| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 
 | <HTML>
<HEAD>
  <TITLE>
  EMBOSS: emowse
  </TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="/images/emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
emowse
</font></b>
</td></tr>
</table>
<br> 
<p>
<H2>
Wiki
</H2>
The master copies of EMBOSS documentation are available
at <a href="http://emboss.open-bio.org/wiki/Appdocs">
http://emboss.open-bio.org/wiki/Appdocs</a>
on the EMBOSS Wiki.
<p>
Please help by correcting and extending the Wiki pages.
<H2>
    Function
</H2>
Search protein sequences by digest fragment molecular weight
<H2>
    Description
</H2>
<p>Given an input file of molecular weights corresponding to peptides cut by proteolytic enzymes or reagents, <b>emowse</b> will search the supplied input protein sequences for digest fragments that match the molecular weights.  For each input sequence, <b>emowse</b> derives both whole sequence molecular weight and calculated peptide molecular weights for complete digests. One of eight cutting enzymes/reagents can be specified and an optional whole sequence molecular weight (if known).  Optionally, monoisotopic weights are used.  <b>emowse</b> also incorporate calculated peptide Mw's resulting from incomplete or partial cleavages. At present, this is achieved by computing all nearest-neighbour pairs for each enzyme or reagent.</p>
<p><b>emowse</b> writes an output file that includes: i. The specified search parameters (digest reagent, specified error tolerance, specified intact protein Mw and Mw filter percentage).  ii. Short 'hit' listing (the top 50 scoring proteins listed in descending order, the sequence ID name and brief text identifiers are included). iii. Detailed 'hit' listing (the top 50 entries listed in more detail).</p>
<H2>
    Usage
</H2>
Here is a sample session with <b>emowse</b>
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>emowse </b>
Search protein sequences by digest fragment molecular weight
Input protein sequence(s): <b>tsw:*</b>
Peptide molecular weight values file: <b>test.mowse</b>
Whole sequence molwt [0]: <b></b>
Use monoisotopic weights [N]: <b></b>
Output file [cru4_arath.emowse]: <b></b>
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<H2>
    Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Search protein sequences by digest fragment molecular weight
Version: EMBOSS:6.6.0.0
   Standard (Mandatory) qualifiers:
  [-sequence]          seqall     Protein sequence(s) filename and optional
                                  format, or reference (input USA)
  [-infile]            infile     Peptide molecular weight values file
   -weight             integer    [0] Whole sequence molwt (Any integer value)
   -mono               boolean    [N] Use monoisotopic weights
  [-outfile]           outfile    [*.emowse] Output file name
   Additional (Optional) qualifiers: (none)
   Advanced (Unprompted) qualifiers:
   -mwdata             datafile   [Emolwt.dat] Molecular weights data file
   -frequencies        datafile   [Efreqs.dat] Amino acid frequencies data
                                  file
   -enzyme             menu       [1] Enzyme or reagent (Values: 1 (Trypsin);
                                  2 (Lys-C); 3 (Arg-C); 4 (Asp-N); 5
                                  (V8-bicarb); 6 (V8-phosph); 7
                                  (Chymotrypsin); 8 (CNBr))
   -pcrange            integer    [25] Allowed whole sequence weight
                                  variability (Integer from 0 to 75)
   -tolerance          float      [0.1] Tolerance (Number from 0.100 to 1.000)
   -partials           float      [0.4] Partials factor (Number from 0.100 to
                                  1.000)
   Associated qualifiers:
   "-sequence" associated qualifiers
   -sbegin1            integer    Start of each sequence to be used
   -send1              integer    End of each sequence to be used
   -sreverse1          boolean    Reverse (if DNA)
   -sask1              boolean    Ask for begin/end/reverse
   -snucleotide1       boolean    Sequence is nucleotide
   -sprotein1          boolean    Sequence is protein
   -slower1            boolean    Make lower case
   -supper1            boolean    Make upper case
   -scircular1         boolean    Sequence is circular
   -squick1            boolean    Read id and sequence only
   -sformat1           string     Input sequence format
   -iquery1            string     Input query fields or ID list
   -ioffset1           integer    Input start position offset
   -sdbname1           string     Database name
   -sid1               string     Entryname
   -ufo1               string     UFO features
   -fformat1           string     Features format
   -fopenfile1         string     Features file name
   "-outfile" associated qualifiers
   -odirectory3        string     Output directory
   General qualifiers:
   -auto               boolean    Turn off prompts
   -stdout             boolean    Write first file to standard output
   -filter             boolean    Read first file from standard input, write
                                  first file to standard output
   -options            boolean    Prompt for standard and additional values
   -debug              boolean    Write debug output to program.dbg
   -verbose            boolean    Report some/full command line options
   -help               boolean    Report command line options and exit. More
                                  information on associated and general
                                  qualifiers can be found with -help -verbose
   -warning            boolean    Report warnings
   -error              boolean    Report errors
   -fatal              boolean    Report fatal errors
   -die                boolean    Report dying program messages
   -version            boolean    Report version number and exit
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left">Qualifier</th>
<th align="left">Type</th>
<th align="left">Description</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Standard (Mandatory) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-sequence]<br>(Parameter 1)</td>
<td>seqall</td>
<td>Protein sequence(s) filename and optional format, or reference (input USA)</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-infile]<br>(Parameter 2)</td>
<td>infile</td>
<td>Peptide molecular weight values file</td>
<td>Input file</td>
<td><b>Required</b></td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-weight</td>
