1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
|
seqret
Wiki
The master copies of EMBOSS documentation are available at
http://emboss.open-bio.org/wiki/Appdocs on the EMBOSS Wiki.
Please help by correcting and extending the Wiki pages.
Function
Read and write (return) sequences
Description
seqret reads in one or more sequences and writes them out again. The
sequence input may be a literal sequence or read from a database, file,
file of sequence names, or even the command-line or the output of
another programs. The sequence output can be written to screen, to
file, or passed to another program. A wide range of standard sequence
formats may be specified for input and output. If you don't specify the
input format, seqret will try a set of possible formats until it reads
it in successfully. The sequence input and output, as for all EMBOSS
programs, is described by a Uniform Sequence Address. This is is a very
flexible way of specifying one or more sequences from a variety of
sources and includes sequence files, database queries and external
applications.
There are many options built-in into EMBOSS for detailed specification
of the input and output sequences, for example the sequence type, file
format. specification of sequence regions by begin and end positions,
or generation of the reverse complement of a nucleic acid sequence. On
output seqret can change the case of the sequence to upper or to lower
case.
seqret is useful for a variety of tasks, including extracting sequences
from databases, displaying sequences, reformatting sequences, producing
the reverse complement of a sequence, extracting fragments of a
sequence, sequence case conversion or any combination of the above
functions.
Usage
Here is a sample session with seqret
Extract an entry from a database and write it to a file:
% seqret
Read and write (return) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]:
Go to the input files for this example
Go to the output files for this example
Example 2
Read all entries in the database 'tembl' that start with 'ab' and write
them to a file. In this example the specification is all done in the
command line and to stop Unix getting confused by the '*' character, it
has to have a backslash ('\') before it:
% seqret "tembl:ab*" aball.seq
Read and write (return) sequences
Go to the output files for this example
Example 3
seqret does not read in features by default because this results in
slightly faster performance. If however you wish to read in features
with your sequence and write them out on output, using '-feature' will
change the default behaviour to use any features present in the
sequence. N.B. use embl format for the output file as the default
format 'fasta' reports the features in gff (file "<seqname>.gff")
% seqret -feature
Read and write (return) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]: embl::x65923.embl
Go to the output files for this example
Example 4
Display the contents of the sequence on the screen:
% seqret
Read and write (return) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]: stdout
>X65923 X65923.1 H.sapiens fau mRNA
ttcctctttctcgactccatcttcgcggtagctgggaccgccgttcagtcgccaatatgc
agctctttgtccgcgcccaggagctacacaccttcgaggtgaccggccaggaaacggtcg
cccagatcaaggctcatgtagcctcactggagggcattgccccggaagatcaagtcgtgc
tcctggcaggcgcgcccctggaggatgaggccactctgggccagtgcggggtggaggccc
tgactaccctggaagtagcaggccgcatgcttggaggtaaagttcatggttccctggccc
gtgctggaaaagtgagaggtcagactcctaaggtggccaaacaggagaagaagaagaaga
agacaggtcgggctaagcggcggatgcagtacaaccggcgctttgtcaacgttgtgccca
cctttggcaagaagaagggccccaatgccaactcttaagtcttttgtaattctggctttc
tctaataaaaaagccacttagttcagtcaaaaaaaaaa
Example 5
Write the result in GCG format by using the qualifier '-osformat'.
% seqret -osf gcg
Read and write (return) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.gcg]:
Go to the output files for this example
Example 6
Write the result in GCG format by specifying the format in the output
USA on the command line.
% seqret -outseq gcg::x65923.gcg
Read and write (return) sequences
Input (gapped) sequence(s): tembl:x65923
Example 7
Write the result in GCG format by specifying the format in the output
USA at the prompt.
