1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
|
<HTML>
<HEAD>
<TITLE>
EMBOSS: needleall
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="/images/emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
needleall
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Wiki
</H2>
The master copies of EMBOSS documentation are available
at <a href="http://emboss.open-bio.org/wiki/Appdocs">
http://emboss.open-bio.org/wiki/Appdocs</a>
on the EMBOSS Wiki.
<p>
Please help by correcting and extending the Wiki pages.
<H2>
Function
</H2>
Many-to-many pairwise alignments of two sequence sets
<H2>
Description
</H2>
<p><b>needleall</b> reads a set of input sequences and compares them all to one or more sequences, writing their optimal global sequence alignments to file. It uses the Needleman-Wunsch alignment algorithm to find the optimum alignment (including gaps) of two sequences along their entire length. The algorithm uses a dynamic programming method to ensure the alignment is optimum, by exploring all possible alignments and choosing the best. A scoring matrix is read that contains values for every possible residue or nucleotide match. Needleall finds the alignment with the maximum possible score where the score of an alignment is equal to the sum of the matches taken from the scoring matrix, minus penalties arising from opening and extending gaps in the aligned sequences. The substitution matrix and gap opening and extension penalties are user-specified.</p>
<H3>
Algorithm
</H3>
<p>The Needleman-Wunsch algorithm is a member of the class of algorithms that can calculate the best score and alignment of two sequences in the order of <tt>mn</tt> steps, where <tt>n</tt> and <tt>m</tt> are the sequence lengths. These dynamic programming algorithms were first developed for protein sequence comparison by Needleman and Wunsch, though similar methods were independently devised during the late 1960's and early 1970's for use in the fields of speech processing and computer science.</p>
<p>An important problem is the treatment of gaps, i.e., spaces inserted to optimise the alignment score. A penalty is subtracted from the score for each gap opened (the 'gap open' penalty) and a penalty is subtracted from the score for the total number of gap spaces multiplied by a cost (the 'gap extension' penalty). Typically, the cost of extending a gap is set to be 5-10 times lower than the cost for opening a gap.</p>
<p>Penalty for a gap of <tt>n</tt> positions is calculated using the following formula:
<pre>gap opening penalty + (n - 1) * gap extension penalty
</pre>
</p>
<p>In a Needleman-Wunsch global alignment, the entire length of each sequence is aligned. The sequences might be partially overlapping or one sequence might be aligned entirely internally to the other. There is no penalty for the hanging ends of the overlap. In bioinformatics, it is usually reasonable to assume that the sequences are incomplete and there should be no penalty for failing to align the missing bases.</p>
<H2>
Usage
</H2>
Here is a sample session with <b>needleall</b>
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>needleall -minscore 40 -stdout -auto ../data/test1_illumina.fastq </b>
Illumina_DpnII_Gex_PCR_Primer_2 FC12044_91407_8_200_406_24 45 (41.0)
Illumina_NlaIII_Gex_PCR_Primer_2 FC12044_91407_8_200_406_24 45 (41.0)
Illumina_Small_RNA_PCR_Primer_2 FC12044_91407_8_200_406_24 45 (41.0)
Illumina_DpnII_Gex_Adapters1_1 FC12044_91407_8_200_106_131 35 (40.5)
Illumina_Paired_End_DNA_Adapters1_1 FC12044_91407_8_200_57_85 35 (41.0)
Illumina_DpnII_Gex_Adapters1_1 FC12044_91407_8_200_154_436 31 (42.0)
Illumina_Genomic_DNA_PCR_Primers1_1 FC12044_91407_8_200_83_511 64 (42.0)
Illumina_Paired_End_DNA_PCR_Primers1_1 FC12044_91407_8_200_83_511 64 (42.0)
Illumina_DpnII_Gex_Adapters1_2 FC12044_91407_8_200_303_427 33 (40.5)
Illumina_DpnII_Gex_PCR_Primer_2 FC12044_91407_8_200_303_427 51 (40.5)
Illumina_DpnII_Gex_sequencing_primer FC12044_91407_8_200_303_427 38 (44.5)
Illumina_NlaIII_Gex_Adapters1_2 FC12044_91407_8_200_303_427 36 (40.5)
Illumina_NlaIII_Gex_PCR_Primer_2 FC12044_91407_8_200_303_427 51 (40.5)
Illumina_NlaIII_Gex_sequencing_primer FC12044_91407_8_200_303_427 39 (40.5)
Illumina_Small_RNA_5p_Adapter FC12044_91407_8_200_303_427 33 (40.5)
Illumina_Small_RNA_PCR_Primer_2 FC12044_91407_8_200_303_427 51 (40.5)
Illumina_Small_RNA_sequencing_primer FC12044_91407_8_200_303_427 38 (44.5)
Illumina_Paired_End_DNA_Adapters1_1 FC12044_91407_8_200_553_135 33 (44.5)
Illumina_DpnII_Gex_PCR_Primer_2 FC12044_91407_8_200_139_74 51 (46.0)
Illumina_DpnII_Gex_sequencing_primer FC12044_91407_8_200_139_74 38 (42.0)
Illumina_NlaIII_Gex_PCR_Primer_2 FC12044_91407_8_200_139_74 51 (46.0)
Illumina_Small_RNA_PCR_Primer_2 FC12044_91407_8_200_139_74 51 (46.0)
Illumina_Small_RNA_sequencing_primer FC12044_91407_8_200_139_74 38 (42.0)
#---------------------------------------
#---------------------------------------
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Many-to-many pairwise alignments of two sequence sets
Version: EMBOSS:6.6.0.0
Standard (Mandatory) qualifiers:
[-asequence] seqset Sequence set filename and optional format,
or reference (input USA)
[-bsequence] seqall Sequence(s) filename and optional format, or
reference (input USA)
-gapopen float [10.0 for any sequence] The gap open penalty
is the score taken away when a gap is
created. The best value depends on the
choice of comparison matrix. The default
value assumes you are using the EBLOSUM62
matrix for protein sequences, and the
EDNAFULL matrix for nucleotide sequences.