<td>integer</td>
<td>Whole sequence molwt</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-mono</td>
<td>boolean</td>
<td>Use monoisotopic weights</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>[-outfile]<br>(Parameter 3)</td>
<td>outfile</td>
<td>Output file name</td>
<td>Output file</td>
<td><i><*></i>.emowse</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Additional (Optional) qualifiers</th>
</tr>
<tr>
<td colspan=5>(none)</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Advanced (Unprompted) qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td>-mwdata</td>
<td>datafile</td>
<td>Molecular weights data file</td>
<td>Data file</td>
<td>Emolwt.dat</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-frequencies</td>
<td>datafile</td>
<td>Amino acid frequencies data file</td>
<td>Data file</td>
<td>Efreqs.dat</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-enzyme</td>
<td>list</td>
<td>Enzyme or reagent</td>
<td><table><tr><td>1</td> <td><i>(Trypsin)</i></td></tr><tr><td>2</td> <td><i>(Lys-C)</i></td></tr><tr><td>3</td> <td><i>(Arg-C)</i></td></tr><tr><td>4</td> <td><i>(Asp-N)</i></td></tr><tr><td>5</td> <td><i>(V8-bicarb)</i></td></tr><tr><td>6</td> <td><i>(V8-phosph)</i></td></tr><tr><td>7</td> <td><i>(Chymotrypsin)</i></td></tr><tr><td>8</td> <td><i>(CNBr)</i></td></tr></table></td>
<td>1</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-pcrange</td>
<td>integer</td>
<td>Allowed whole sequence weight variability</td>
<td>Integer from 0 to 75</td>
<td>25</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-tolerance</td>
<td>float</td>
<td>Tolerance</td>
<td>Number from 0.100 to 1.000</td>
<td>0.1</td>
</tr>
<tr bgcolor="#FFFFCC">
<td>-partials</td>
<td>float</td>
<td>Partials factor</td>
<td>Number from 0.100 to 1.000</td>
<td>0.4</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>Associated qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-sequence" associated seqall qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sbegin1<br>-sbegin_sequence</td>
<td>integer</td>
<td>Start of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -send1<br>-send_sequence</td>
<td>integer</td>
<td>End of each sequence to be used</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sreverse1<br>-sreverse_sequence</td>
<td>boolean</td>
<td>Reverse (if DNA)</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sask1<br>-sask_sequence</td>
<td>boolean</td>
<td>Ask for begin/end/reverse</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -snucleotide1<br>-snucleotide_sequence</td>
<td>boolean</td>
<td>Sequence is nucleotide</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sprotein1<br>-sprotein_sequence</td>
<td>boolean</td>
<td>Sequence is protein</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -slower1<br>-slower_sequence</td>
<td>boolean</td>
<td>Make lower case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -supper1<br>-supper_sequence</td>
<td>boolean</td>
<td>Make upper case</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -scircular1<br>-scircular_sequence</td>
<td>boolean</td>
<td>Sequence is circular</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -squick1<br>-squick_sequence</td>
<td>boolean</td>
<td>Read id and sequence only</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sformat1<br>-sformat_sequence</td>
<td>string</td>
<td>Input sequence format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -iquery1<br>-iquery_sequence</td>
<td>string</td>
<td>Input query fields or ID list</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ioffset1<br>-ioffset_sequence</td>
<td>integer</td>
<td>Input start position offset</td>
<td>Any integer value</td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sdbname1<br>-sdbname_sequence</td>
<td>string</td>
<td>Database name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -sid1<br>-sid_sequence</td>
<td>string</td>
<td>Entryname</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -ufo1<br>-ufo_sequence</td>
<td>string</td>
<td>UFO features</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fformat1<br>-fformat_sequence</td>
<td>string</td>
<td>Features format</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fopenfile1<br>-fopenfile_sequence</td>
<td>string</td>
<td>Features file name</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<td align="left" colspan=5>"-outfile" associated outfile qualifiers
</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -odirectory3<br>-odirectory_outfile</td>
<td>string</td>
<td>Output directory</td>
<td>Any string</td>
<td> </td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=5>General qualifiers</th>
</tr>
<tr bgcolor="#FFFFCC">
<td> -auto</td>
<td>boolean</td>
<td>Turn off prompts</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -stdout</td>
<td>boolean</td>
<td>Write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -filter</td>
<td>boolean</td>
<td>Read first file from standard input, write first file to standard output</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -options</td>
<td>boolean</td>
<td>Prompt for standard and additional values</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -debug</td>
<td>boolean</td>
<td>Write debug output to program.dbg</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -verbose</td>
<td>boolean</td>
<td>Report some/full command line options</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -help</td>
<td>boolean</td>
<td>Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -warning</td>
<td>boolean</td>
<td>Report warnings</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -error</td>
<td>boolean</td>
<td>Report errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -fatal</td>
<td>boolean</td>
<td>Report fatal errors</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -die</td>
<td>boolean</td>
<td>Report dying program messages</td>
<td>Boolean value Yes/No</td>
<td>Y</td>
</tr>
<tr bgcolor="#FFFFCC">
<td> -version</td>
<td>boolean</td>
<td>Report version number and exit</td>
<td>Boolean value Yes/No</td>
<td>N</td>
</tr>
</table>
<H2>
    Input file format
</H2>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
'tsw:*' is a sequence entry in the example protein database 'tsw'
<p>
<p><h3>File: test.mowse</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
6082.8
5423.0
3086.3
2930.3
2424.7
2030.2
1399.6
1086.2
</pre>
</td></tr></table><p>
<p>
The input file is a list of molecular weights of the peptide fragments. 