% seqret
Read and write (return) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]: gcg::x65923.gcg
Example 8
Write the reverse-complement of a sequence:
% seqret -srev
Read and write (return) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]:
Go to the output files for this example
Example 9
Extract the bases between the positions starting at 5 and ending at 25:
% seqret -sbegin 5 -send 25
Read and write (return) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]:
Go to the output files for this example
Example 10
Extract the bases between the positions starting at 5 and ending at 5
bases before the end of the sequence:
% seqret -sbegin 5 -send -5
Read and write (return) sequences
Input (gapped) sequence(s): tembl:x65923
output sequence(s) [x65923.fasta]:
Go to the output files for this example
Example 11
Read all entries in the database 'tembl' that start with 'h' and write
them to a file:
% seqret
Read and write (return) sequences
Input (gapped) sequence(s): tembl:h*
output sequence(s) [h45989.fasta]: hall.seq
Go to the output files for this example
Command line arguments
Read and write (return) sequences
Version: EMBOSS:6.6.0.0
Standard (Mandatory) qualifiers:
[-sequence] seqall (Gapped) sequence(s) filename and optional
format, or reference (input USA)
[-outseq] seqoutall [.] Sequence set(s)
filename and optional format (output USA)
Additional (Optional) qualifiers: (none)
Advanced (Unprompted) qualifiers:
-feature boolean Use feature information
-firstonly boolean [N] Read one sequence and stop
Associated qualifiers:
"-sequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-scircular1 boolean Sequence is circular
-squick1 boolean Read id and sequence only
-sformat1 string Input sequence format
-iquery1 string Input query fields or ID list
-ioffset1 integer Input start position offset
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outseq" associated qualifiers
-osformat2 string Output seq format
-osextension2 string File name extension
-osname2 string Base file name
-osdirectory2 string Output directory
-osdbname2 string Database name to add
-ossingle2 boolean Separate file for each entry
-oufo2 string UFO features
-offormat2 string Features format
-ofname2 string Features file name
-ofdirectory2 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write first file to standard output
-filter boolean Read first file from standard input, write
first file to standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options and exit. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
-version boolean Report version number and exit
Input file format
seqret reads one or more nucleotide or protein sequences.
The input is a standard EMBOSS sequence query (also known as a 'USA').
Major sequence database sources defined as standard in EMBOSS
installations include srs:embl, srs:uniprot and ensembl
Data can also be read from sequence output in any supported format
written by an EMBOSS or third-party application.
The input format can be specified by using the command-line qualifier
-sformat xxx, where 'xxx' is replaced by the name of the required
format. The available format names are: gff (gff3), gff2, embl (em),
genbank (gb, refseq), ddbj, refseqp, pir (nbrf), swissprot (swiss, sw),
dasgff and debug.
See: http://emboss.sf.net/docs/themes/SequenceFormats.html for further
information on sequence formats.
Input files for usage example
'tembl:x65923' is a sequence entry in the example nucleic acid database
'tembl'
Database entry: tembl:x65923
ID X65923; SV 1; linear; mRNA; STD; HUM; 518 BP.
XX
AC X65923;
XX
DT 13-MAY-1992 (Rel. 31, Created)
DT 18-APR-2005 (Rel. 83, Last updated, Version 11)
XX
DE H.sapiens fau mRNA
XX
KW fau gene.
XX
OS Homo sapiens (human)
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC Homo.
XX
RN [1]
RP 1-518
RA Michiels L.M.R.;
RT ;
RL Submitted (29-APR-1992) to the INSDC.
RL L.M.R. Michiels, University of Antwerp, Dept of Biochemistry,
RL Universiteisplein 1, 2610 Wilrijk, BELGIUM
XX
RN [2]
RP 1-518
RX PUBMED; 8395683.
RA Michiels L., Van der Rauwelaert E., Van Hasselt F., Kas K., Merregaert J.;
RT "fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as
RT an antisense sequence in the Finkel-Biskis-Reilly murine sarcoma virus";
RL Oncogene 8(9):2537-2546(1993).
XX
DR Ensembl-Gn; ENSG00000149806; Homo_sapiens.
DR Ensembl-Tr; ENST00000279259; Homo_sapiens.
DR Ensembl-Tr; ENST00000434372; Homo_sapiens.
DR Ensembl-Tr; ENST00000525297; Homo_sapiens.
DR Ensembl-Tr; ENST00000526555; Homo_sapiens.
DR Ensembl-Tr; ENST00000527548; Homo_sapiens.
DR Ensembl-Tr; ENST00000529259; Homo_sapiens.
DR Ensembl-Tr; ENST00000529639; Homo_sapiens.
DR Ensembl-Tr; ENST00000531743; Homo_sapiens.
