
<td>This determines the comparison mode. The default value is 'both', in which case both strands of the est are compared assuming a forward gene direction (ie GT/AG splice sites), and the best comparison redone assuming a reversed (CT/AC) gene splicing direction. The other allowed modes are 'forward', when just the forward strand is searched, and 'reverse', ditto for the reverse strand.</td>
<td><table><tr><td>both</td> <td><i>(Both strands)</i></td></tr><tr><td>forward</td> <td><i>(Forward strand only)</i></td></tr><tr><td>reverse</td> <td><i>(Reverse strand only)</i></td></tr></table></td>
<td>both</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-[no]best</td>
<td>boolean</td>
<td>You can print out all comparisons instead of just the best one by setting this to be false.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-space</td>
<td>float</td>
<td>For linear-space recursion. If product of sequence lengths divided by 4 exceeds this then a divide-and-conquer strategy is used to control the memory requirements. In this way very long sequences can be aligned.
If you have a machine with plenty of memory you can raise this parameter (but do not exceed the machine's physical RAM)</td>
<td>Any numeric value</td>
<td>10.0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-shuffle</td>
<td>integer</td>
<td>Shuffle</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-seed</td>
<td>integer</td>
<td>Random number seed</td>
<td>Any integer value</td>
<td>20825</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-align</td>
<td>boolean</td>
<td>Show the alignment. The alignment includes the first and last 5 bases of each intron, together with the intron width. The direction of splicing is indicated by angle brackets (forward or reverse) or ???? (unknown).</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>

<tr bgcolor="#FFFFCC">
<td>-width</td>
<td>integer</td>
<td>Alignment width</td>
<td>Any integer value</td>
<td>50</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Associated qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-estsequence" associated seqall qualifiers
</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sbegin1<br>-sbegin_estsequence</td>
<td>integer</td>
<td>Start of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -send1<br>-send_estsequence</td>
<td>integer</td>
<td>End of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sreverse1<br>-sreverse_estsequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sask1<br>-sask_estsequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -snucleotide1<br>-snucleotide_estsequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sprotein1<br>-sprotein_estsequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -slower1<br>-slower_estsequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -supper1<br>-supper_estsequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -scircular1<br>-scircular_estsequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -squick1<br>-squick_estsequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sformat1<br>-sformat_estsequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -iquery1<br>-iquery_estsequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -ioffset1<br>-ioffset_estsequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sdbname1<br>-sdbname_estsequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sid1<br>-sid_estsequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -ufo1<br>-ufo_estsequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fformat1<br>-fformat_estsequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fopenfile1<br>-fopenfile_estsequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-genomesequence" associated sequence qualifiers
</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sbegin2<br>-sbegin_genomesequence</td>
<td>integer</td>
<td>Start of the sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -send2<br>-send_genomesequence</td>
<td>integer</td>
<td>End of the sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sreverse2<br>-sreverse_genomesequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sask2<br>-sask_genomesequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -snucleotide2<br>-snucleotide_genomesequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sprotein2<br>-sprotein_genomesequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -slower2<br>-slower_genomesequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -supper2<br>-supper_genomesequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -scircular2<br>-scircular_genomesequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -squick2<br>-squick_genomesequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sformat2<br>-sformat_genomesequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -iquery2<br>-iquery_genomesequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -ioffset2<br>-ioffset_genomesequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sdbname2<br>-sdbname_genomesequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -sid2<br>-sid_genomesequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -ufo2<br>-ufo_genomesequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fformat2<br>-fformat_genomesequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fopenfile2<br>-fopenfile_genomesequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-outfile" associated outfile qualifiers
</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -odirectory3<br>-odirectory_outfile</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td>&nbsp;</td>
</tr>

<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>General qualifiers</th>
</tr>

<tr bgcolor="#FFFFCC">
<td> -auto</td>
<td>boolean</td>
<td>Turn off prompts</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -stdout</td>
<td>boolean</td>
<td>Write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -filter</td>
<td>boolean</td>
<td>Read first file from standard input, write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -options</td>
<td>boolean</td>
<td>Prompt for standard and additional values</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -debug</td>
<td>boolean</td>
<td>Write debug output to program.dbg</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -verbose</td>
<td>boolean</td>
<td>Report some/full command line options</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -help</td>
<td>boolean</td>
<td>Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -warning</td>
<td>boolean</td>
<td>Report warnings</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -error</td>
<td>boolean</td>
<td>Report errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -fatal</td>
<td>boolean</td>
<td>Report fatal errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -die</td>
<td>boolean</td>
<td>Report dying program messages</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>