One weight is allowed per line.  The example file above is a
Trypsin digest of the protein sw:100K_rat (produced by using the program
<b>digest</b>).
<p>
Each molecular weight must be on a line of its own.  Masses (M not
M[H+]) are accepted in any order (ascending,descending or mixed). 
Peptide masses can be entered as integers or floating-point values, the
latter being rounded to the nearest integer value for the search. 
<p>
It is suggested that peptide masses should be selected from the range
700-4000 Daltons.  This range balances the fact that very small peptides
give little discrimination and minimizes the frequency of
partially-cleaved peptides. 
<p>
As a general rule, users are advised to identify and remove peptide
masses resulting from autodigestion of the cleavage enzyme (e.g tryptic
fragments of trypsin), best obtained by MS analysis of control digests
containing only the enzyme. 
<p>
Further information on the partial sequence and/or composition of the
peptides can be given after the weight with a 'seq()' or 'comp()'
specification. This should be formatted like:
<p>
<pre>
mw seq(...) comp(...)
</pre>
<p>
where mw is the molecular mass of the fragment,
<TT>seq(...)</TT> is sequence information and
<TT>comp(...)</TT> is composition information.
A line may contain more than one sequence information qualifiers. 
For example:
<p>
<hr>
<pre>
7176 seq(b-t[pqt]ln)
1744
1490
1433   comp(3[ed]1[p]) seq(gmde)
<pre>
<hr>
<p>
<H3>Sequence information</H3>
The sequence information should be given in standard
One-character code. It should be preceded by a prefix
as outlined in the table below, to indicate what type of sequence
it is.
<p>
<Table border="1">
<Caption><B>Prefixes to use with sequence information for
<b>emowse</b></B></caption>
<TR align="center"><TH>Prefix</TH><TH>Meaning</TH><TH>Example</TH></TR>
<TR align="center"><TD><TT>b-</TT></TD><TD>N->C sequence</TD>
<TD><TT>seq(b-DEFG)</TT></TD></TR>
<TR align="center"><TD><TT>y-</TT></TD><TD>C->N sequence</TD>
<TD><TT>seq(y-GFED)</TT></TD></TR>
<TR align="center"><TD><TT>*-</TT></TD>
<TD>Orientation unknown</TD>
<TD><TT>seq(*-DEFG)<br>seq(*-GFED)</TT></TD></TR>
<TR align="center"><TD><TT>n-</TT></TD><TD>N terminal sequence</TD>
<TD><TT>seq(n-ACDE)</TT></TD></TR>
<TR align="center"><TD><TT>c-</TT></TD><TD>C terminal sequence</TD>
<TD><TT>seq(c-FGHI)</TT></TD></TR>
<TR align="center"><TD colspan=3>The examples are all correct data for a
peptide with a sequence ACDEFGHI.<BR> Note that *-DEFG
will search for both DEFG and GFED</TD></TR>
</TABLE>
<p>
Both lower and upper case characters may be used for amino-acids.
An unknown amino acid may be indicated by an '<TT>X</TT>'.
More than one amino acid may be specified for a position by
putting them between square brackets.
A line may contain several sequence information
qualifiers. An example for a peptide with the actual
sequence ACDEFGHI might look like:
<pre>
12345 seq(n-AC[DE]) seq(c-HI)
</pre>
<H3>Composition Information</H3>
Composition should consist of a number, followed by the
corresponding amino acid between square brackets.   
For example
<PRE>comp(2[H]0[M]3[DE]*[K])</PRE> indicates
a peptide which contains 2 histidines, no methionines,
3 acidic residues (glutamic or aspartic acid) and
at least 1 lysine.