XX
FH Key Location/Qualifiers
FH
FT source 1..518
FT /organism="Homo sapiens"
FT /chromosome="11q"
FT /map="13"
FT /mol_type="mRNA"
FT /clone_lib="cDNA"
FT /clone="pUIA 631"
FT /tissue_type="placenta"
FT /db_xref="taxon:9606"
FT misc_feature 57..278
FT /note="ubiquitin like part"
FT CDS 57..458
FT /gene="fau"
FT /db_xref="GDB:135476"
FT /db_xref="GOA:P35544"
FT /db_xref="GOA:P62861"
FT /db_xref="H-InvDB:HIT000322806.14"
FT /db_xref="HGNC:3597"
FT /db_xref="InterPro:IPR000626"
FT /db_xref="InterPro:IPR006846"
FT /db_xref="InterPro:IPR019954"
FT /db_xref="InterPro:IPR019955"
FT /db_xref="InterPro:IPR019956"
FT /db_xref="PDB:2L7R"
FT /db_xref="UniProtKB/Swiss-Prot:P35544"
FT /db_xref="UniProtKB/Swiss-Prot:P62861"
FT /protein_id="CAA46716.1"
FT /translation="MQLFVRAQELHTFEVTGQETVAQIKAHVASLEGIAPEDQVVLLAG
FT APLEDEATLGQCGVEALTTLEVAGRMLGGKVHGSLARAGKVRGQTPKVAKQEKKKKKTG
FT RAKRRMQYNRRFVNVVPTFGKKKGPNANS"
FT misc_feature 98..102
FT /note="nucleolar localization signal"
FT misc_feature 279..458
FT /note="S30 part"
FT polyA_signal 484..489
FT polyA_site 509
XX
SQ Sequence 518 BP; 125 A; 139 C; 148 G; 106 T; 0 other;
ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc gccaatatgc 60
agctctttgt ccgcgcccag gagctacaca ccttcgaggt gaccggccag gaaacggtcg 120
cccagatcaa ggctcatgta gcctcactgg agggcattgc cccggaagat caagtcgtgc 180
tcctggcagg cgcgcccctg gaggatgagg ccactctggg ccagtgcggg gtggaggccc 240
tgactaccct ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc 300
gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag aagaagaaga 360
agacaggtcg ggctaagcgg cggatgcagt acaaccggcg ctttgtcaac gttgtgccca 420
cctttggcaa gaagaagggc cccaatgcca actcttaagt cttttgtaat tctggctttc 480
tctaataaaa aagccactta gttcagtcaa aaaaaaaa 518
//
Output file format
The output is a standard EMBOSS sequence file.
The results can be output in one of several styles by using the
command-line qualifier -osformat xxx, where 'xxx' is replaced by the
name of the required format. The available format names are: embl,
genbank, gff, pir, swiss, dasgff, debug, listfile, dbmotif, diffseq,
excel, feattable, motif, nametable, regions, seqtable, simple, srs,
table, tagseq.
See: http://emboss.sf.net/docs/themes/SequenceFormats.html for further
information on sequence formats.
The output from seqret is one or more sequences, and by default will be
written in FASTA format.
If the '-firstonly' qualifier is used then only the first sequence of
the input USA specification will be written out.
In some cases the output filename will be the same as the input
filename, but as seqret reads only the first sequence before opening
the output file it may try to overwrite the input. Note that this is
not true of seqretset which reads all sequences into memory at startup,
but which can need a large amount of memory for many sequences.
Output files for usage example
File: x65923.fasta
>X65923 X65923.1 H.sapiens fau mRNA
ttcctctttctcgactccatcttcgcggtagctgggaccgccgttcagtcgccaatatgc
agctctttgtccgcgcccaggagctacacaccttcgaggtgaccggccaggaaacggtcg
cccagatcaaggctcatgtagcctcactggagggcattgccccggaagatcaagtcgtgc
tcctggcaggcgcgcccctggaggatgaggccactctgggccagtgcggggtggaggccc
tgactaccctggaagtagcaggccgcatgcttggaggtaaagttcatggttccctggccc
gtgctggaaaagtgagaggtcagactcctaaggtggccaaacaggagaagaagaagaaga
agacaggtcgggctaagcggcggatgcagtacaaccggcgctttgtcaacgttgtgccca
cctttggcaagaagaagggccccaatgccaactcttaagtcttttgtaattctggctttc
tctaataaaaaagccacttagttcagtcaaaaaaaaaa
Output files for usage example 2
File: aball.seq
>AB009602 AB009602.1 Schizosaccharomyces pombe mRNA for MET1 homolog, partial cd
s.
