1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/* $Id: plwind.c,v 1.2 2007/05/08 09:09:37 rice Exp $
Routines for setting up world coordinates of the current viewport.
Copyright (C) 2004 Alan W. Irwin
This file is part of PLplot.
PLplot is free software; you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "plplotP.h"
#define dtr 0.01745329252
/*--------------------------------------------------------------------------*\
* void plwind()
*
* Set up world coordinates of the viewport boundaries (2d plots).
\*--------------------------------------------------------------------------*/
void
c_plwind(PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax)
{
PLFLT dx, dy, mmxmi, mmxma, mmymi, mmyma;
PLWindow w;
if (plsc->level < 2) {
plabort("plwind: Please set up viewport first");
return;
}
/* Best to just warn and recover on bounds errors */
if (xmin == xmax) {
plwarn("plwind: Invalid window limits in x.");
xmin--; xmax++;
}
if (ymin == ymax) {
plwarn("plwind: Invalid window limits in y.");
ymin--; ymax++;
}
dx = (xmax - xmin) * 1.0e-5;
dy = (ymax - ymin) * 1.0e-5;
/* The true plot window is made slightly larger than requested so that */
/* the end limits will be on the graph */
plsc->vpwxmi = xmin - dx;
plsc->vpwxma = xmax + dx;
plsc->vpwymi = ymin - dy;
plsc->vpwyma = ymax + dy;
/* Compute the scaling between coordinate systems */
dx = plsc->vpwxma - plsc->vpwxmi;
dy = plsc->vpwyma - plsc->vpwymi;
plsc->wpxscl = (plsc->vppxma - plsc->vppxmi) / dx;
plsc->wpxoff = (xmax * plsc->vppxmi - xmin * plsc->vppxma) / dx;
plsc->wpyscl = (plsc->vppyma - plsc->vppymi) / dy;
plsc->wpyoff = (ymax * plsc->vppymi - ymin * plsc->vppyma) / dy;
mmxmi = plP_dcmmx(plsc->vpdxmi);
mmxma = plP_dcmmx(plsc->vpdxma);
mmymi = plP_dcmmy(plsc->vpdymi);
mmyma = plP_dcmmy(plsc->vpdyma);
/* Set transformation variables for world coordinates to mm */
plsc->wmxscl = (mmxma - mmxmi) / dx;
plsc->wmxoff = (xmax * mmxmi - xmin * mmxma) / dx;
plsc->wmyscl = (mmyma - mmymi) / dy;
plsc->wmyoff = (ymax * mmymi - ymin * mmyma) / dy;
/* Set transformation variables for world coordinates to device coords */
plsc->wdxscl = plsc->wmxscl * plsc->xpmm / (plsc->phyxma - plsc->phyxmi);
plsc->wdxoff = plsc->wmxoff * plsc->xpmm / (plsc->phyxma - plsc->phyxmi);
plsc->wdyscl = plsc->wmyscl * plsc->ypmm / (plsc->phyyma - plsc->phyymi);
plsc->wdyoff = plsc->wmyoff * plsc->ypmm / (plsc->phyyma - plsc->phyymi);
/* Register plot window attributes */
w.dxmi = plsc->vpdxmi;
w.dxma = plsc->vpdxma;
w.dymi = plsc->vpdymi;
w.dyma = plsc->vpdyma;
w.wxmi = plsc->vpwxmi;
w.wxma = plsc->vpwxma;
w.wymi = plsc->vpwymi;
w.wyma = plsc->vpwyma;
plP_swin(&w);
/* Go to level 3 */
plsc->level = 3;
}
/*--------------------------------------------------------------------------*\
* void plw3d()
*
* Set up a window for three-dimensional plotting. The data are mapped
* into a box with world coordinate size "basex" by "basey" by "height",
* with the base being symmetrically positioned about zero. Thus
* the mapping between data 3-d and world 3-d coordinates is given by:
*
* x = xmin => wx = -0.5*basex
* x = xmax => wx = 0.5*basex
* y = ymin => wy = -0.5*basey
* y = ymax => wy = 0.5*basey
* z = zmin => wz = 0.0
* z = zmax => wz = height
*
* The world coordinate box is then viewed from position "alt"-"az",
* measured in degrees. For proper operation, 0 <= alt <= 90 degrees,
* but az can be any value.