<p>
<H2>
    Output file format
</H2>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: cru4_arath.emowse</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
Using data fragments of:
          1086.2  
          1399.6  
          2030.2  
          2424.7  
          2930.3  
          3086.3  
          5423.0  
          6082.8  
1   UBR5_RAT     E3 ubiquitin-protein ligase UBR5 (6.3.2.-) (100 kDa protein) (
2   SYVC_TAKRU   Valine--tRNA ligase (6.1.1.9) (Valyl-tRNA synthetase) (ValRS) 
3   TCPD_TAKRU   T-complex protein 1 subunit delta (TCP-1-delta) (CCT-delta)   
4   OPS2_DROME   Opsin Rh2 (Ocellar opsin)                                     
5   FLAV_ECO57   Flavodoxin-1                                                  
6   FLAV_ECOL6   Flavodoxin-1                                                  
7   FLAV_ECOLI   Flavodoxin-1                                                  
8   FLAV_KLEPN   Flavodoxin                                                    
9   FLAV_SYNY3   Flavodoxin                                                    
10  EI2BB_TAKRU  Translation initiation factor eIF-2B subunit beta (S20I15) (eI
11  FLAV_HAEIN   Flavodoxin                                                    
12  HIRA_TAKRU   Protein HIRA (TUP1-like enhancer of split protein 1)          
13  OPS2_SCHGR   Opsin-2                                                       
14  LACY_ECOLI   Lactose permease (Lactose-proton symport)                     
15  FLAV_CLOSA   Flavodoxin                                                    
16  AMIC_PSEAE   Aliphatic amidase expression-regulating protein               
17  PAX3_HUMAN   Paired box protein Pax-3 (HuP2)                               
18  PAX4_HUMAN   Paired box protein Pax-4                                      
19  CO9_TAKRU    Complement component C9 (Precursor)                           
20  SYHC_TAKRU   Histidine--tRNA ligase, cytoplasmic (6.1.1.21) (Histidyl-tRNA 
21  BGAL_ECOLI   Beta-galactosidase (Beta-gal) (3.2.1.23) (Lactase)            
22  HD_TAKRU     Huntingtin (Huntington disease protein homolog) (HD protein ho
    1  : UBR5_RAT       1.212e+05 308026.9   0.750 
         E3 ubiquitin-protein ligase UBR5 (6.3.2.-) (100 kDa protein) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog)
         Mw     Start  End    Seq
         1086.3 2257   2266   CATTPMAVHR                                   
         1399.6 1905   1916   GDFLNYALSLMR                                 
         2424.7 2189   2211   VFMEDVGAEPGSILTELGGFEVK                      
         2930.3 2570   2597   QLILASQSSDADAVFSAMDLAFAVDLCK                 
         3086.3 2357   2384   QLSIDTRPFRPASEGNPSDDPDPLPAHR                 
        *6082.9 2716   2769   QDLVYFWTSSPSLPASEEGFQPMPSITIRPPDDQHLPTANTCISR...
         No Match      2030.2 5423.0 
    2  : SYVC_TAKRU     3.791e+01 138218.2   0.375 
         Valine--tRNA ligase (6.1.1.9) (Valyl-tRNA synthetase) (ValRS)
         Mw     Start  End    Seq
         1087.3 510    518    TVLHPFCDR                                    
        *1399.6 1184   1195   VPVKVQEQDTEK                                 
<font color=red>  [Part of this file has been deleted for brevity]</font>
         No Match      1086.2 1399.6 2030.2 2424.7 2930.3 5423.0 6082.8 
    15 : FLAV_CLOSA     4.938e+00 17763.4    0.125 
         Flavodoxin
         Mw     Start  End    Seq
        *1085.3 17     26     VAKLIEEGVK                                   
         No Match      1399.6 2030.2 2424.7 2930.3 3086.3 5423.0 6082.8 
    16 : AMIC_PSEAE     3.859e+00 42807.1    0.125 
         Aliphatic amidase expression-regulating protein
         Mw     Start  End    Seq
        *2423.7 308    328    VEDVQRHLYDICIDAPQGPVR                        
         No Match      1086.2 1399.6 2030.2 2930.3 3086.3 5423.0 6082.8 
    17 : PAX3_HUMAN     3.494e+00 52967.5    0.125 
         Paired box protein Pax-3 (HuP2)
         Mw     Start  End    Seq
        *2930.4 11     37     MMRPGPGQNYPRSGFPLEVSTPLGQGR                  
         No Match      1086.2 1399.6 2030.2 2424.7 3086.3 5423.0 6082.8 
    18 : PAX4_HUMAN     3.488e+00 37832.7    0.125 
         Paired box protein Pax-4
         Mw     Start  End    Seq
        *2029.4 28     45     QQIVRLAVSGMRPCDISR                           
         No Match      1086.2 1399.6 2424.7 2930.3 3086.3 5423.0 6082.8 
    19 : CO9_TAKRU      3.007e+00 65197.9    0.125 
         Complement component C9 (Precursor)
         Mw     Start  End    Seq
        *2930.2 135    162    TCPPTVLDTNEQGRTAGYGINILGADPR                 
         No Match      1086.2 1399.6 2030.2 2424.7 3086.3 5423.0 6082.8 
    20 : SYHC_TAKRU     2.821e+00 57913.0    0.125 
         Histidine--tRNA ligase, cytoplasmic (6.1.1.21) (Histidyl-tRNA synthetase) (HisRS)
         Mw     Start  End    Seq
         1087.2 124    133    DQGGELLSLR                                   
         No Match      1399.6 2030.2 2424.7 2930.3 3086.3 5423.0 6082.8 
    21 : BGAL_ECOLI     2.280e+00 116482.9   0.125 
         Beta-galactosidase (Beta-gal) (3.2.1.23) (Lactase)
         Mw     Start  End    Seq
         1400.6 601    612    QFCMNGLVFADR                                 
         No Match      1086.2 2030.2 2424.7 2930.3 3086.3 5423.0 6082.8 
    22 : HD_TAKRU       2.169e+00 348936.6   0.375 
         Huntingtin (Huntington disease protein homolog) (HD protein homolog)
         Mw     Start  End    Seq
        *1400.6 2899   2911   VDGEALVKLSVDR                                
        *2031.3 645    663    LLSASFLLTGQKNGLTPDR                          
        *3085.6 1573   1597   LVQYHQVLEMFILVLQQCHKENEDK                    
         No Match      1086.2 2424.7 2930.3 5423.0 6082.8 
</pre>
</td></tr></table><p>
<p>
The <b>emowse</b> search program outputs a listing file containing the
following information.
