1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
water
Wiki
The master copies of EMBOSS documentation are available at
http://emboss.open-bio.org/wiki/Appdocs on the EMBOSS Wiki.
Please help by correcting and extending the Wiki pages.
Function
Smith-Waterman local alignment of sequences
Description
water uses the Smith-Waterman algorithm (modified for speed
enhancments) to calculate the local alignment of a sequence to one or
more other sequences. The gap insertion penalty, gap extension penalty
and substitution matrix used to calculate the alignments are specified.
The output is a standard EMBOSS alignment file.
Algorithm
The Smith-Waterman algorithm is a member of the class of algorithms
that can calculate the best score and local alignment in the order of
mn steps, where n and m are the lengths of the two sequences. These
dynamic programming algorithms were first developed for protein
sequence comparison by Smith and Waterman, though similar methods were
independently devised during the late 1960's and early 1970's for use
in the fields of speech processing and computer science.
Dynamic programming methods ensure the optimal local alignment by
exploring all possible alignments and choosing the best. It does this
by reading in a scoring matrix that contains values for every possible
residue or nucleotide match. water finds an alignment with the maximum
possible score where the score of an alignment is equal to the sum of
the matches taken from the scoring matrix.
An important problem is the treatment of gaps, i.e., spaces inserted to
optimise the alignment score. A penalty is subtracted from the score
for each gap opened (the 'gap open' penalty) and a penalty is
subtracted from the score for the total number of gap spaces multiplied
by a cost (the 'gap extension' penalty). Typically, the cost of
extending a gap is set to be 5-10 times lower than the cost for opening
a gap.
There are two ways to compute a penalty for a gap of n positions : gap
opening penalty + (n - 1) * gap extension penalty gap penalty + n * gap
length penalty
The two methods are basically equivalent. The first way is used by
EMBOSS and WU-BLAST. The second way is used by NCBI-BLAST, GCG, Staden
and CLUSTAL. Fasta used it for a long time the first way, but Prof.
Pearson decided recently to shift to the second.
The Smith-Waterman algorithm contains no negative scores in the path
matrix it creates. The algorithm starts the alignment at the highest
path matrix score and works backwards until a cell contains zero. See
the Reference Smith et al. for details.
Usage
Here is a sample session with water
% water tsw:hba_human tsw:hbb_human
Smith-Waterman local alignment of sequences
Gap opening penalty [10.0]:
Gap extension penalty [0.5]:
Output alignment [hba_human.water]:
Go to the input files for this example
Go to the output files for this example
Command line arguments
Smith-Waterman local alignment of sequences
Version: EMBOSS:6.6.0.0
Standard (Mandatory) qualifiers:
[-asequence] sequence Sequence filename and optional format, or
reference (input USA)
[-bsequence] seqall Sequence(s) filename and optional format, or
reference (input USA)
-gapopen float [10.0 for any sequence] The gap open penalty
is the score taken away when a gap is
created. The best value depends on the
choice of comparison matrix. The default
value assumes you are using the EBLOSUM62
matrix for protein sequences, and the
EDNAFULL matrix for nucleotide sequences.
(Number from 0.000 to 100.000)
-gapextend float [0.5 for any sequence] The gap extension
penalty is added to the standard gap penalty
for each base or residue in the gap. This
is how long gaps are penalized. Usually you
will expect a few long gaps rather than many
short gaps, so the gap extension penalty
should be lower than the gap penalty. An
exception is where one or both sequences are
single reads with possible sequencing
errors in which case you would expect many
single base gaps. You can get this result by
setting the gap open penalty to zero (or
very low) and using the gap extension
penalty to control gap scoring. (Number from
0.000 to 10.000)
[-outfile] align [*.water] Output alignment file name
(default -aformat srspair)
Additional (Optional) qualifiers:
-datafile matrixf [EBLOSUM62 for protein, EDNAFULL for DNA]
This is the scoring matrix file used when
comparing sequences. By default it is the
file 'EBLOSUM62' (for proteins) or the file
'EDNAFULL' (for nucleic sequences). These
files are found in the 'data' directory of
the EMBOSS installation.