(Floating point number from 1.0 to 100.0)
-gapextend float [0.5 for any sequence] The gap extension,
penalty is added to the standard gap penalty
for each base or residue in the gap. This
is how long gaps are penalized. Usually you
will expect a few long gaps rather than many
short gaps, so the gap extension penalty
should be lower than the gap penalty. An
exception is where one or both sequences are
single reads with possible sequencing
errors in which case you would expect many
single base gaps. You can get this result by
setting the gap open penalty to zero (or
very low) and using the gap extension
penalty to control gap scoring. (Floating
point number from 0.0 to 10.0)
[-outfile] align [*.needleall] Output alignment file name
(default -aformat score)
Additional (Optional) qualifiers:
-datafile matrixf [EBLOSUM62 for protein, EDNAFULL for DNA]
This is the scoring matrix file used when
comparing sequences. By default it is the
file 'EBLOSUM62' (for proteins) or the file
'EDNAFULL' (for nucleic sequences). These
files are found in the 'data' directory of
the EMBOSS installation.
-endweight boolean [N] Apply end gap penalties.
-endopen float [10.0 for any sequence] The end gap open
penalty is the score taken away when an end
gap is created. The best value depends on
the choice of comparison matrix. The default
value assumes you are using the EBLOSUM62
matrix for protein sequences, and the
EDNAFULL matrix for nucleotide sequences.
(Floating point number from 1.0 to 100.0)
-endextend float [0.5 for any sequence] The end gap
extension, penalty is added to the end gap
penalty for each base or residue in the end
gap. (Floating point number from 0.0 to
10.0)
-minscore float [1.0 for any sequence] Minimum alignment
score to report an alignment. (Floating
point number from -10.0 to 100.0)
-errfile outfile [needleall.error] Error file to be written
to
Advanced (Unprompted) qualifiers:
-[no]brief boolean [Y] Brief identity and similarity
Associated qualifiers:
"-asequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-scircular1 boolean Sequence is circular
-squick1 boolean Read id and sequence only
-sformat1 string Input sequence format
-iquery1 string Input query fields or ID list
-ioffset1 integer Input start position offset
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-bsequence" associated qualifiers
-sbegin2 integer Start of each sequence to be used
-send2 integer End of each sequence to be used
-sreverse2 boolean Reverse (if DNA)
-sask2 boolean Ask for begin/end/reverse
-snucleotide2 boolean Sequence is nucleotide
-sprotein2 boolean Sequence is protein
-slower2 boolean Make lower case
-supper2 boolean Make upper case
-scircular2 boolean Sequence is circular
-squick2 boolean Read id and sequence only
-sformat2 string Input sequence format
-iquery2 string Input query fields or ID list
-ioffset2 integer Input start position offset
-sdbname2 string Database name
-sid2 string Entryname
-ufo2 string UFO features
-fformat2 string Features format
-fopenfile2 string Features file name
"-outfile" associated qualifiers
-aformat3 string Alignment format
-aextension3 string File name extension
-adirectory3 string Output directory
-aname3 string Base file name
-awidth3 integer Alignment width
-aaccshow3 boolean Show accession number in the header
-adesshow3 boolean Show description in the header
-ausashow3 boolean Show the full USA in the alignment
-aglobal3 boolean Show the full sequence in alignment
"-errfile" associated qualifiers
-odirectory string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write first file to standard output
-filter boolean Read first file from standard input, write
first file to standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options and exit. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
-version boolean Report version number and exit
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left">Qualifier</th>
<th align="left">Type</th>
<th align="left">Description</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Standard (Mandatory) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-asequence]<br>(Parameter 1)</td>
<td>seqset</td>
<td>Sequence set filename and optional format, or reference (input USA)</td>
<td>Readable set of sequences</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-bsequence]<br>(Parameter 2)</td>
<td>seqall</td>
<td>Sequence(s) filename and optional format, or reference (input USA)</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-gapopen</td>
<td>float</td>
<td>The gap open penalty is the score taken away when a gap is created. The best value depends on the choice of comparison matrix. The default value assumes you are using the EBLOSUM62 matrix for protein sequences, and the EDNAFULL matrix for nucleotide sequences.</td>
<td>Floating point number from 1.0 to 100.0</td>
<td>10.0 for any sequence</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-gapextend</td>
<td>float</td>
<td>The gap extension, penalty is added to the standard gap penalty for each base or residue in the gap. This is how long gaps are penalized. Usually you will expect a few long gaps rather than many short gaps, so the gap extension penalty should be lower than the gap penalty. An exception is where one or both sequences are single reads with possible sequencing errors in which case you would expect many single base gaps. You can get this result by setting the gap open penalty to zero (or very low) and using the gap extension penalty to control gap scoring.</td>
<td>Floating point number from 0.0 to 10.0</td>
<td>0.5 for any sequence</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-outfile]<br>(Parameter 3)</td>
<td>align</td>
<td>Output alignment file name</td>
<td>(default -aformat score)</td>
<td><i><*></i>.needleall</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Additional (Optional) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>-datafile</td>
<td>matrixf</td>
<td>This is the scoring matrix file used when comparing sequences. By default it is the file 'EBLOSUM62' (for proteins) or the file 'EDNAFULL' (for nucleic sequences). These files are found in the 'data' directory of the EMBOSS installation.</td>
<td>Comparison matrix file in EMBOSS data path</td>
<td>EBLOSUM62 for protein<br>EDNAFULL for DNA</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-endweight</td>
<td>boolean</td>
<td>Apply end gap penalties.</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-endopen</td>
<td>float</td>
<td>The end gap open penalty is the score taken away when an end gap is created. The best value depends on the choice of comparison matrix. The default value assumes you are using the EBLOSUM62 matrix for protein sequences, and the EDNAFULL matrix for nucleotide sequences.</td>
<td>Floating point number from 1.0 to 100.0</td>
<td>10.0 for any sequence</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-endextend</td>
<td>float</td>
<td>The end gap extension, penalty is added to the end gap penalty for each base or residue in the end gap.</td>