gttcgatgcctaaaataccttcttttgtccctacacagaccacagttttcctaatggctt
tacaccgactagaaattcttgtgcaagcactaattgaaagcggttggcctagagtgttac
cggtttgtatagctgagcgcgtctcttgccctgatcaaaggttcattttctctactttgg
aagacgttgtggaagaatacaacaagtacgagtctctcccccctggtttgctgattactg
gatacagttgtaatacccttcgcaacaccgcgtaactatctatatgaattattttccctt
tattatatgtagtaggttcgtctttaatcttcctttagcaagtcttttactgttttcgac
ctcaatgttcatgttcttaggttgttttggataatatgcggtcagtttaatcttcgttgt
ttcttcttaaaatatttattcatggtttaatttttggtttgtacttgttcaggggccagt
tcattatttactctgtttgtatacagcagttcttttatttttagtatgattttaatttaa
aacaattctaatggtcaaaaa
>AB000095 AB000095.1 Homo sapiens mRNA for hepatocyte growth factor activator in
hibitor, complete cds.
cggccgagcccagctctccgagcaccgggtcggaagccgcgacccgagccgcgcaggaag
ctgggaccggaacctcggcggacccggccccacccaactcacctgcgcaggtcaccagca
ccctcggaacccagaggcccgcgctctgaaggtgacccccctggggaggaaggcgatggc
ccctgcgaggacgatggcccgcgcccgcctcgccccggccggcatccctgccgtcgcctt
gtggcttctgtgcacgctcggcctccagggcacccaggccgggccaccgcccgcgccccc
tgggctgcccgcgggagccgactgcctgaacagctttaccgccggggtgcctggcttcgt
gctggacaccaacgcctcggtcagcaacggagctaccttcctggagtcccccaccgtgcg
ccggggctgggactgcgtgcgcgcctgctgcaccacccagaactgcaacttggcgctagt
ggagctgcagcccgaccgcggggaggacgccatcgccgcctgcttcctcatcaactgcct
ctacgagcagaacttcgtgtgcaagttcgcgcccagggagggcttcatcaactacctcac
gagggaagtgtaccgctcctaccgccagctgcggacccagggctttggagggtctgggat
ccccaaggcctgggcaggcatagacttgaaggtacaaccccaggaacccctggtgctgaa
ggatgtggaaaacacagattggcgcctactgcggggtgacacggatgtcagggtagagag
gaaagacccaaaccaggtggaactgtggggactcaaggaaggcacctacctgttccagct
gacagtgactagctcagaccacccagaggacacggccaacgtcacagtcactgtgctgtc
caccaagcagacagaagactactgcctcgcatccaacaaggtgggtcgctgccggggctc
tttcccacgctggtactatgaccccacggagcagatctgcaagagtttcgtttatggagg
ctgcttgggcaacaagaacaactaccttcgggaagaagagtgcattctagcctgtcgggg
tgtgcaaggcccctccatggaaaggcgccatccagtgtgctctggcacctgtcagcccac
ccagttccgctgcagcaatggctgctgcatcgacagtttcctggagtgtgacgacacccc
caactgccccgacgcctccgacgaggctgcctgtgaaaaatacacgagtggctttgacga
gctccagcgcatccatttccccagtgacaaagggcactgcgtggacctgccagacacagg
actctgcaaggagagcatcccgcgctggtactacaaccccttcagcgaacactgcgcccg
ctttacctatggtggttgttatggcaacaagaacaactttgaggaagagcagcagtgcct
cgagtcttgtcgcggcatctccaagaaggatgtgtttggcctgaggcgggaaatccccat
tcccagcacaggctctgtggagatggctgtcgcagtgttcctggtcatctgcattgtggt
ggtggtagccatcttgggttactgcttcttcaagaaccagagaaaggacttccacggaca
ccaccaccacccaccacccacccctgccagctccactgtctccactaccgaggacacgga
gcacctggtctataaccacaccacccggcccctctgagcctgggtctcaccggctctcac
ctggccctgcttcctgcttgccaaggcagaggcctgggctgggaaaaactttggaaccag
actcttgcctgtttcccaggcccactgtgcctcagagaccagggctccagcccctcttgg
agaagtctcagctaagctcacgtcctgagaaagctcaaaggtttggaaggagcagaaaac
ccttgggccagaagtaccagactagatggacctgcctgcataggagtttggaggaagttg
gagttttgtttcctctgttcaaagctgcctgtccctaccccatggtgctaggaagaggag
tggggtggtgtcagaccctggaggccccaaccctgtcctcccgagctcctcttccatgct
gtgcgcccagggctgggaggaaggacttccctgtgtagtttgtgctgtaaagagttgctt
tttgtttatttaatgctgtggcatgggtgaagaggaggggaagaggcctgtttggcctct
ctgtcctctcttcctcttcccccaagattgagctctctgcccttgatcagccccaccctg
[Part of this file has been deleted for brevity]
ccttgtcaggcggaagggcatcaacggcgggcttctcccgctgggcctgagcccgttgat
ctccccaagctgcaagcgaaccttgcgggtcaaggtcgagggcaatcacggattcccctg
cctctgtggccgcgacggcaatggcagcagcgagggtagtttttcccgcgccgcccttct