Advanced (Unprompted) qualifiers:
-[no]brief boolean [Y] Brief identity and similarity
Associated qualifiers:
"-asequence" associated qualifiers
-sbegin1 integer Start of the sequence to be used
-send1 integer End of the sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-scircular1 boolean Sequence is circular
-squick1 boolean Read id and sequence only
-sformat1 string Input sequence format
-iquery1 string Input query fields or ID list
-ioffset1 integer Input start position offset
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-bsequence" associated qualifiers
-sbegin2 integer Start of each sequence to be used
-send2 integer End of each sequence to be used
-sreverse2 boolean Reverse (if DNA)
-sask2 boolean Ask for begin/end/reverse
-snucleotide2 boolean Sequence is nucleotide
-sprotein2 boolean Sequence is protein
-slower2 boolean Make lower case
-supper2 boolean Make upper case
-scircular2 boolean Sequence is circular
-squick2 boolean Read id and sequence only
-sformat2 string Input sequence format
-iquery2 string Input query fields or ID list
-ioffset2 integer Input start position offset
-sdbname2 string Database name
-sid2 string Entryname
-ufo2 string UFO features
-fformat2 string Features format
-fopenfile2 string Features file name
"-outfile" associated qualifiers
-aformat3 string Alignment format
-aextension3 string File name extension
-adirectory3 string Output directory
-aname3 string Base file name
-awidth3 integer Alignment width
-aaccshow3 boolean Show accession number in the header
-adesshow3 boolean Show description in the header
-ausashow3 boolean Show the full USA in the alignment
-aglobal3 boolean Show the full sequence in alignment
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write first file to standard output
-filter boolean Read first file from standard input, write
first file to standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options and exit. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
-version boolean Report version number and exit
Input file format
water reads a nucleotide or protein sequence and one or more sequence
to be aligned to it.
The input is a standard EMBOSS sequence query (also known as a 'USA').
Major sequence database sources defined as standard in EMBOSS
installations include srs:embl, srs:uniprot and ensembl
Data can also be read from sequence output in any supported format
written by an EMBOSS or third-party application.
The input format can be specified by using the command-line qualifier
-sformat xxx, where 'xxx' is replaced by the name of the required
format. The available format names are: gff (gff3), gff2, embl (em),
genbank (gb, refseq), ddbj, refseqp, pir (nbrf), swissprot (swiss, sw),
dasgff and debug.
See: http://emboss.sf.net/docs/themes/SequenceFormats.html for further
information on sequence formats.
Input files for usage example
'tsw:hba_human' is a sequence entry in the example protein database
'tsw'
Database entry: tsw:hba_human
ID HBA_HUMAN Reviewed; 142 AA.
AC P69905; P01922; Q1HDT5; Q3MIF5; Q53F97; Q96KF1; Q9NYR7; Q9UCM0;
DT 21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
DT 23-JAN-2007, sequence version 2.
DT 13-JUN-2012, entry version 108.
DE RecName: Full=Hemoglobin subunit alpha;
DE AltName: Full=Alpha-globin;
DE AltName: Full=Hemoglobin alpha chain;
GN Name=HBA1;
GN and
GN Name=HBA2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] (HBA1).
RX MEDLINE=81088339; PubMed=7448866; DOI=10.1016/0092-8674(80)90347-5;
RA Michelson A.M., Orkin S.H.;
RT "The 3' untranslated regions of the duplicated human alpha-globin
RT genes are unexpectedly divergent.";
RL Cell 22:371-377(1980).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (HBA2).
RX MEDLINE=80137531; PubMed=6244294;
RA Wilson J.T., Wilson L.B., Reddy V.B., Cavallesco C., Ghosh P.K.,
RA Deriel J.K., Forget B.G., Weissman S.M.;
RT "Nucleotide sequence of the coding portion of human alpha globin
RT messenger RNA.";
RL J. Biol. Chem. 255:2807-2815(1980).
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] (HBA2).
RX MEDLINE=81175088; PubMed=6452630; DOI=10.1073/pnas.77.12.7054;
RA Liebhaber S.A., Goossens M.J., Kan Y.W.;
RT "Cloning and complete nucleotide sequence of human 5'-alpha-globin
RT gene.";
RL Proc. Natl. Acad. Sci. U.S.A. 77:7054-7058(1980).
RN [4]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=6946451; DOI=10.1073/pnas.78.8.5041;
RA Orkin S.H., Goff S.C., Hechtman R.L.;
RT "Mutation in an intervening sequence splice junction in man.";
RL Proc. Natl. Acad. Sci. U.S.A. 78:5041-5045(1981).
RN [5]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT LYS-32.
RX MEDLINE=21303311; PubMed=11410421;
RA Zhao Y., Xu X.;
RT "Alpha2(CD31 AGG-->AAG, Arg-->Lys) causing non-deletional alpha-
RT thalassemia in a Chinese family with HbH disease.";
[Part of this file has been deleted for brevity]
FT /FTId=VAR_002841.