<tr bgcolor="#FFFFCC">
<td> -version</td>
<td>boolean</td>
<td>Report version number and exit</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>

</table>

<H2>
    Input file format
</H2>


<b>est2genome</b> reads two nucleotide sequences. The first is an EST
sequence (a single read or a finished cDNA). The second is a genomic
finished sequence.

<p>

<a name="input.1"></a>
<h3>Input files for usage example </h3>

'tembl:h45989' is a sequence entry in the example nucleic acid database 'tembl'
<p>
<p><h3>Database entry: tembl:h45989</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID   H45989; SV 1; linear; mRNA; EST; HUM; 495 BP.
XX
AC   H45989;
XX
DT   18-NOV-1995 (Rel. 45, Created)
DT   04-MAR-2000 (Rel. 63, Last updated, Version 2)
XX
DE   yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone
DE   IMAGE:177794 3', mRNA sequence.
XX
KW   EST.
XX
OS   Homo sapiens (human)
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC   Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC   Homo.
XX
RN   [1]
RP   1-495
RA   Hillier L., Clark N., Dubuque T., Elliston K., Hawkins M., Holman M.,
RA   Hultman M., Kucaba T., Le M., Lennon G., Marra M., Parsons J., Rifkin L.,
RA   Rohlfing T., Soares M., Tan F., Trevaskis E., Waterston R., Williamson A.,
RA   Wohldmann P., Wilson R.;
RT   "The WashU-Merck EST Project";
RL   Unpublished.
XX
DR   GDB; 3839990.
DR   GDB; 4193257.
DR   UNILIB; 555; 300.
XX
CC   On May 8, 1995 this sequence version replaced gi:800819.
CC   Contact: Wilson RK
CC   Washington University School of Medicine
CC   4444 Forest Park Parkway, Box 8501, St. Louis, MO 63108
CC   Tel: 314 286 1800
CC   Fax: 314 286 1810
CC   Email: est@watson.wustl.edu
CC   Insert Size: 544
CC   High quality sequence stops: 265
CC   Source: IMAGE Consortium, LLNL
CC   This clone is available royalty-free through LLNL ; contact the
CC   IMAGE Consortium (info@image.llnl.gov) for further information.
CC   Possible reversed clone: polyT not found
CC   Insert Length: 544   Std Error: 0.00
CC   Seq primer: SP6
CC   High quality sequence stop: 265.
XX
FH   Key             Location/Qualifiers
FH
FT   source          1..495
FT                   /organism="Homo sapiens"
FT                   /lab_host="DH10B (ampicillin resistant)"
FT                   /mol_type="mRNA"
FT                   /sex="Male"
FT                   /dev_stage="55-year old"
FT                   /clone_lib="Soares adult brain N2b5HB55Y"
FT                   /clone="IMAGE:177794"
FT                   /note="Organ: brain; Vector: pT7T3D (Pharmacia) with a
FT                   modified polylinker; Site_1: Not I; Site_2: Eco RI; 1st
FT                   strand cDNA was primed with a Not I - oligo(dT) primer [5'
FT                   TGTTACCAATCTGAAGTGGGAGCGGCCGCGCTTTTTTTTTTTTTTTTTTT 3'],
FT                   double-stranded cDNA was size selected, ligated to Eco RI
FT                   adapters (Pharmacia), digested with Not I and cloned into
FT                   the Not I and Eco RI sites of a modified pT7T3 vector
FT                   (Pharmacia). Library went through one round of
FT                   normalization to a Cot = 53. Library constructed by Bento
FT                   Soares and M.Fatima Bonaldo. The adult brain RNA was