gcgtgaccagagcaattgtcttcatgcctgcactatagcattaaggcactaaagcgtcaa
agcgccatagcggcatagcggcatagcggcatagcgctaaaatgctatagcattattaaa
tacagcgctacagcgctataatgctgcaacggttaggaccgcaatttgcgccccgggccg
gttgcgctatcgaccagctcaattaactgctcgggctcggacgcgaaccacgcgaagctg
ccccaagccaaggagtcgagggagccacggttgatgagagctttgttgtaggtggaccag
ttggtgattttgaacttttgctttgccacggaacggtctgcgttgtcgggaagatgcgtg
atctgatccttcaactcagcaaaagttcgatttattcaacaaagccacgttgtgtctcaa
aatctctgatgttacattgcacaagataaaaatatatcatcatgaacaataaaactgtct
gcttacataaacagtaatacaaggggtgttatgagccatattcaacgggaaacgtcttgc
tcgaagccgcgattaaattccaacatggatgctgatttatatgggtataaatgggctcgc
gataatgtcgggcaatcaggtgcgacaatctatcgattgtatgggaagcccgatgcgcca
gagttgtttctgaaacatggcaaaggtagcgttgccaatgatgttacagatgagatggtc
agactaaactggctgacggaatttatgcctcttccgaccatcaagcattttatccgtact
cctgatgatgcatggttactcaccactgcgatccccgggaaaacagcattccaggtatta
gaagaatatcctgattcaggtgaaaatattgttgatgcgctggcagtgttcctgcgccgg
ttgcattcgattcctgtttgtaattgtccttttaacagcgatcgcgtatttcgtctcgct
caggcgcaatcacgaatgaataacggtttggttgatgcgagtgattttgatgacgagcgt
aatggctggcctgttgaacaagtctggaaagaaatgcataagcttttgccattctcaccg
gattcagtcgtcactcatggtgatttctcacttgataaccttatttttgacgaggggaaa
ttaataggttgtattgatgttggacgagtcggaatcgcagaccgataccaggatcttgcc
atcctatggaactgcctcggtgagttttctccttcattacagaaacggctttttcaaaaa
tatggtattgataatcctgatatgaataaattgcagtttcatttgatgctcgatgagttt
ttctaatcagaattggttaattggttgtaacactggcagagcattacgctgacttgacgg
gacggcggctttgttgaataaatcgcattcgccattcaggctgcgcaactgttgggaagg
gcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaag
gcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccag
tgccaagcttgcatgcctgcaggtcgactctagaggatccccgggtaccgagctcgaatt
cgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacaca
acatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactca
cattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgc
attaatgaatcggccaacgcgcggggagaggcggtttgcgtattggcgaacttttgctga
gttgaaggatcagatcacgcatcttcccgacaacgcagaccgttccgtggcaaagcaaaa
gttcaaaatcagtaaccgtcagtgccgataagttcaaagttaaacctggtgttgatacca
acattgaaacgctgatcgaaaacgcgctgaaaaacgctgctgaatgtgcgagcttcttcc
gcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagct
cactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatg
tgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttc
cataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcga
aacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctct
cctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtg
gcgctttctcaatgctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaag
ctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactat
cgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaac
aggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaac
tacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttc
ggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttt
tttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatc
ttttctacggggtctgacgctcagtggaacgatccgtcga
Output files for usage example 3
File: x65923.embl
ID X65923; SV 1; linear; mRNA; STD; HUM; 518 BP.
XX
AC X65923;
XX
DT 13-MAY-1992 (Rel. 31, Created)
DT 18-APR-2005 (Rel. 83, Last updated, Version 11)
XX
DE H.sapiens fau mRNA
XX
KW fau gene.
XX
OS Homo sapiens (human)
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC Homo.