FT VARIANT 132 132 S -> P (in Questembert; highly unstable;
FT causes alpha-thalassemia).
FT /FTId=VAR_002843.
FT VARIANT 134 134 S -> R (in Val de Marne; O(2) affinity
FT up).
FT /FTId=VAR_002844.
FT VARIANT 136 136 V -> E (in Pavie).
FT /FTId=VAR_002845.
FT VARIANT 137 137 L -> M (in Chicago).
FT /FTId=VAR_002846.
FT VARIANT 137 137 L -> P (in Bibba; unstable; causes alpha-
FT thalassemia).
FT /FTId=VAR_002847.
FT VARIANT 137 137 L -> R (in Toyama).
FT /FTId=VAR_035242.
FT VARIANT 139 139 S -> P (in Attleboro; O(2) affinity up).
FT /FTId=VAR_002848.
FT VARIANT 140 140 K -> E (in Hanamaki; O(2) affinity up).
FT /FTId=VAR_002849.
FT VARIANT 140 140 K -> T (in Tokoname; O(2) affinity up).
FT /FTId=VAR_002850.
FT VARIANT 141 141 Y -> H (in Rouen/Ethiopia; O(2) affinity
FT up).
FT /FTId=VAR_002851.
FT VARIANT 142 142 R -> C (in Nunobiki; O(2) affinity up).
FT /FTId=VAR_002852.
FT VARIANT 142 142 R -> H (in Suresnes; O(2) affinity up).
FT /FTId=VAR_002854.
FT VARIANT 142 142 R -> L (in Legnano; O(2) affinity up).
FT /FTId=VAR_002853.
FT VARIANT 142 142 R -> P (in Singapore).
FT /FTId=VAR_002855.
FT CONFLICT 10 10 N -> H (in Ref. 13; BAD97112).
FT HELIX 5 16
FT HELIX 17 21
FT HELIX 22 36
FT HELIX 38 43
FT HELIX 54 72
FT HELIX 74 76
FT HELIX 77 80
FT HELIX 82 90
FT HELIX 97 113
FT TURN 115 117
FT HELIX 120 137
FT TURN 138 140
SQ SEQUENCE 142 AA; 15258 MW; 15E13666573BBBAE CRC64;
MVLSPADKTN VKAAWGKVGA HAGEYGAEAL ERMFLSFPTT KTYFPHFDLS HGSAQVKGHG
KKVADALTNA VAHVDDMPNA LSALSDLHAH KLRVDPVNFK LLSHCLLVTL AAHLPAEFTP
AVHASLDKFL ASVSTVLTSK YR
//
Database entry: tsw:hbb_human
ID HBB_HUMAN Reviewed; 147 AA.
AC P68871; A4GX73; B2ZUE0; P02023; Q13852; Q14481; Q14510; Q45KT0;
AC Q549N7; Q6FI08; Q6R7N2; Q8IZI1; Q9BX96; Q9UCD6; Q9UCP8; Q9UCP9;
DT 21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
DT 23-JAN-2007, sequence version 2.
DT 13-JUN-2012, entry version 108.
DE RecName: Full=Hemoglobin subunit beta;
DE AltName: Full=Beta-globin;
DE AltName: Full=Hemoglobin beta chain;
DE Contains:
DE RecName: Full=LVV-hemorphin-7;
GN Name=HBB;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX MEDLINE=77126403; PubMed=1019344;
RA Marotta C., Forget B., Cohen-Solal M., Weissman S.M.;
RT "Nucleotide sequence analysis of coding and noncoding regions of human
RT beta-globin mRNA.";
RL Prog. Nucleic Acid Res. Mol. Biol. 19:165-175(1976).
RN [2]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX MEDLINE=81064667; PubMed=6254664; DOI=10.1016/0092-8674(80)90428-6;
RA Lawn R.M., Efstratiadis A., O'Connell C., Maniatis T.;
RT "The nucleotide sequence of the human beta-globin gene.";
RL Cell 21:647-651(1980).
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT LYS-7.
RX PubMed=16175509; DOI=10.1086/491748;
RA Wood E.T., Stover D.A., Slatkin M., Nachman M.W., Hammer M.F.;
RT "The beta-globin recombinational hotspot reduces the effects of strong
RT selection around HbC, a recently arisen mutation providing resistance
RT to malaria.";
RL Am. J. Hum. Genet. 77:637-642(2005).
RN [4]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RA Lu L., Hu Z.H., Du C.S., Fu Y.S.;
RT "DNA sequence of the human beta-globin gene isolated from a healthy
RT Chinese.";
RL Submitted (JUN-1997) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT ARG-113.