<p>
<h3>Specified search parameters</h3>
        Includes all specified parameters such as digest reagent, 
  specified error tolerance, specified intact protein Mw and Mw filter
  percentage. All supplied peptide Mws are listed in descending order, 
  followed by the total number of entries scanned during the search.
<h3>Short 'hit' listing</h3>
        The top 50 scoring proteins are then listed in descending
  order, details include the sequence ID name and brief text
 identifiers. Details are limited to the top 50 scores as a deliberate
  compromise to keep the result listings as short as possible.
<h3>Detailed 'hit' listing</h3>
        The top 50 entries are then listed in more detail.The first
  line includes the sequence ID name, the <b>emowse</b> search score
  (typically a few powers of 10), the 'hit' protein Mw and finally
  an 'accuracy' ratio calculated by dividing 'hits' by the total
  number of peptides used for the search. This cannot be used to
  ascribe significance, but experience has shown that anything below
  0.3 is generally not worth pursuing. Line 2 is the protein
  text identifier. Subsequent lines list 'hit' and 'miss' peptides,
  with the appropriate start, end and corresponding sequences of correct
  peptide matches.  'miss' peptides are indicated by 'No match' at the
start of the last line for that protein. 
<p>
        Matching peptides marked with a '*' denote partially-cleaved
  fragments. 
<p>
<H2>
    Data files
</H2>
<b>emowse</b> reads in the pre-computed "Frequencies" data file
'Efreqs.dat', (See the section "<b>emowse</b> Scoring scheme", above for
a description of the frequency scores.)
<p>
EMBOSS data files are distributed with the application and stored
in the standard EMBOSS data directory, which is defined
by the EMBOSS environment variable EMBOSS_DATA.
<p>
To see the available EMBOSS data files, run:
<p>
<pre>
% embossdata -showall
</pre>
<p>
To fetch one of the data files (for example 'Exxx.dat') into your
current directory for you to inspect or modify, run:
<pre>
% embossdata -fetch -file Exxx.dat
</pre>
<p>
Users can provide their own data files in their own directories.
Project specific files can be put in the current directory, or for
tidier directory listings in a subdirectory called
".embossdata". Files for all EMBOSS runs can be put in the user's home
directory, or again in a subdirectory called ".embossdata".
<p>
The directories are searched in the following order:
<ul>
   <li> . (your current directory)
   <li> .embossdata (under your current directory)
   <li> ~/ (your home directory)
   <li> ~/.embossdata
</ul>
<p>
<H2>
    Notes
</H2>
Peptide mass information can provide a 'fingerprint' signature
sufficiently discriminating to allow for the unique and rapid
identification of unknown sample proteins, independent of other
analytical methods such as protein sequence analysis.  Practical
experience has shown that sample proteins can be uniquely identified
using as few as 3-4 experimentally determined peptide masses when
screened against a fragment database derived from over 50,000 proteins. 
<p>
Given a one-per-line file of molecular weights cut by enzymes/reagents,
<b>emowse</b> will search a protein database for matches with the mass
spectrometry data. 
<p>
One of eight cutting enzymes/reagents can be specified and an optional whole
sequence molecular weight. 
<p>
Determination of molecular weight has always been an important aspect of
the characterization of biological molecules.  Protein molecular weight
data, historically obtained by SDS gel electrophoresis or gel permeation
chromatography, has been used establish purity, detect
post-translational modification (such as phosphorylation or
glycosylation) and aid identification.  Until just over a decade ago,
mass spectrometric techniques were typically limited to relatively small
biomolecules, as proteins and nucleic acids were too large and fragile
to withstand the harsh physical processes required to induce ionization. 
This began to change with the development of 'soft' ionization methods
such as fast atom bombardment (FAB)[1], electrospray ionisation (ESI)
[2,3] and matrix-assisted laser desorption ionisation (MALDI)[4], which
can effect the efficient transition of large macromolecules from
solution or solid crystalline state into intact, naked molecular ions in
the gas phase.  As an added bonus to the protein chemist, sample
handling requirements are minimal and the amounts required for MS
analysis are in the same range, or less, than existing analytical
methods. 
<p>
As well as providing accurate mass information for intact proteins, such
techniques have been routinely used to produce accurate peptide
molecular weight 'fingerprint' maps following digestion of known
proteins with specific proteases.  Such maps have been used to confirm
protein sequences (allowing the detection of errors of translation,
mutation or insertion), characterise post-translational modifications or
processing events and assign disulphide bonds [5,6]. 
<p>
Less well appreciated, however, is the extent to which such peptide mass
information can provide a 'fingerprint' signature sufficiently
discriminating to allow for the unique and rapid identification of
unknown sample proteins, independent of other analytical methods such as
protein sequence analysis. 
<p>
Practical experience has shown that sample proteins can be uniquely
identified using as few as 3- 4 experimentally determined peptide masses
when screened against a fragment database derived from over 50,000
proteins.  Experimental errors of a few Daltons are tolerated by the
scoring algorithms, permitting the use of inexpensive time-of-flight
mass spectrometers.  As with other types of physical data, such as amino
acid composition or linear sequence, peptide masses can clearly provide
a set of determinants sufficiently unique to identify or match unknown
sample proteins.  Peptide mass fingerprints can prove as discriminating
as linear peptide sequence, but can be obtained in a fraction of the
time using less material.  In many cases, this allows for a rapid
identification of a sample protein before committing to protein sequence
analysis.  Fragment masses also provide structural information, at the
protein level, fully complementary to large-scale DNA sequencing or
mapping projects [7,8,9]. 