<td>Floating point number from 0.0 to 10.0</td>
<td>0.5 for any sequence</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-minscore</td>
<td>float</td>
<td>Minimum alignment score to report an alignment.</td>
<td>Floating point number from -10.0 to 100.0</td>
<td>1.0 for any sequence</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-errfile</td>
<td>outfile</td>
<td>Error file to be written to</td>
<td>Output file</td>
<td>needleall.error</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Advanced (Unprompted) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>-[no]brief</td>
<td>boolean</td>
<td>Brief identity and similarity</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Associated qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-asequence" associated seqset qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sbegin1<br>-sbegin_asequence</td>
<td>integer</td>
<td>Start of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -send1<br>-send_asequence</td>
<td>integer</td>
<td>End of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sreverse1<br>-sreverse_asequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sask1<br>-sask_asequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -snucleotide1<br>-snucleotide_asequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sprotein1<br>-sprotein_asequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -slower1<br>-slower_asequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -supper1<br>-supper_asequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -scircular1<br>-scircular_asequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -squick1<br>-squick_asequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sformat1<br>-sformat_asequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -iquery1<br>-iquery_asequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ioffset1<br>-ioffset_asequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sdbname1<br>-sdbname_asequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sid1<br>-sid_asequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ufo1<br>-ufo_asequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fformat1<br>-fformat_asequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fopenfile1<br>-fopenfile_asequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-bsequence" associated seqall qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sbegin2<br>-sbegin_bsequence</td>
<td>integer</td>
<td>Start of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -send2<br>-send_bsequence</td>
<td>integer</td>
<td>End of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sreverse2<br>-sreverse_bsequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sask2<br>-sask_bsequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -snucleotide2<br>-snucleotide_bsequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sprotein2<br>-sprotein_bsequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -slower2<br>-slower_bsequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -supper2<br>-supper_bsequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -scircular2<br>-scircular_bsequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -squick2<br>-squick_bsequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sformat2<br>-sformat_bsequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -iquery2<br>-iquery_bsequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ioffset2<br>-ioffset_bsequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sdbname2<br>-sdbname_bsequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sid2<br>-sid_bsequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ufo2<br>-ufo_bsequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fformat2<br>-fformat_bsequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fopenfile2<br>-fopenfile_bsequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-outfile" associated align qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -aformat3<br>-aformat_outfile</td>
<td>string</td>
<td>Alignment format</td>
<td>Any string</td>
<td>score</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -aextension3<br>-aextension_outfile</td>
<td>string</td>
<td>File name extension</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -adirectory3<br>-adirectory_outfile</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -aname3<br>-aname_outfile</td>
<td>string</td>
<td>Base file name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -awidth3<br>-awidth_outfile</td>
<td>integer</td>
<td>Alignment width</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -aaccshow3<br>-aaccshow_outfile</td>
<td>boolean</td>
<td>Show accession number in the header</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -adesshow3<br>-adesshow_outfile</td>
<td>boolean</td>
<td>Show description in the header</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ausashow3<br>-ausashow_outfile</td>
<td>boolean</td>
<td>Show the full USA in the alignment</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -aglobal3<br>-aglobal_outfile</td>
<td>boolean</td>
<td>Show the full sequence in alignment</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-errfile" associated outfile qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -odirectory</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>General qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td> -auto</td>
<td>boolean</td>
<td>Turn off prompts</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -stdout</td>
<td>boolean</td>
<td>Write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -filter</td>
<td>boolean</td>
<td>Read first file from standard input, write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -options</td>
<td>boolean</td>
<td>Prompt for standard and additional values</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -debug</td>
<td>boolean</td>
<td>Write debug output to program.dbg</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -verbose</td>
<td>boolean</td>
<td>Report some/full command line options</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -help</td>
<td>boolean</td>
<td>Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -warning</td>
<td>boolean</td>
<td>Report warnings</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -error</td>
<td>boolean</td>
<td>Report errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fatal</td>
<td>boolean</td>
<td>Report fatal errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -die</td>
<td>boolean</td>
<td>Report dying program messages</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -version</td>
<td>boolean</td>
<td>Report version number and exit</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
</table>
<H2>
Input file format
</H2>
<b>needleall</b> reads in two nucleotide or protein sequences
inputs. Both can be one or more sequences. All sequences in the first
ionput are aligned to all sequences in the second input.