RA Cabeda J.M., Correia C., Estevinho A., Cardoso C., Amorim M.L.,
RA Cleto E., Vale L., Coimbra E., Pinho L., Justica B.;
RT "Unexpected patterns of globin mutations in thalassemia patients from
RT north of Portugal.";
[Part of this file has been deleted for brevity]
FT VARIANT 141 141 A -> V (in Puttelange; polycythemia; O(2)
FT affinity up).
FT /FTId=VAR_003082.
FT VARIANT 142 142 L -> R (in Olmsted; unstable).
FT /FTId=VAR_003083.
FT VARIANT 143 143 A -> D (in Ohio; O(2) affinity up).
FT /FTId=VAR_003084.
FT VARIANT 144 144 H -> D (in Rancho Mirage).
FT /FTId=VAR_003085.
FT VARIANT 144 144 H -> P (in Syracuse; O(2) affinity up).
FT /FTId=VAR_003087.
FT VARIANT 144 144 H -> Q (in Little Rock; O(2) affinity
FT up).
FT /FTId=VAR_003086.
FT VARIANT 144 144 H -> R (in Abruzzo; O(2) affinity up).
FT /FTId=VAR_003088.
FT VARIANT 145 145 K -> E (in Mito; O(2) affinity up).
FT /FTId=VAR_003089.
FT VARIANT 146 146 Y -> C (in Rainier; O(2) affinity up).
FT /FTId=VAR_003090.
FT VARIANT 146 146 Y -> H (in Bethesda; O(2) affinity up).
FT /FTId=VAR_003091.
FT VARIANT 147 147 H -> D (in Hiroshima; O(2) affinity up).
FT /FTId=VAR_003092.
FT VARIANT 147 147 H -> L (in Cowtown; O(2) affinity up).
FT /FTId=VAR_003093.
FT VARIANT 147 147 H -> P (in York; O(2) affinity up).
FT /FTId=VAR_003094.
FT VARIANT 147 147 H -> Q (in Kodaira; O(2) affinity up).
FT /FTId=VAR_003095.
FT CONFLICT 26 26 Missing (in Ref. 15; ACD39349).
FT CONFLICT 42 42 F -> L (in Ref. 13; AAR96398).
FT HELIX 6 16
FT TURN 21 23
FT HELIX 24 35
FT HELIX 37 42
FT HELIX 44 46
FT HELIX 52 57
FT HELIX 59 77
FT TURN 78 80
FT HELIX 82 94
FT TURN 95 97
FT HELIX 102 119
FT HELIX 120 122
FT HELIX 125 142
FT HELIX 144 146
SQ SEQUENCE 147 AA; 15998 MW; A31F6D621C6556A1 CRC64;
MVHLTPEEKS AVTALWGKVN VDEVGGEALG RLLVVYPWTQ RFFESFGDLS TPDAVMGNPK
VKAHGKKVLG AFSDGLAHLD NLKGTFATLS ELHCDKLHVD PENFRLLGNV LVCVLAHHFG
KEFTPPVQAA YQKVVAGVAN ALAHKYH
//
Output file format
The output is a standard EMBOSS alignment file.
The results can be output in one of several styles by using the
command-line qualifier -aformat xxx, where 'xxx' is replaced by the
name of the required format. Some of the alignment formats can cope
with an unlimited number of sequences, while others are only for pairs
of sequences.
The available multiple alignment format names are: multiple, simple,
fasta, msf, clustal, mega, meganon, nexus,, nexusnon, phylip,
phylipnon, selex, treecon, tcoffee, debug, srs.
The available pairwise alignment format names are: pair, markx0,
markx1, markx2, markx3, markx10, match, sam, bam, score, srspair
See: http://emboss.sf.net/docs/themes/AlignFormats.html for further
information on alignment formats.
By default the output is in 'srspair' format.