FT                   provided by Dr. Donald H. Gilden. Tissue was acquired 17-18
FT                   hours after death which occurred in consequence of a
FT                   ruptured aortic aneurysm. RNA was prepared from a pool of
FT                   tissues representing the following areas of the brain:
FT                   frontal, parietal, temporal and occipital cortex from the
FT                   left and right hemispheres, subcortical white matter, basal
FT                   ganglia, thalamus, cerebellum, midbrain, pons and medulla."
FT                   /db_xref="taxon:9606"
FT                   /db_xref="UNILIB:555"
XX
SQ   Sequence 495 BP; 73 A; 135 C; 169 G; 104 T; 14 other;
     ccggnaagct cancttggac caccgactct cgantgnntc gccgcgggag ccggntggan        60
     aacctgagcg ggactggnag aaggagcaga gggaggcagc acccggcgtg acggnagtgt       120
     gtggggcact caggccttcc gcagtgtcat ctgccacacg gaaggcacgg ccacgggcag       180
     gggggtctat gatcttctgc atgcccagct ggcatggccc cacgtagagt ggnntggcgt       240
     ctcggtgctg gtcagcgaca cgttgtcctg gctgggcagg tccagctccc ggaggacctg       300
     gggcttcagc ttcccgtagc gctggctgca gtgacggatg ctcttgcgct gccatttctg       360
     ggtgctgtca ctgtccttgc tcactccaaa ccagttcggc ggtccccctg cggatggtct       420
     gtgttgatgg acgtttgggc tttgcagcac cggccgccga gttcatggtn gggtnaagag       480
     atttgggttt tttcn                                                        495
//
</pre>
</td></tr></table><p>
<p><h3>Database entry: tembl:z69719</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID   Z69719; SV 1; linear; genomic DNA; STD; HUM; 33760 BP.
XX
AC   Z69719;
XX
DT   26-FEB-1996 (Rel. 46, Created)
DT   13-JAN-2009 (Rel. 99, Last updated, Version 7)
XX
DE   Human DNA sequence from clone XX-CNFG9 on chromosome 16
XX
KW   C16orf33; HTG; POLR3K; RHBDF1.
XX
OS   Homo sapiens (human)
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC   Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC   Homo.
XX
RN   [1]
RP   1-33760
RA   Kershaw J.;
RT   ;
RL   Submitted (09-JAN-2009) to the INSDC.
RL   Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
RL   E-mail enquiries: vega@sanger.ac.uk Clone requests: Geneservice
RL   (http://www.geneservice.co.uk/) and BACPAC Resources
RL   (http://bacpac.chori.org/)
XX
DR   EMBL-CON; GL000124.
DR   Ensembl-Gn; ENSG00000007384; Homo_sapiens.
DR   Ensembl-Gn; ENSG00000161980; Homo_sapiens.
DR   Ensembl-Gn; ENSG00000161981; Homo_sapiens.
DR   Ensembl-Tr; ENST00000262316; Homo_sapiens.
DR   Ensembl-Tr; ENST00000293860; Homo_sapiens.
DR   Ensembl-Tr; ENST00000293861; Homo_sapiens.
DR   Ensembl-Tr; ENST00000338527; Homo_sapiens.
DR   Ensembl-Tr; ENST00000383018; Homo_sapiens.
DR   Ensembl-Tr; ENST00000417043; Homo_sapiens.
DR   Ensembl-Tr; ENST00000417493; Homo_sapiens.
DR   Ensembl-Tr; ENST00000419764; Homo_sapiens.
DR   Ensembl-Tr; ENST00000420545; Homo_sapiens.
DR   Ensembl-Tr; ENST00000428730; Homo_sapiens.
DR   Ensembl-Tr; ENST00000448893; Homo_sapiens.
DR   Ensembl-Tr; ENST00000450643; Homo_sapiens.
DR   Ensembl-Tr; ENST00000454039; Homo_sapiens.
DR   GDB; 11502921.
DR   GOA; E9PGJ1.
DR   GOA; F5GWL4.
DR   GOA; F8WBS4.
DR   GOA; H0Y6L9.
DR   InterPro; IPR022241; Rhomboid_SP.
DR   InterPro; IPR022764; Peptidase_S54_rhomboid_dom.