XX
RN [1]
RP 1-518
RA Michiels L.M.R.;
RT ;
RL Submitted (29-APR-1992) to the INSDC.
RL L.M.R. Michiels, University of Antwerp, Dept of Biochemistry,
RL Universiteisplein 1, 2610 Wilrijk, BELGIUM.
XX
RN [2]
RP 1-518
RX PUBMED; 8395683.
RA Michiels L., Van der Rauwelaert E., Van Hasselt F., Kas K., Merregaert J.;
RT "fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as
RT an antisense sequence in the Finkel-Biskis-Reilly murine sarcoma virus";
RL Oncogene 8(9):2537-2546(1993).
XX
DR Ensembl-Gn; ENSG00000149806; Homo_sapiens.
DR Ensembl-Tr; ENST00000279259; Homo_sapiens.
DR Ensembl-Tr; ENST00000434372; Homo_sapiens.
DR Ensembl-Tr; ENST00000525297; Homo_sapiens.
DR Ensembl-Tr; ENST00000526555; Homo_sapiens.
DR Ensembl-Tr; ENST00000527548; Homo_sapiens.
DR Ensembl-Tr; ENST00000529259; Homo_sapiens.
DR Ensembl-Tr; ENST00000529639; Homo_sapiens.
DR Ensembl-Tr; ENST00000531743; Homo_sapiens.
XX
FH Key Location/Qualifiers
FH
FT source 1..518
FT /organism="Homo sapiens"
FT /chromosome="11q"
FT /map="13"
FT /mol_type="mRNA"
FT /clone_lib="cDNA"
FT /clone="pUIA 631"
FT /tissue_type="placenta"
FT /db_xref="taxon:9606"
FT misc_feature 57..278
FT /note="ubiquitin like part"
FT CDS 57..458
FT /gene="fau"
FT /db_xref="GDB:135476"
FT /db_xref="GOA:P35544"
FT /db_xref="GOA:P62861"
FT /db_xref="H-InvDB:HIT000322806.14"
FT /db_xref="HGNC:3597"
FT /db_xref="InterPro:IPR000626"
FT /db_xref="InterPro:IPR006846"
FT /db_xref="InterPro:IPR019954"
FT /db_xref="InterPro:IPR019955"
FT /db_xref="InterPro:IPR019956"
FT /db_xref="PDB:2L7R"
FT /db_xref="UniProtKB/Swiss-Prot:P35544"
FT /db_xref="UniProtKB/Swiss-Prot:P62861"
FT /protein_id="CAA46716.1"
FT /translation="MQLFVRAQELHTFEVTGQETVAQIKAHVASLEGIAPEDQVVLLAG
FT APLEDEATLGQCGVEALTTLEVAGRMLGGKVHGSLARAGKVRGQTPKVAKQEKKKKKTG
FT RAKRRMQYNRRFVNVVPTFGKKKGPNANS"
FT misc_feature 98..102
FT /note="nucleolar localization signal"
FT misc_feature 279..458
FT /note="S30 part"
FT polyA_signal 484..489
FT polyA_site 509
XX
SQ Sequence 518 BP; 125 A; 139 C; 148 G; 106 T; 0 other;
ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc gccaatatgc 60
agctctttgt ccgcgcccag gagctacaca ccttcgaggt gaccggccag gaaacggtcg 120
cccagatcaa ggctcatgta gcctcactgg agggcattgc cccggaagat caagtcgtgc 180
tcctggcagg cgcgcccctg gaggatgagg ccactctggg ccagtgcggg gtggaggccc 240
tgactaccct ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc 300
gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag aagaagaaga 360
agacaggtcg ggctaagcgg cggatgcagt acaaccggcg ctttgtcaac gttgtgccca 420
cctttggcaa gaagaagggc cccaatgcca actcttaagt cttttgtaat tctggctttc 480
tctaataaaa aagccactta gttcagtcaa aaaaaaaa 518
//
Output files for usage example 5
File: x65923.gcg
!!NA_SEQUENCE 1.0
H.sapiens fau mRNA
X65923 Length: 518 Type: N Check: 2981 ..