<p>
For each entry in the specified set of sequences to search,
<b>emowse</b> derives both whole sequence molecular weight and
calculated peptide molecular weights for complete digests using the
range of cleavage reagents and rules detailed in Table 1.  Cleavage is
disallowed if the target residue is followed by proline (except for CNBr
or Asp N).  Glu C (S.  aureus V8 protease) cleavages are also inhibited
if the adjacent residue is glutamic acid.  Peptide mass calculations are
based entirely on the linear sequence and use the average isotopic
masses of amide-bonded amino acid residues (IUPAC 1987 relative atomic
masses).  To allow for N-terminal hydrogen and C-terminal hydroxyl the
final calculated molecular weight of a peptide of N residues is given by
the equation:
<p>
<pre>
        N
        __
        \
        /  Residue mass + 18.0153
        --
        n=1        
</pre>
Molecular weights are rounded to the nearest integer value before being
used.  Cysteine residues are calculated as the free thiol, anticipating
that samples are reduced prior to mass analysis.  CNBr fragments are
calculated as the homoserine lactone form.  Information relating to
post- translational modification (phosphorylation, glycosylation etc.)
is not incorporated into calculation of peptide masses. 
<p>
<h3>Table 1: Cleavage reagents modelled by <b>emowse</b>.</h3>
<pre>
Reagent no.     Reagent                 Cleavage rule   
                                
        1       Trypsin                 C-term to K/R
        2       Lys-C                   C-term to K
        3       Arg-C                   C-term to R
        4       Asp-N                   N-term to D
        5       V8-bicarb               C-term to E
        6       V8-phosph               C-term to E/D
        7       Chymotrypsin            C-term to F/W/Y/L/M
        8       CNBr                    C-term to M
</pre>
<p>
Current versions of <b>emowse</b> also incorporate calculated peptide
Mw's resulting from incomplete or partial cleavages.  At present, this
is achieved by computing all nearest-neighbour pairs for each enzyme or
reagent detailed in table 1. 
<p>
<h3>Tolerance</h3>
The supplied number specifies the error allowed for mass accuracy of
experimental mass determination.  If no figure is specified, a default
tolerance of 2 Daltons will be assumed.  If you wish to specify a
different tolerance then follow the qualifier '-tolerance' with the
required number of Daltons.  eg: '-tolerance 1'.  In this case, supplied
peptide masses will be matched to +/- 1 Daltons.  Values of 2-4 are
suggested for data obtained by laser- desorption TOF instruments. 
Accuracies of +/- 2 Daltons or better are generally only possible using
an appropriate internal standard (e.g.  oxidised insulin B chain) with
TOF instruments.  For electrospray or FAB data, a value of 1 can be
selected in most cases.  If you have real confidence in mass
determination, specify '0' (zero) to limit matches to the nearest
integer value (effectively +/- 0.5 Daltons).  Discrimination is
significantly improved by the selection of a small error tolerance. 
<h3>Whole sequence molecular weight</h3>
This option allows you to give the molwt of the whole protein (if
known).  This allows you to limit the search to proteins of this molwt
plus/minus a 'limit' (see below).  If unspecified, a whole protein molwt
of 0 is assumed which <b>emowse</b> interprets as "search the whole database". 
This will include all proteins up to the maximum size of just under
700,000 Daltons.  You can specify any molwt in Daltons with this command
e.g.  '-weight 90000'. 
<h3>Allowed whole sequence weight variability</h3>
This option is used in conjunction with the '-weight' option and is
meaningless without it.  It specifies a percentage.  Only proteins of
the given Sequence molecular weight +/- this percentage will be
searched.  If a Sequence molecular weight is specified but '-pcrange' is
unspecified then '-pcrange ' will default to 25%.  To specify a
percentage of 30% use: '-pcrange 30'.  In this case, a molecular weight
of 90,000 Daltons was specified and the selection of 30 for the filter
restricts the search to those proteins with masses from 63,000 to
117,000 Daltons.  A value of 25 is suggested for initial searches, which
can be progressively widened for subsequent search attempts if no
matches are found.  Discrimination is best when the filter percentage is
narrow, but some Mw estimates (particularly from SDS gels) should be
given considerable allowance for error. 
<h3>Partials factor</h3>
This specifies the weighting given to partially-cleaved peptide
fragments, with a range from 0.1 to 1.0.  If not specified, the default
value is 0.4.  The factor effectively down-weights the score awarded to
a partial fragment by the specified amount.  For example, a '-partials'
of 0.25 will reduce the score of partial fragments to 25% (one quarter)
of the score of a complete ('perfect') peptide cleavage fragment of
equal mass. 
<p>
Computing all possible nearest-neighbour partial fragments adds
significantly to the number of peptides entered in the database (by a
factor of two).  The major effect of this is to increase the background
score by increasing the number of random Mw matches, which can
significantly reduce discrimination.  The use of a low '-partials'
factor (eg 0.1 - 0.3) is a useful way of limiting this effect - partial
peptide matches will add a little to the cumulative frequency score, but
without compromising discrimination. 