<font color=red>  [Part of this file has been deleted for brevity]</font>

     gagacagcag agtgctcagc tcatgaagga ggcaccagcc gccatgcctc tacatccagg     30840
     tctcctgggg ttcccacctc cacaaaaacc cccactgcta ggagtgcagg caggagggga     30900
     cctgagaacc gacagttata ggtcctgcgg gtgggcagtg ctgggtgttc tggtctgccc     30960
     cacccctgtg tgcctagatc cccatctggg cctcaagtgg gtgggattcc aaaggaagag     31020
     ccggagtagg cgtggggagg ggcaggccca ggctggacaa agagtctggc cagggagcgg     31080
     cacattgccc tcccagagac agtggctcag tgtccaggcc ttccccaggc gcacagtggg     31140
     ctcttgttcc cagaaagccc ctcgggggga tccaaacagt gtctccccca ccccgctgac     31200
     ccctcagtgt atggggaaac cgtggcccac ggaaggcctc actgcctggg gtcacacagc     31260
     atctgagtca ctgcagcagc ctcacagctg ccagcccagg cccagcccca tcaggagaca     31320
     cccaaagcca cagtgcatcc caggaccagc tgggggggct gcgggcagga ctctcgatga     31380
     ggctgaggga cgaggagggt caagggagcc actggcgcca tgcatgctga cgtcccctct     31440
     ggctgcctgc agagcctggt gtggaagggc tgagtggggg atggtggaga gtcctgttaa     31500
     ctcaggtttc tgctctgggg atgtctgggc acccatcaag ctggccgcgt gcacaggtgc     31560
     agggagagcc agaaagcagg agccgatgca gggaggccac tggggacagc ccaggctgat     31620
     gcttgggccc catgtgtctc caccacctac aaccctaagc aagcctcagc tttcccatct     31680
     ggaaatcagg ggtcacagca gtgcctggca cagtagcagc ggctgactcc atcacagggt     31740
     ggtgtagcct gtgggtactt ggcactctct gaggggcagg agctgggggg tgaaaggacc     31800
     ctagagcata tgcaacaaga gggcagccct ggggacacct ggggacagaa ccctccaaag     31860
     gtgtcgagtt tgggaagaga ctagagagaa gctctggcca gtccaggcat agacagtggc     31920
     cacagccagt ggagagctgc atcctcaggt gtgagcagca accacctctg tactcaggcc     31980
     tgccctgcac actcacagga ccatgctggc agggacaact ggcggcggag ttgactgcca     32040
     accccggggc cagaaccatc aagcctgggc tctgctccgc ccaaggaact gcctgctgcc     32100
     gaggtcagct ggagcaaggg gcctcacccc gggacacctt cccagacgtg tcctcagctc     32160
     acatgagcct catcccaggg ggatgtggct cctccagcat ccccacccac acgctgctct     32220
     ctgaccctca gtcttctgtt tgactcctaa tctgaagctc aatcctagat ctcccttgag     32280
     aagggggtca ccagctgtct ggcagcccag cctccaggtc ttctggatta atgaagggaa     32340
     agtcacctgg cctctctgcc ttgtctatta atggcatcat gctgagaatg atatttgcta     32400
     ggccctttgc aaaccccaaa gtgctcttca accctcccag tgaagcctct tcttttctgt     32460
     ggaagaaatg aggttcaggg tggagcaggg caggcctgag acctttgcag ggttctctcc     32520
     aggtccccag caggacagac tggcaccctg cctcccctca tcaccctaga caaggagaca     32580
     gaacaagagg ttccctgcta caggccatct gtgagggaag ccgccctagg gcctgtagac     32640
     acaggaatcc ctgaggacct gacctgtgag ggtagtgcac aaaggggcca gcacttggca     32700
     ggaggggggg gggcactgcc ccaaggctca gctagcaaat gtggcacagg ggtcaccaga     32760
     gctaaacccc tgactcagtt gggtctgaca ggggctgaca tggcagacac acccaggaat     32820
     caggggacac caagtgcagc tcagggcacc tgtccaggcc acacagtcag aaaggggatg     32880
     gcagcaagga cttagctaca ctagattctg ggggtaaact gcctggtatg ctggtcactg     32940
     ctagtcccca gtctggagtc tagctgggtc tcaggagtta ggcgaaaaca ccctccccag     33000
     gctgcaggtg ggagaggccc acatcccctg cacacgtctg gccagaggac agatgggcag     33060
     cccagtcacc agtcagagcc ctccagaggt gtccctgact gaccctacac acatgcaccc     33120
     aggtgcccag gcacccttgg gctcagcaac cctgcaaccc cctcccagga cccaccagaa     33180
     gcaggatagg actagagagg ccacaggagg gaaaccaagt cagagcagaa atggcttcgg     33240
     tcctcagcag cctggctcag cttcctcaaa ccagatcctg actgatcaca ctggtctgtc     33300
     taacccctgg gaggggtcct ctgtatccat cttacagata aggaaactga ggctcagaga     33360
     agcccatcac tgcctaaggt cccagggcct ataagggagc tcaaagcctt gggccaggtc     33420
     tgcccaggag ctgcagtgga agggaccctg tctgcagacc cccagaagac aaggcagacc     33480
     acctgggttc ttcagccttg tggctgtgga cggctgtcag acccttctaa gaccccttgc     33540
     cacctgctcc atcaggggca tctcagttga agaaggaagg actcaccccc aaaatcgtcc     33600
     aactcagaaa aaaaggcaga agccaaggaa tccaatcact gggcaaaatg tgatcctggc     33660
     acagacactg aggtggggga actggagccg gtgtggcgga ggccctcaca gccaagagca     33720
     actgggggtg ccctgggcag ggactgtagc tgggaagatc                           33760
//
</pre>
</td></tr></table><p>