<p>
<p>
The input is a standard EMBOSS sequence query (also known as a 'USA').
<p>
Major sequence database sources defined as standard in EMBOSS
installations include srs:embl, srs:uniprot and ensembl
<p>
Data can also be read from sequence output in any supported format
written by an EMBOSS or third-party application.
<p>
The input format can be specified by using the
command-line qualifier <tt>-sformat xxx</tt>, where 'xxx' is replaced
by the name of the required format. The available format names are:
gff (gff3), gff2, embl (em), genbank (gb, refseq), ddbj, refseqp, pir
(nbrf), swissprot (swiss, sw), dasgff and debug.
<p>
See:
<A href="http://emboss.sf.net/docs/themes/SequenceFormats.html">
http://emboss.sf.net/docs/themes/SequenceFormats.html</A>
for further information on sequence formats.
<p>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
<p><h3>File: illumina_adapter_primer.fa</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
>Illumina_Genomici_DNA_Adapters1_1
GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG
>Illumina_Genomic_DNA_Adapters1_2
ACACTCTTTCCCTACACGACGCTCTTCCGATCT
>Illumina_Genomic_DNA_PCR_Primers1_1
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
>Illumina_Genomic_DNA_PCR_Primers1_2
CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT
>Illumina_Genomic_DNA_sequencing_primer
ACACTCTTTCCCTACACGACGCTCTTCCGATCT
>Illumina_Paired_End_DNA_Adapters1_1
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG
>Illumina_Paired_End_DNA_Adapters1_2
ACACTCTTTCCCTACACGACGCTCTTCCGATCT
>Illumina_Paired_End_DNA_PCR_Primers1_1
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
>Illumina_Paired_End_DNA_PCR_Primers1_2
CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT
>Illumina_Paired_End_DNA_sequencing_primer_1
ACACTCTTTCCCTACACGACGCTCTTCCGATCT
>Illumina_Paired_End_DNA_sequencing_primer_2
CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT
>Illumina_DpnII_Gex_Adapters1_1
GATCGTCGGACTGTAGAACTCTGAAC
>Illumina_DpnII_Gex_Adapters1_2
ACAGGTTCAGAGTTCTACAGTCCGAC
>Illumina_DpnII_Gex_Adapters2_1
CAAGCAGAAGACGGCATACGA
>Illumina_DpnII_Gex_Adapters2_2
TCGTATGCCGTCTTCTGCTTG
>Illumina_DpnII_Gex_PCR_Primer_1
CAAGCAGAAGACGGCATACGA
>Illumina_DpnII_Gex_PCR_Primer_2
AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
>Illumina_DpnII_Gex_sequencing_primer
CGACAGGTTCAGAGTTCTACAGTCCGACGATC
>Illumina_NlaIII_Gex_Adapters1_1
TCGGACTGTAGAACTCTGAAC
>Illumina_NlaIII_Gex_Adapters1_2
ACAGGTTCAGAGTTCTACAGTCCGACATG
>Illumina_NlaIII_Gex_Adapters2_1
CAAGCAGAAGACGGCATACGANN
>Illumina_NlaIII_Gex_Adapters2_2
TCGTATGCCGTCTTCTGCTTG
>Illumina_NlaIII_Gex_PCR_Primer_1
CAAGCAGAAGACGGCATACGA
>Illumina_NlaIII_Gex_PCR_Primer_2
AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
>Illumina_NlaIII_Gex_sequencing_primer
CCGACAGGTTCAGAGTTCTACAGTCCGACATG
>Illumina_Small_RNA_RT_Primer
CAAGCAGAAGACGGCATACGA
>Illumina_Small_RNA_5p_Adapter
GTTCAGAGTTCTACAGTCCGACGATC
>Illumina_Small_RNA_3p_Adapter
TCGTATGCCGTCTTCTGCTTGT
>Illumina_Small_RNA_PCR_Primer_1
CAAGCAGAAGACGGCATACGA
>Illumina_Small_RNA_PCR_Primer_2
AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
>Illumina_Small_RNA_sequencing_primer
CGACAGGTTCAGAGTTCTACAGTCCGACGATC
</pre>
</td></tr></table><p>
<p><h3>File: test1_illumina.fastq</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
@FC12044_91407_8_200_406_24
GTTAGCTCCCACCTTAAGATGTTTA
+FC12044_91407_8_200_406_24
SXXTXXXXXXXXXTTSUXSSXKTMQ
@FC12044_91407_8_200_720_610
CTCTGTGGCACCCCATCCCTCACTT
+FC12044_91407_8_200_720_610
OXXXXXXXXXXXXXXXXXTSXQTXU
@FC12044_91407_8_200_345_133
GATTTTTTAACAATAAACGTACATA
+FC12044_91407_8_200_345_133
OQTOOSFORTFFFIIOFFFFFFFFF
@FC12044_91407_8_200_106_131
GTTGCCCAGGCTCGTCTTGAACTCC
+FC12044_91407_8_200_106_131
XXXXXXXXXXXXXXSXXXXISTXQS
@FC12044_91407_8_200_916_471
TGATTGAAGGTAGGGTAGCATACTG
+FC12044_91407_8_200_916_471
XXXXXXXXXXXXXXXUXXUSXXTXW
@FC12044_91407_8_200_57_85
GCTCCAATAGCGCAGAGGAAACCTG
+FC12044_91407_8_200_57_85
XFXMXSXXSXXXOSQROOSROFQIQ
@FC12044_91407_8_200_10_437
GCTGCTTGGGAGGCTGAGGCAGGAG
+FC12044_91407_8_200_10_437
USXSXXXXXXUXXXSXQXXUQXXKS
@FC12044_91407_8_200_154_436
AGACCTTTGGATACAATGAACGACT
+FC12044_91407_8_200_154_436
MKKMQTSRXMSQTOMRFOOIFFFFF
@FC12044_91407_8_200_336_64
AGGGAATTTTAGAGGAGGGCTGCCG
+FC12044_91407_8_200_336_64
STQMOSXSXSQXQXXKXXXKFXFFK
@FC12044_91407_8_200_620_233
TCTCCATGTTGGTCAGGCTGGTCTC
+FC12044_91407_8_200_620_233
XXXXXXXXXXXXXXXXXXXXXSXSW
@FC12044_91407_8_200_902_349
TGAACGTCGAGACGCAAGGCCCGCC
+FC12044_91407_8_200_902_349
XMXSSXMXXSXQSXTSQXFKSKTOF
@FC12044_91407_8_200_40_618
CTGTCCCCACGGCGGGGGGGCCTGG
+FC12044_91407_8_200_40_618
TXXXXSXXXXXXXXXXXXXRKFOXS
@FC12044_91407_8_200_83_511
GATGTACTCTTACACCCAGACTTTG
+FC12044_91407_8_200_83_511
SOXXXXXUXXXXXXQKQKKROOQSU
@FC12044_91407_8_200_76_246
TCAAGGGTGGATCTTGGCTCCCAGT
+FC12044_91407_8_200_76_246
XTXTUXXXXXRXXXTXXSUXSRFXQ
@FC12044_91407_8_200_303_427
TTGCGACAGAGTTTTGCTCTTGTCC
+FC12044_91407_8_200_303_427
XXQROXXXXIXFQXXXOIQSSXUFF
@FC12044_91407_8_200_31_299
TCTGCTCCAGCTCCAAGACGCCGCC
+FC12044_91407_8_200_31_299
XRXTSXXXRXXSXQQOXQTSQSXKQ
@FC12044_91407_8_200_553_135
TACGGAGCCGCGGGCGGGAAAGGCG
+FC12044_91407_8_200_553_135
XSQQXXXXXXXXXXSXXMFFQXTKU
@FC12044_91407_8_200_139_74
CCTCCCAGGTTCAAGCGATTATCCT
+FC12044_91407_8_200_139_74
RMXUSXTXXQXXQUXXXSQISISSO
@FC12044_91407_8_200_108_33
GTCATGGCGGCCCGCGCGGGGAGCG
+FC12044_91407_8_200_108_33
OOOSSXXSXXOMKMOFMKFOKFFFF
@FC12044_91407_8_200_980_965
ACAGTGGGTTCTTAAAGAAGAGTCG
+FC12044_91407_8_200_980_965
TOSSRXXXSSMSXMOMXIRXOXFFS
@FC12044_91407_8_200_981_857
AACGAGGGGCGCGACTTGACCTTGG
+FC12044_91407_8_200_981_857
RXMSSXXXXSXQXQXFSXQFQKMXS
@FC12044_91407_8_200_8_865
TTTCCCACCCCAGGAAGCCTTGGAC
+FC12044_91407_8_200_8_865
XXXFKOROMKOORMIMRIIKKORFF
@FC12044_91407_8_200_292_484
TCAGCCTCCGTGCCCAGCCCACTCC
+FC12044_91407_8_200_292_484
XQXOSXXXXXUXXXXIXXXXQTOXF
@FC12044_91407_8_200_675_16
CTCGGGAGGCTGAGGCAGGGGGGTT
+FC12044_91407_8_200_675_16
OXTXXXSXXQXXOXXKMXXMXOKQF
@FC12044_91407_8_200_285_136
CCAAATCTTGAATTGTAGCTCCCCT
+FC12044_91407_8_200_285_136
OSXOQXXXXXSXXUXXTXXXXTRMS
</pre>
</td></tr></table><p>
<H2>
Output file format
</H2>
<p>
The output is a standard EMBOSS alignment file.