1 ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc
51 gccaatatgc agctctttgt ccgcgcccag gagctacaca ccttcgaggt
101 gaccggccag gaaacggtcg cccagatcaa ggctcatgta gcctcactgg
151 agggcattgc cccggaagat caagtcgtgc tcctggcagg cgcgcccctg
201 gaggatgagg ccactctggg ccagtgcggg gtggaggccc tgactaccct
251 ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc
301 gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag
351 aagaagaaga agacaggtcg ggctaagcgg cggatgcagt acaaccggcg
401 ctttgtcaac gttgtgccca cctttggcaa gaagaagggc cccaatgcca
451 actcttaagt cttttgtaat tctggctttc tctaataaaa aagccactta
501 gttcagtcaa aaaaaaaa
Output files for usage example 8
File: x65923.fasta
>X65923 X65923.1 H.sapiens fau mRNA
ttttttttttgactgaactaagtggcttttttattagagaaagccagaattacaaaagac
ttaagagttggcattggggcccttcttcttgccaaaggtgggcacaacgttgacaaagcg
ccggttgtactgcatccgccgcttagcccgacctgtcttcttcttcttcttctcctgttt
ggccaccttaggagtctgacctctcacttttccagcacgggccagggaaccatgaacttt
acctccaagcatgcggcctgctacttccagggtagtcagggcctccaccccgcactggcc
cagagtggcctcatcctccaggggcgcgcctgccaggagcacgacttgatcttccggggc
aatgccctccagtgaggctacatgagccttgatctgggcgaccgtttcctggccggtcac
ctcgaaggtgtgtagctcctgggcgcggacaaagagctgcatattggcgactgaacggcg
gtcccagctaccgcgaagatggagtcgagaaagaggaa
Output files for usage example 9
File: x65923.fasta
>X65923 X65923.1 H.sapiens fau mRNA
tctttctcgactccatcttcg
Output files for usage example 10
File: x65923.fasta
>X65923 X65923.1 H.sapiens fau mRNA
tctttctcgactccatcttcgcggtagctgggaccgccgttcagtcgccaatatgcagct
ctttgtccgcgcccaggagctacacaccttcgaggtgaccggccaggaaacggtcgccca
gatcaaggctcatgtagcctcactggagggcattgccccggaagatcaagtcgtgctcct
ggcaggcgcgcccctggaggatgaggccactctgggccagtgcggggtggaggccctgac
taccctggaagtagcaggccgcatgcttggaggtaaagttcatggttccctggcccgtgc
tggaaaagtgagaggtcagactcctaaggtggccaaacaggagaagaagaagaagaagac
aggtcgggctaagcggcggatgcagtacaaccggcgctttgtcaacgttgtgcccacctt
tggcaagaagaagggccccaatgccaactcttaagtcttttgtaattctggctttctcta
ataaaaaagccacttagttcagtcaaaaaa
Output files for usage example 11
File: hall.seq
>H45989 H45989.1 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone
IMAGE:177794 3', mRNA sequence.
ccggnaagctcancttggaccaccgactctcgantgnntcgccgcgggagccggntggan
aacctgagcgggactggnagaaggagcagagggaggcagcacccggcgtgacggnagtgt
gtggggcactcaggccttccgcagtgtcatctgccacacggaaggcacggccacgggcag
gggggtctatgatcttctgcatgcccagctggcatggccccacgtagagtggnntggcgt
ctcggtgctggtcagcgacacgttgtcctggctgggcaggtccagctcccggaggacctg
gggcttcagcttcccgtagcgctggctgcagtgacggatgctcttgcgctgccatttctg
ggtgctgtcactgtccttgctcactccaaaccagttcggcggtccccctgcggatggtct
gtgttgatggacgtttgggctttgcagcaccggccgccgagttcatggtngggtnaagag
atttgggttttttcn
Data files
None.
Notes
This description of what you can do when reading or writing files is
not specific to the program seqret. All EMBOSS programs that read or
write sequences can do the same.
seqret is often one of the first programs taught in EMBOSS training
courses. This is because it is versatile, it is extremely powerful for
its size (17 lines of code) it illustrates many aspects of EMBOSS
programs and it was one of the first EMBOSS programs to be written, so
it has a special place in the hearts of EMBOSS developers.
The name 'seqret' derives both from its function ("sequence return")
and from the fact that immense amounts of functionality can come from
so few lines of source code - most of the work is done by the EMBOSS
libraries which the program calls and whose complexity is hidden, or
"secret".
The simplicity of the above description of this program greatly
understates the rich functionality of this program.