\*--------------------------------------------------------------------------*/
void
c_plw3d(PLFLT basex, PLFLT basey, PLFLT height, PLFLT xmin0,
PLFLT xmax0, PLFLT ymin0, PLFLT ymax0, PLFLT zmin0,
PLFLT zmax0, PLFLT alt, PLFLT az)
{
PLFLT xmin, xmax, ymin, ymax, zmin, zmax, d;
PLFLT cx, cy, saz, caz, salt, calt, zscale;
if (plsc->level < 3) {
plabort("plw3d: Please set up 2-d window first");
return;
}
if (basex <= 0.0 || basey <= 0.0 || height <= 0.0) {
plabort("plw3d: Invalid world coordinate boxsize");
return;
}
if (xmin0 == xmax0 || ymin0 == ymax0 || zmin0 == zmax0) {
plabort("plw3d: Invalid axis range");
return;
}
if (alt < 0.0 || alt > 90.0) {
plabort("plw3d: Altitude must be between 0 and 90 degrees");
return;
}
d = 1.0e-5 * (xmax0 - xmin0);
xmax = xmax0 + d;
xmin = xmin0 - d;
d = 1.0e-5 * (ymax0 - ymin0);
ymax = ymax0 + d;
ymin = ymin0 - d;
d = 1.0e-5 * (zmax0 - zmin0);
zmax = zmax0 + d;
zmin = zmin0 - d;
cx = basex / (xmax - xmin);
cy = basey / (ymax - ymin);
zscale = height / (zmax - zmin);
saz = sin(dtr * az);
caz = cos(dtr * az);
salt = sin(dtr * alt);
calt = cos(dtr * alt);
plsc->domxmi = xmin;
plsc->domxma = xmax;
plsc->domymi = ymin;
plsc->domyma = ymax;
plsc->zzscl = zscale;
plsc->ranmi = zmin;
plsc->ranma = zmax;
plsc->base3x = basex;
plsc->base3y = basey;
plsc->basecx = 0.5 * (xmin + xmax);
plsc->basecy = 0.5 * (ymin + ymax);
/* Mathematical explanation of the 3 transformations of coordinates:
* (I) Scaling:
* x' = cx*(x-x_mid) = cx*(x-plsc->basecx)
* y' = cy*(y-y_mid) = cy*(y-plsc->basecy)
* z' = zscale*(z-zmin) = zscale*(z-plsc->ranmi)
* (II) Rotation about z' axis clockwise by the angle of the azimut when
* looking from the top in a right-handed coordinate system.
* x'' x'
* y'' = M_1 * y'
* z'' z'
* where the rotation matrix M_1 (see any mathematical physics book such
* as Mathematical Methods in the Physical Sciences by Boas) is
* caz -saz 0
* saz caz 0
* 0 0 1
* (III) Rotation about x'' axis by 90 deg - alt to bring z''' axis
* coincident with line of sight and x''' and y''' corresponding to
* x and y coordinates in the 2D plane of the plot.
* x''' x''
* y''' = M_2 * y''
* z''' z''
* where the rotation matrix M_2 is
* 1 0 0
* 0 salt calt
* 0 -calt salt
* Note
* x''' x'
* y''' = M * y'
* z''' z'
* where M = M_2*M_1 is given by
* caz -saz 0
* salt*saz salt*caz calt
* -calt*saz -calt*caz salt
* plP_w3wcx and plP_w3wcy take the combination of the plsc->basecx,
* plsc->basecy, plsc->ranmi, plsc->cxx, plsc->cxy, plsc->cyx, plsc->cyy, and
* plsc->cyz data stored here to implement the combination of the 3
* transformations to determine x''' and y''' from x, y, and z.
*/
plsc->cxx = cx * caz;
plsc->cxy = -cy * saz;
plsc->cyx = cx * saz * salt;
plsc->cyy = cy * caz * salt;
plsc->cyz = zscale * calt;
}
|