<p>
The results can be output in one of several styles by using the
command-line qualifier <tt>-aformat xxx</tt>, where 'xxx' is replaced by
the name of the required format. Some of the alignment formats can cope
with an unlimited number of sequences, while others are only for pairs
of sequences.
<p>
The available multiple alignment format names are: multiple, simple,
fasta, msf, clustal, mega, meganon, nexus,, nexusnon, phylip,
phylipnon, selex, treecon, tcoffee, debug, srs.
<p>
The available pairwise alignment format names are: pair, markx0, markx1,
markx2, markx3, markx10, match, sam, bam, score, srspair
<p>
See:
<A href="http://emboss.sf.net/docs/themes/AlignFormats.html">
http://emboss.sf.net/docs/themes/AlignFormats.html</A>
for further information on alignment formats.
<p>
<p>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: needleall.error</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
Alignment score (21.5) is less than minimum score(40.0) for sequences Illumina_Genomici_DNA_Adapters1_1 vs FC12044_91407_8_200_406_24
Alignment score (24.5) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_Adapters1_2 vs FC12044_91407_8_200_406_24
Alignment score (31.0) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_PCR_Primers1_1 vs FC12044_91407_8_200_406_24
Alignment score (25.5) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_PCR_Primers1_2 vs FC12044_91407_8_200_406_24
Alignment score (24.5) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_sequencing_primer vs FC12044_91407_8_200_406_24
Alignment score (16.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_Adapters1_1 vs FC12044_91407_8_200_406_24
Alignment score (24.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_Adapters1_2 vs FC12044_91407_8_200_406_24
Alignment score (31.0) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_PCR_Primers1_1 vs FC12044_91407_8_200_406_24
Alignment score (21.0) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_PCR_Primers1_2 vs FC12044_91407_8_200_406_24
Alignment score (24.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_sequencing_primer_1 vs FC12044_91407_8_200_406_24
Alignment score (21.0) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_sequencing_primer_2 vs FC12044_91407_8_200_406_24
Alignment score (14.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters1_1 vs FC12044_91407_8_200_406_24
Alignment score (24.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters1_2 vs FC12044_91407_8_200_406_24
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters2_1 vs FC12044_91407_8_200_406_24
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters2_2 vs FC12044_91407_8_200_406_24
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_PCR_Primer_1 vs FC12044_91407_8_200_406_24
Alignment score (23.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_sequencing_primer vs FC12044_91407_8_200_406_24
Alignment score (12.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters1_1 vs FC12044_91407_8_200_406_24
Alignment score (27.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters1_2 vs FC12044_91407_8_200_406_24
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters2_1 vs FC12044_91407_8_200_406_24
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters2_2 vs FC12044_91407_8_200_406_24
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_PCR_Primer_1 vs FC12044_91407_8_200_406_24
Alignment score (27.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_sequencing_primer vs FC12044_91407_8_200_406_24
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_Small_RNA_RT_Primer vs FC12044_91407_8_200_406_24
Alignment score (23.5) is less than minimum score(40.0) for sequences Illumina_Small_RNA_5p_Adapter vs FC12044_91407_8_200_406_24
Alignment score (13.0) is less than minimum score(40.0) for sequences Illumina_Small_RNA_3p_Adapter vs FC12044_91407_8_200_406_24
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_Small_RNA_PCR_Primer_1 vs FC12044_91407_8_200_406_24
Alignment score (23.5) is less than minimum score(40.0) for sequences Illumina_Small_RNA_sequencing_primer vs FC12044_91407_8_200_406_24
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_Genomici_DNA_Adapters1_1 vs FC12044_91407_8_200_720_610
Alignment score (31.5) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_Adapters1_2 vs FC12044_91407_8_200_720_610
Alignment score (31.5) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_PCR_Primers1_1 vs FC12044_91407_8_200_720_610
Alignment score (20.5) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_PCR_Primers1_2 vs FC12044_91407_8_200_720_610
Alignment score (31.5) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_sequencing_primer vs FC12044_91407_8_200_720_610
Alignment score (0.0) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_Adapters1_1 vs FC12044_91407_8_200_720_610
Alignment score (31.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_Adapters1_2 vs FC12044_91407_8_200_720_610
Alignment score (31.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_PCR_Primers1_1 vs FC12044_91407_8_200_720_610
Alignment score (33.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_PCR_Primers1_2 vs FC12044_91407_8_200_720_610
Alignment score (31.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_sequencing_primer_1 vs FC12044_91407_8_200_720_610
Alignment score (33.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_sequencing_primer_2 vs FC12044_91407_8_200_720_610
Alignment score (20.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters1_1 vs FC12044_91407_8_200_720_610
Alignment score (9.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters1_2 vs FC12044_91407_8_200_720_610
Alignment score (11.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters2_1 vs FC12044_91407_8_200_720_610
Alignment score (15.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters2_2 vs FC12044_91407_8_200_720_610
Alignment score (11.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_PCR_Primer_1 vs FC12044_91407_8_200_720_610
Alignment score (10.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_PCR_Primer_2 vs FC12044_91407_8_200_720_610
Alignment score (15.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_sequencing_primer vs FC12044_91407_8_200_720_610
Alignment score (20.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters1_1 vs FC12044_91407_8_200_720_610
Alignment score (9.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters1_2 vs FC12044_91407_8_200_720_610