<H2>
    Output file format
</H2>


<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: h45989.est2genome</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
Note Best alignment is between forward est and forward genome, but splice sites imply REVERSED GENE
Exon       163  91.8 25685 25874 Z69719           1   193 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
-Intron    -20   0.0 25875 26278 Z69719      
Exon       207  98.1 26279 26492 Z69719         194   407 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
-Intron    -20   0.0 26493 27390 Z69719      
Exon        63  86.4 27391 27476 Z69719         408   494 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.

Span       393  93.6 25685 27476 Z69719           1   494 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.

Segment     14  83.3 25685 25702 Z69719           1    18 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment     28  85.7 25703 25737 Z69719          20    54 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment      4 100.0 25738 25741 Z69719          56    59 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment     13 100.0 25742 25754 Z69719          61    73 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment      4 100.0 25756 25759 Z69719          74    77 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment    110  97.4 25760 25874 Z69719          79   193 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment     37 100.0 26279 26315 Z69719         194   230 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment    162  98.8 26317 26480 Z69719         231   394 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment     12 100.0 26481 26492 Z69719         396   407 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment     16 100.0 27391 27406 Z69719         408   423 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment     10  91.7 27407 27418 Z69719         425   436 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment     19  95.2 27419 27439 Z69719         438   458 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
Segment     24  80.6 27441 27476 Z69719         459   494 H45989        yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence.
</pre>
</td></tr></table><p>
<p>

<h3>MSP type segments</h3>

There are four types of segment,

<ol> 
<li>each gapped <b>Exon</b>
<li>each <b>Intron</b> (marked with a ? if it does not start GT and end AG)
<li>the complete alignment <b>Span</b>
<li>individual ungapped matching <b>Segments</b>.
</ol>


<p>

The score for <b>Exon</b> segments is the alignment score excluding
flanking intron penalties. The <b>Span</b> score is the total
including the intron costs.

<p>

The coordinates of the genomic sequence always refer to the positive
strand, but are swapped if the est has been reversed. The splice
direction of Introns are indicated as <b>+Intron</b> (forward, splice
sites GT/AG) or <b>-Intron</b> (reverse, splice sites CT/AC), or
<b>?Intron</b> (unknown direction). <b>Segment</b> entries give the
alignment as a series of ungapped matching segments.


<h3>Full alignment</h3>

You get the alignment if the -align switch is set.  The alignment
includes the first and last 5 bases of each intron, together with the
intron width. The direction of splicing is indicated by
&gt;&gt;&gt;&gt; (forward) or &lt;&lt;&lt;&lt; (reverse) or ????
(unknown)


<H2>
    Data files
</H2>


None

<H2>
    Notes
</H2>


<b>est2genome</b> uses a linear-space dynamic-programming 
algorithm. It has the following parameters:

<pre>
parameter               default         description

match                   1               score for matching two bases
mismatch                1               cost for mismatching two bases
gap_penalty             2               cost for deleting a single base in
                                        either sequence, 
                                        excluding introns
intron_penalty          40              cost for an intron, independent of
                                        length.
splice_penalty          20              cost for an intron, independent of
                                        length and starting/ending on
                                        donor-acceptor sites.