<p>
More experienced users can utilise the '-partials' factor to optimize
searches where the peptide Mw data contain a significant proportion of
partial cleavage fragments (eg > 30%).  In such cases, setting the
'-partials' factor within the range 0.4 - 0.6 can help to improve
discrimination.  Conversely, if the digestion is perfect, with no
partial fragments present, the lowest '-partials' factor of 0.1 will
give maximum discrimination. 
<h3>Program requirements</h3>
The <b>emowse</b> search program accepts a single text file 
containing a list of experimentally-determined masses, generally 
selected from the range 700-4,000 Daltons to reduce the influence 
of partial cleavage products. The program outputs a ranked hit 
list comprising the top 30 scores, with information including the 
protein entry name, text identifiers, final accumulated scores, matching
peptide sequences and hit versus miss tallies. User-selectable search
parameters include an error tolerance (default +/- 2 Daltons), selection
of the enzyme or reagent used and an intact protein Mw (optional, if 
known).         
<p>
        For each peptide Mw entry in the data file, <b>emowse</b> matches 
individual fragment molecular weights (FMWs) with database entry 
molecular weights (DBMWs). A 'hit' is scored when the following 
criterion is met:
<p>
<pre>
        DBMW-tolerance-1 < FMW < DBMW+tolerance+1
</pre>
<p>
If an intact protein Mw is specified (SMW) then the program 
prompts for a molecular weight filter percentage (MWFP). <b>emowse</b> 
then restricts the search to those entries which match the 
following criteria:
<p>
<pre>
        R = SMW x MWFP / 100
        0 < SMW-R < <b>emowse</b> entry Mol.wt. < SMW+R
</pre>
<p>
        Default search parameters are a tolerance of +/- 2 Daltons, 
intact Mw specified and the MWFP set to 25.
<h3><b>emowse</b> Scoring scheme</h3>
The final scoring scheme is based on the frequency of a 
fragment molecular weight being found in a protein of a given 
range of molecular weight. OWL database sequence entries were 
initially grouped into 10 kDalton intact molecular weight 
intervals. For each 10 kDalton protein interval, peptide fragment 
molecular weights were assigned to cells of 100 Dalton intervals. 
The cells therefore contained the number of times a particular 
fragment molecular weight occurred in a protein of any given size. 
This operation was performed for each enzyme. Cell frequency 
values were calculated by dividing each cell value by the total 
number of peptides in each 10 kD protein interval. Cell frequency 
values for each 10 kDalton interval were then normalised to the 
largest cell value (Fmax), with all the cell values recalculated 
as:
<p>
<pre>
        Cell value = Old value / Fmax
</pre>
<p>
to yield floating point numbers between 0 and 1. These 
distribution frequency values, calculated for each cleavage 
reagent, were then built into the <b>emowse</b> search program. For 
every database entry scanned, all matching fragments contribute to 
the final score. In the current implementation, non-matching 
fragments are ignored (neutral). For each matching peptide Mw a 
score is assigned by looking up the appropriate normalised 
distribution frequency value. In the case of multiple 'hits' in 
any one target protein (i.e. more than one matching peptide Mw), 
the distribution frequency scores are multiplied. The final 
product score is inverted and then normalised to an 'average' 
protein Mw of 50 kDaltons to reduce the influence of random score 
accumulation in large proteins (>200 kDaltons). The final score is 
thus calculated as:
<p>
<pre>
Score = 50/(Pn x H)
</pre>
<p>
Where Pn is the product of n distribution scores and H the 'hit'
protein molecular weight in kD.
<p>
                Important consequences of this type of scoring scheme 
are that matches with peptides of higher Mw carry more scoring 
weight, and that the non-random distribution of fragment molecular 
weights in proteins of different sizes is compensated for.
<h3>Simulation studies</h3>
In a simulation of scoring properties, 100 test proteins with 
masses between 10 kD and 100 kD were randomly selected from the 
OWL sequence database. The sets of all possible tryptic peptide 
masses for each protein were randomized and database searches 
performed with increasing numbers of fragments  (default search 
parameters) until the test protein reached the top of the ranked 
scoring list. 99% of the test proteins were correctly identified 
using only five peptides or less (mean=3.6 peptides),  with one 
example requiring six. These figures were surprisingly small 
considering that some of the proteins in the test sample generated 
more than 100 possible tryptic fragments. All 100 test examples were
identified using 30% or less of the maximum number of available peptides.
                                                                          
<p>
        This distribution was somewhat dependent on protein size, as 
smaller proteins generally yield fewer peptide fragments. Thus, 
all proteins of 30 kD and over were identified using 13% or less 
of possible fragments (1 in 8), with all proteins of 40 kD and 
above requiring less than 10% (1 in 10). In this latter group, 
therefore, more than 90% of the potential information (all 
possible peptides) was redundant. For the simulation a 'unique' 
identification required matching not only of protein type (e.g. 
globin) but correct discrimination of type, species, and isoform 
or isozyme. Discrimination could be further improved by reducing 
the error tolerance to only +/- 1 Dalton (mean=2.7 peptides). Such 
accuracies are easily bettered using more sophisticated 
ESI/quadrupole or high-field FAB
spectrometers, but the default search value (+/- 2 Daltons) 
compensates for the reduced accuracy obtainable from the smaller 
time-of-flight (TOF) instruments. Mass accuracies better than +/- 1 
Dalton were not essential, and in fact the error tolerance could be 
relaxed to +/- 5 Daltons in many cases with little degradation in 
performance. The simulation thus clearly demonstrated the high 
degree of discrimination afforded by relatively few peptide 
masses, even with generous allowance for error.