Output files for usage example
File: hba_human.water
########################################
# Program: water
# Rundate: Mon 15 Jul 2013 12:00:00
# Commandline: water
# [-asequence] tsw:hba_human
# [-bsequence] tsw:hbb_human
# Align_format: srspair
# Report_file: hba_human.water
########################################
#=======================================
#
# Aligned_sequences: 2
# 1: HBA_HUMAN
# 2: HBB_HUMAN
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 0.5
#
# Length: 145
# Identity: 63/145 (43.4%)
# Similarity: 88/145 (60.7%)
# Gaps: 8/145 ( 5.5%)
# Score: 293.5
#
#
#=======================================
HBA_HUMAN 3 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS- 50
|:|.:|:.|.|.|||| :..|.|.|||.|:.:.:|.|:.:|..| |||
HBB_HUMAN 4 LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLST 51
HBA_HUMAN 51 ----HGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDP 96
.|:.:||.|||||..|.::.:||:|::....:.||:||..||.|||
HBB_HUMAN 52 PDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDP 101
HBA_HUMAN 97 VNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKY 141
.||:||.:.|:..||.|...||||.|.|:..|.:|.|:..|..||
HBB_HUMAN 102 ENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKY 146
#---------------------------------------
#---------------------------------------
The Identity: is the percentage of identical matches between the two
sequences over the reported aligned region (including any gaps in the
length).
The Similarity: is the percentage of matches between the two sequences
over the reported aligned region (including any gaps in the length).
Data files
For protein sequences EBLOSUM62 is used for the substitution matrix.
For nucleotide sequence, EDNAFULL is used. Others can be specified.
EMBOSS data files are distributed with the application and stored in
the standard EMBOSS data directory, which is defined by the EMBOSS
environment variable EMBOSS_DATA.
To see the available EMBOSS data files, run:
% embossdata -showall
To fetch one of the data files (for example 'Exxx.dat') into your
current directory for you to inspect or modify, run:
% embossdata -fetch -file Exxx.dat
Users can provide their own data files in their own directories.
Project specific files can be put in the current directory, or for
tidier directory listings in a subdirectory called ".embossdata". Files
for all EMBOSS runs can be put in the user's home directory, or again
in a subdirectory called ".embossdata".
The directories are searched in the following order:
* . (your current directory)
* .embossdata (under your current directory)
* ~/ (your home directory)
* ~/.embossdata
Notes
A local alignment searches for regions of local similarity between two
sequences and need not include the entire length of the sequences.
Local alignment methods are very useful for scanning databases or other
circumsatnces when you wish to find matches between small regions of
sequences, for example between protein domains.
References
1. Smith TF, Waterman MS (1981) J. Mol. Biol 147(1);195-7
Warnings
Local alignment methods only report the best matching areas between two
sequences - there may be a large number of alternative local alignments
that do not score as highly. If two proteins share more than one common
region, for example one has a single copy of a particular domain while
the other has two copies, it may be possible to "miss" the second and
subsequent alignments. You will be able to see this situation if you
have done a dotplot and your local alignment does not show all the
features you expected to see.
water is for aligning the best matching subsequences of two sequences.
It does not necessarily align whole sequences against each other; you
should use needle if you wish to align closely related sequences along
their whole lengths.
A true Smith Waterman implementation like water needs memory
proportional to the product of the sequence lengths. For two sequences
of length 10,000,000 and 1,000 it therefore needs memory proportional
to 10,000,000,000 characters. Two arrays of this size are produced, one
of ints and one of floats so multiply that figure by 8 to get the
memory usage in bytes. That doesn't include other overheads. Therefore
only use water and needle for accurate alignment of reasonably short
sequences. It should not be used with very large sequences unless you
have a lot of memory and a lot of time. If you run out of memory, try
using supermatcher or matcher instead.
Diagnostic Error Messages
Uncaught exception
Assertion failed
raised at ajmem.c:xxx
Probably means you have run out of memory. Try using supermatcher or
matcher if this happens.
Exit status
0 if successful.
Known bugs
None.
See also
Program name Description
matcher Waterman-Eggert local alignment of two sequences
seqmatchall All-against-all word comparison of a sequence set
supermatcher Calculate approximate local pair-wise alignments of larger
sequences
wordfinder Match large sequences against one or more other sequences
wordmatch Find regions of identity (exact matches) of two sequences
matcher is a local alignment program that gives as good an alignment as
water but it uses far less memory. However, water runs twice as fast as
matcher.
supermatcher is designed for local alignments of very large sequences.
It gives good results as long as there is not a significant amount of
insertion or deletion in the alignment.
Author(s)
Alan Bleasby
European Bioinformatics Institute, Wellcome Trust Genome Campus,
Hinxton, Cambridge CB10 1SD, UK
Please report all bugs to the EMBOSS bug team
(emboss-bug (c) emboss.open-bio.org) not to the original author.
History
Completed 7th July 1999.
Modified 27th July 1999 - tweaking scoring.
Modified 22 Oct 2000 - added ID and Similarity scores.
Target users
This program is intended to be used by everyone and everything, from
naive users to embedded scripts.
Comments
None
|