space                   10              Space threshold (in  megabytes) 
                                        for linear-space recursion. If the
                                        product of the two sequence 
                                        lengths divided by 4 exceeds this then
                                        a divide-and-conquer strategy is used 
                                        to control the memory requirements. 
                                        In this way very long sequences can
                                        be aligned. 
                                        If you have a machine with plenty of
                                        memory you can raise this parameter
                                        (but do not exceed the machine's
                                        physical RAM)
                                        However, normally you should not need
                                        to change this parameter.
</pre>

There is no gap initiation cost for short gaps, just a penalty
proportional to the length of the gap.  Thus the cost of inserting a
gap of length L in the EST is <pre> L*gap_penalty </pre> and the cost
in the genome is 

<pre> 
min { L*gap_penalty, intron_penalty } or
min { L*gap_penalty, splice_penalty } if the gap starts with GT and ends with AG
                                     (or CT/AC if splice direction reversed)
</pre>

Introns are not allowed in the EST.  The difference between the
intron_penalty and splice_penalty allows for some slack in marking the
intron end-points. It is often the case that the best intron
boundaries, from the point of view of minimising mismatches, will not
coincide exactly with the splice consensus, so provided the difference
between the intron/splice penalties outweighs the extra mismatch/indel
costs the alignment will respect the proper boundaries. If the
alignment still prefers boundaries which don't start and end with the
splice consensus then this may indicate errors in the sequences.


<p> The default parameters work well, except for very short exons
(length less than the splice_penalty, approx) which may be
skipped. The intron penalties should not be set to less that the
maximum expected random match between the sequences (typically 10-15
bp) in order to avoid spurious matches.



<H2>
    References
</H2>

<ol>

<li>Mott R. (1997) EST_GENOME: a program to align spliced DNA sequences to 
unspliced genomic DNA.  Comput. Applic. 13:477-478

<li>Huang X (1994) On global sequence alignment. Comput. Applic. Biosci. 
10:227-235.

<li>Myers, EW and Miller, W (1988) Optimal alignments in linear space. 
Comput. Applic. Biosci. 4:11-17

<li>Smith, TE and Waterman, MS (1981) Identification of common molecular 
subsequences. J. Mol. Biol. 147:195-197

</ol>

<H2>
    Warnings
</H2>

None.

<H2>
    Diagnostic Error Messages
</H2>

None.

<H2>
    Exit status
</H2>

It returns 0 unless an error occurs. 

<H2>
    Known bugs
</H2>

None.

<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th>
<th>Description</th></tr>
<tr>
<td><a href="needle.html">needle</a></td>
<td>Needleman-Wunsch global alignment of two sequences</td>
</tr>

<tr>
<td><a href="needleall.html">needleall</a></td>
<td>Many-to-many pairwise alignments of two sequence sets</td>
</tr>

<tr>
<td><a href="stretcher.html">stretcher</a></td>
<td>Needleman-Wunsch rapid global alignment of two sequences</td>
</tr>

</table>

<H2>
    Author(s)
</H2>


This application was modified for inclusion in EMBOSS by 
Peter Rice
<br>
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK

<p>
Please report all bugs to the EMBOSS bug team (emboss-bug&nbsp;&copy;&nbsp;emboss.open-bio.org) not to the original author.

<p>
The original program was est_genome, written by Richard Mott at the Sanger
Centre.  The original version is available from <a
href="ftp://ftp.sanger.ac.uk/pub/pmr/est_genome.4.tar.Z">
ftp://ftp.sanger.ac.uk/pub/pmr/est_genome.4.tar.Z</a>

<H2>
    History
</H2>


<H2>
    Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.

<H2>
    Comments
</H2>

<h3>Thu, 29 Mar 2001</h3>

I found est2genome having problems finding very short exons with the
default parameters.

<p>

With the folowing changes it detects also a 14bp exon correctly:
<p>

<pre>
mismatch 1 -> 3
intronpenalty 40 -> 20
splicepenalty 20 -> 10
minscore 30 -> 10
</pre>

<pre>
Dr. David Bauer
GenProfile AG, Max-Delbrueck-Center, Erwin-Negelein-Haus 
Robert-Roessle-Str. 10, D-13125 Berlin, Germany
bauer@genprofile.com, Tel:49-30-94892165, FAX:49-30-94892151
</pre>



</BODY>
</HTML>