<H2>
    References
</H2>
<ol>
The paper describing the original 'MOWSE' program is:
<li>D.J.C.  Pappin, P.  Hojrup and A.J.  Bleasby 'Rapid Identification of
Proteins by Peptide-Mass Fingerprinting'.  Current Biology (1993), vol
3, 327-332. 
<p>Other references:
<LI>Barber M, Bordoli RS, Sedgwick RD, Tyler AN: Fast atom 
bombardment of solids: a new ion source for mass spectrometry. J 
Chem Soc Chem Commun 1981, 7: 325-327.
<LI>Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB: 
Molecular beams of macroions. J Chem Phys 1968, 49:2240-2249.
<LI>Meng CK, Mann M, Fenn JB: Of protons or proteins.  Z Phys D 
1988, 10: 361-368.
<LI>Karas M, Hillenkamp F: Laser desorption ionisation of proteins 
with molecular masses exceeding 10,000 Daltons. Analytical 
Chemistry 1988, 60:2299-2301.
<LI>Morris H, Panico M, Taylor GW: FAB-mapping of recombinant-DNA 
protein products. Biochem Biophys Res Commun 1983, 117:299-305.
<LI>Morris H, Greer FM: Mass spectrometry of natural and 
recombinant proteins and glycoproteins. Trends in Biotechnology 
1988, 6:140-147.
<LI>Weissenbach J, Gyapay G, Dib C, Vignal J, Morissette J, 
Millasseau P, Vaysseix G, Lathrop M: A second generation linkage 
map of the human genome. Nature 1992, 359:794-801.
<LI>Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, 
Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie 
WR, Venter JC: Complementary DNA sequencing: expressed sequence 
tags and human genome project. Science 1991, 252:1651-1656.
<LI>Lehrach H, Drmanac R, Hoheisel J, Larin Z, Lennon G, Monaco AP, 
Nizetic D, Zehetner G, Poustka A: Hybridization fingerprinting in 
genome mapping and sequencing. In Genome Analysis Volume 1: 
Genetic and Physical Mapping. Cold Spring Harbor Laboratory Press; 
1990:39-81 .
<LI>Akrigg D, Bleasby AJ, Dix NIM, Findlay JBC, North ACT, Parry-
Smith D, Wootton JC, Blundell TI, Gardner SP, Hayes F, Sternberg 
MJE, Thornton JM, Tickle IJ, Murray-Rust P: A protein 
sequence/structure database. Nature 1988, 335:745-746.
<LI>Bleasby AJ, Wootton JC: Construction of validated, non-
redundant composite protein databases. Protein Engineering 1990, 
3:153-159.
</ol>
<H2>
    Warnings
</H2>
None.
<H2>
    Diagnostic Error Messages
</H2>
None.
<H2>
    Exit status
</H2>
It always exits with status 0.
<H2>
    Known bugs
</H2>
None.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th>
<th>Description</th></tr>
<tr>
<td><a href="backtranambig.html">backtranambig</a></td>
<td>Back-translate a protein sequence to ambiguous nucleotide sequence</td>
</tr>
<tr>
<td><a href="backtranseq.html">backtranseq</a></td>
<td>Back-translate a protein sequence to a nucleotide sequence</td>
</tr>
<tr>
<td><a href="compseq.html">compseq</a></td>
<td>Calculate the composition of unique words in sequences</td>
</tr>
<tr>
<td><a href="freak.html">freak</a></td>
<td>Generate residue/base frequency table or plot</td>
</tr>
<tr>
<td><a href="mwcontam.html">mwcontam</a></td>
<td>Find weights common to multiple molecular weights files</td>
</tr>
<tr>
<td><a href="mwfilter.html">mwfilter</a></td>
<td>Filter noisy data from molecular weights file</td>
</tr>
<tr>
<td><a href="oddcomp.html">oddcomp</a></td>
<td>Identify proteins with specified sequence word composition</td>
</tr>
<tr>
<td><a href="pepdigest.html">pepdigest</a></td>
<td>Report on protein proteolytic enzyme or reagent cleavage sites</td>
</tr>
<tr>
<td><a href="pepinfo.html">pepinfo</a></td>
<td>Plot amino acid properties of a protein sequence in parallel</td>
</tr>
<tr>
<td><a href="pepstats.html">pepstats</a></td>
<td>Calculate statistics of protein properties</td>
</tr>
<tr>
<td><a href="wordcount.html">wordcount</a></td>
<td>Count and extract unique words in molecular sequence(s)</td>
</tr>
</table>
<H2>
    Author(s)
</H2>
Alan Bleasby 
<br>
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
<p>
Please report all bugs to the EMBOSS bug team (emboss-bug © emboss.open-bio.org) not to the original author.
<H2>
    History
</H2>
Written (Sept 2000) - Alan Bleasby.
<H2>
    Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
    Comments
</H2>
None
</BODY>
</HTML>
 |