Alignment score (7.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters2_1 vs FC12044_91407_8_200_720_610
Alignment score (15.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters2_2 vs FC12044_91407_8_200_720_610
<font color=red> [Part of this file has been deleted for brevity]</font>
Alignment score (13.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters1_1 vs FC12044_91407_8_200_675_16
Alignment score (17.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters1_2 vs FC12044_91407_8_200_675_16
Alignment score (13.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters2_1 vs FC12044_91407_8_200_675_16
Alignment score (11.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters2_2 vs FC12044_91407_8_200_675_16
Alignment score (13.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_PCR_Primer_1 vs FC12044_91407_8_200_675_16
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_PCR_Primer_2 vs FC12044_91407_8_200_675_16
Alignment score (22.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_sequencing_primer vs FC12044_91407_8_200_675_16
Alignment score (13.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters1_1 vs FC12044_91407_8_200_675_16
Alignment score (17.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters1_2 vs FC12044_91407_8_200_675_16
Alignment score (13.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters2_1 vs FC12044_91407_8_200_675_16
Alignment score (11.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters2_2 vs FC12044_91407_8_200_675_16
Alignment score (13.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_PCR_Primer_1 vs FC12044_91407_8_200_675_16
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_PCR_Primer_2 vs FC12044_91407_8_200_675_16
Alignment score (21.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_sequencing_primer vs FC12044_91407_8_200_675_16
Alignment score (13.5) is less than minimum score(40.0) for sequences Illumina_Small_RNA_RT_Primer vs FC12044_91407_8_200_675_16
Alignment score (15.0) is less than minimum score(40.0) for sequences Illumina_Small_RNA_5p_Adapter vs FC12044_91407_8_200_675_16
Alignment score (7.0) is less than minimum score(40.0) for sequences Illumina_Small_RNA_3p_Adapter vs FC12044_91407_8_200_675_16
Alignment score (13.5) is less than minimum score(40.0) for sequences Illumina_Small_RNA_PCR_Primer_1 vs FC12044_91407_8_200_675_16
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_Small_RNA_PCR_Primer_2 vs FC12044_91407_8_200_675_16
Alignment score (22.0) is less than minimum score(40.0) for sequences Illumina_Small_RNA_sequencing_primer vs FC12044_91407_8_200_675_16
Alignment score (21.0) is less than minimum score(40.0) for sequences Illumina_Genomici_DNA_Adapters1_1 vs FC12044_91407_8_200_285_136
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_Adapters1_2 vs FC12044_91407_8_200_285_136
Alignment score (30.0) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_PCR_Primers1_1 vs FC12044_91407_8_200_285_136
Alignment score (16.5) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_PCR_Primers1_2 vs FC12044_91407_8_200_285_136
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_Genomic_DNA_sequencing_primer vs FC12044_91407_8_200_285_136
Alignment score (7.0) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_Adapters1_1 vs FC12044_91407_8_200_285_136
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_Adapters1_2 vs FC12044_91407_8_200_285_136
Alignment score (30.0) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_PCR_Primers1_1 vs FC12044_91407_8_200_285_136
Alignment score (21.0) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_PCR_Primers1_2 vs FC12044_91407_8_200_285_136
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_sequencing_primer_1 vs FC12044_91407_8_200_285_136
Alignment score (18.5) is less than minimum score(40.0) for sequences Illumina_Paired_End_DNA_sequencing_primer_2 vs FC12044_91407_8_200_285_136
Alignment score (27.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters1_1 vs FC12044_91407_8_200_285_136
Alignment score (13.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters1_2 vs FC12044_91407_8_200_285_136
Alignment score (6.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters2_1 vs FC12044_91407_8_200_285_136
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_Adapters2_2 vs FC12044_91407_8_200_285_136
Alignment score (6.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_PCR_Primer_1 vs FC12044_91407_8_200_285_136
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_PCR_Primer_2 vs FC12044_91407_8_200_285_136
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_DpnII_Gex_sequencing_primer vs FC12044_91407_8_200_285_136
Alignment score (26.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters1_1 vs FC12044_91407_8_200_285_136
Alignment score (14.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters1_2 vs FC12044_91407_8_200_285_136
Alignment score (2.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters2_1 vs FC12044_91407_8_200_285_136
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_Adapters2_2 vs FC12044_91407_8_200_285_136
Alignment score (6.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_PCR_Primer_1 vs FC12044_91407_8_200_285_136
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_PCR_Primer_2 vs FC12044_91407_8_200_285_136
Alignment score (15.5) is less than minimum score(40.0) for sequences Illumina_NlaIII_Gex_sequencing_primer vs FC12044_91407_8_200_285_136
Alignment score (6.0) is less than minimum score(40.0) for sequences Illumina_Small_RNA_RT_Primer vs FC12044_91407_8_200_285_136
Alignment score (15.5) is less than minimum score(40.0) for sequences Illumina_Small_RNA_5p_Adapter vs FC12044_91407_8_200_285_136
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_Small_RNA_3p_Adapter vs FC12044_91407_8_200_285_136
Alignment score (6.0) is less than minimum score(40.0) for sequences Illumina_Small_RNA_PCR_Primer_1 vs FC12044_91407_8_200_285_136
Alignment score (12.0) is less than minimum score(40.0) for sequences Illumina_Small_RNA_PCR_Primer_2 vs FC12044_91407_8_200_285_136
Alignment score (17.5) is less than minimum score(40.0) for sequences Illumina_Small_RNA_sequencing_primer vs FC12044_91407_8_200_285_136
</pre>
</td></tr></table><p>
<p>
The <b>Identity:</b> is the percentage of identical matches between the two
sequences over the reported aligned region (including any gaps in the length).
<p>
The <b>Similarity:</b> is the percentage of matches between the two
sequences over the reported aligned region (including any gaps in the length).
<H2>
Data files
</H2>
For protein sequences EBLOSUM62 is used for the substitution
matrix. For nucleotide sequence, EDNAFULL is used. Others can be
specified.
<p>
<p>
EMBOSS data files are distributed with the application and stored
in the standard EMBOSS data directory, which is defined
by the EMBOSS environment variable EMBOSS_DATA.
<p>
To see the available EMBOSS data files, run:
<p>
<pre>
% embossdata -showall
</pre>
<p>
To fetch one of the data files (for example 'Exxx.dat') into your
current directory for you to inspect or modify, run:
<pre>
% embossdata -fetch -file Exxx.dat
</pre>
<p>
Users can provide their own data files in their own directories.
Project specific files can be put in the current directory, or for
tidier directory listings in a subdirectory called
".embossdata". Files for all EMBOSS runs can be put in the user's home
directory, or again in a subdirectory called ".embossdata".
<p>
The directories are searched in the following order:
<ul>
<li> . (your current directory)
<li> .embossdata (under your current directory)
<li> ~/ (your home directory)
<li> ~/.embossdata
</ul>
<p>
<H2>
Notes
</H2>
<b>needleall</b> is a true implementation of the Needleman-Wunsch
algorithm and so produces a full path matrix. It therefore cannot be
used with genome sized sequences unless you've a lot of memory and a
lot of time.
<H2>
References
</H2>
<ol>
<li>
Needleman, S. B. and Wunsch, C. D. (1970) J. Mol. Biol. 48,
443-453.
<li>
Kruskal, J. B. (1983) An overview of squence comparison In D. Sankoff
and J. B. Kruskal, (ed.), Time warps, string edits and macromolecules:
the theory and practice of sequence comparison, pp. 1-44 Addison
Wesley.
</ol>
<H2>
Warnings
</H2>
<b>needleall</b> is for aligning pairs of sequences over their entire length. This
works best with closely related sequences. If you use needleall to align
very distantly-related sequences, it will produce a result but much of
the alignment may have little or no biological significance.
<p>
A true Needleman Wunsch implementation like <b>needleall</b> needs memory
proportional to the product of the sequence lengths. For two sequences
of length 10,000,000 and 1,000 it therefore needs memory proportional to
10,000,000,000 characters. Two arrays of this size are produced, one of
ints and one of floats so multiply that figure by 8 to get the memory
usage in bytes. That doesn't include other overheads. Therefore only
use water and needle for accurate alignment of reasonably short
sequences.
<p>
The first input sequence set is loaded completely into memory. When
comparing large numbers (or lengths) of sequences, the smallest set
should be the first input to make the most efficient use of memory.
<p>
If you run out of memory, try using
<b>stretcher</b> instead.
<H2>
Diagnostic Error Messages
</H2>
<pre>
Uncaught exception
Assertion failed
raised at ajmem.c:xxx
</pre>
<p>
Probably means you have run out of memory. Try using
<b>stretcher</b> if this happens.
<H2>
Exit status
</H2>
0 upon successful completion.
<H2>
Known bugs
</H2>
None.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th>
<th>Description</th></tr>
<tr>
<td><a href="est2genome.html">est2genome</a></td>
<td>Align EST sequences to genomic DNA sequence</td>
</tr>
<tr>
<td><a href="needle.html">needle</a></td>
<td>Needleman-Wunsch global alignment of two sequences</td>
</tr>
<tr>
<td><a href="stretcher.html">stretcher</a></td>
<td>Needleman-Wunsch rapid global alignment of two sequences</td>
</tr>
</table>
<P>
When you want an alignment that covers the whole length of two
sequences, use <a href="needle.html">needle. </A>
<p>
When you are trying to find the best region of similarity between two
sequences, use <a href="water.html">water.</a>
<p>
<a href="stretcher.html">stretcher</a> is a more suitable program to use to
find global alignments of very long sequences.
<H2>
Author(s)
</H2>
Mahmut Uludag
<br>
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
<p>
Please report all bugs to the EMBOSS bug team (emboss-bug © emboss.open-bio.org) not to the original author.
<H2>
History
</H2>
<H2>
Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
Comments
</H2>
None
</BODY>
</HTML>
|