Because EMBOSS programs can take a wide range of qualifiers that
slightly change the behaviour of the program when reading or writing a
sequence, this program can do many more things than simply "read and
write a sequence".
seqret can read a sequence or many sequences from databases, files,
files of sequence names, the command-line or the output of other
programs and then can write them to files, the screen or pass them to
other programs. Because it can read in a sequence from a database and
write it to a file, seqret is a program for extracting sequences from
databases. Because it can write the sequence to the screen, seqret is a
program for displaying sequences.
seqret can read sequences in any of a wide range of standard sequence
formats. You can specify the input and output formats being used. If
you don't specify the input format, seqret will try a set of possible
formats until it reads it in successfully. Because you can specify the
output sequence format, seqret is a program to reformat a sequence.
seqret can read in the reverse complement of a nucleic acid sequence.
It therefore is a program for producing the reverse complement of a
sequence.
seqret can read in a sequence whose begin and end positions you have
specified and write out that fragment. It is therefore a utility for
doing simple extraction of a region of a sequence.
seqret can change the case of the sequence being read in to upper or to
lower case. It is therefore a simple sequence beautification utility.
seqret can do any combination of the above functions.
The sequence input and output specification of this (and many other
EMBOSS programs) is described as being a Uniform Sequence Address.
The Uniform Sequence Address, or USA, is a somewhat tongue-in-cheek
reference to a URL-style sequence naming used by all EMBOSS
applications.
The USA is a very flexible way of specifying one or more sequences from
a variety of sources and includes sequence files, database queries and
external applications.
See the full specification of USA syntax at:
http://emboss.sourceforge.net/docs/themes/UniformSequenceAddress.html
The basic USA syntax is one of:
* "file"
* "file:entry"
* "format::file"
* "format::file:entry"
* "database:entry"
* "database"
* "@file"
Note that ':' separates the name of a file containing many possible
entries from the specific name of a sequence entry in that file. It
also separates the name of a database from an entry in that database
Note also that '::' separates the specified format of a file from the
name of the file. Normally the format can be omitted, in which case the
program will attempt to identify the correct format when reading the
sequence in and will default to using FASTA format when writing the
sequence out.
Valid names of the databases set up in your local implementation of
EMBOSS can be seen by using the program 'showdb'.
Database queries, and individual entries in files that have more than
one sequence entry, use wildcards of "?" for any character and "*" for
any string of characters. There are some problems with the Unix shell
catching these characters so they do need to be hidden in quotes or
preceded by a backslash on the Unix command line, (for example
"embl:hs\*")
The output USA name 'stdout' is special. It makes the output go to the
device 'standard output'. This is the screen, by default.
Example USAs
The following are valid USAs for sequences:
USA Description
xxx.seq A sequence file "xxx.seq" in any format
fasta::xxx.seq A sequence file "xxx.seq" in fasta format
gcg::egmsmg.gcg A sequence file "egmsmg.gcg" in GCG 9 format
egmsmg.gcg -sformat=gcg A sequence file "egmsmg.gcg" in GCG 9 format
embl::x13776.em A sequence file "x13776.em" in EMBL format
embl:x13776 EMBL entry X13776, using whatever access method is defined
locally for the EMBL database
embl:K01793 EMBL entry K01793, using whatever access method is defined
locally for the EMBL database and searching by accession number and
entry name (K01793 is a secondary accession number in this case for
entry J01636)
embl-acc:K01793 EMBL entry X13776, using whatever access method is
defined locally for the EMBL database and searching by accession number
only
embl-id:x13776 EMBL entry x13776, using whatever access method is
defined locally for the EMBL database, and searching by ID only
embl:v0029* EMBL entries V00290, V00291, and so on, usually in
alphabetical order, using whatever access method is defined locally for
the EMBL database
embl or EMBL:* All sequences in the EMBL database
@mylist Reads file mylist and uses each line as a separate USA. This is
standard VMS list file syntax, also used in SRS 4.0 but missing in SRS
5.0 onwards. The list file is a list of USAs (one per line). List files
can contain references to other lists files or any other standard USA.
list::mylist Same as "@mylist" above
'getz -e [embl-id:x13776] |' The pipe character "|" causes EMBOSS to
fire up getz (SRS) to extract entry x13776 from EMBL in EMBL format.
Any application or script which writes one or more sequences to stdout
can be used in this way.
asis::atacgcagttatctgaccat So far the shortest USA we could invent. In
'asis' format the name is the sequence so no file needs to be opened.
This is a special case. It was intended as a joke, but has proved quite
useful for generating command lines when testing.
Input sequence formats
The input is a standard EMBOSS sequence query (also known as a 'USA').
Major sequence database sources defined as standard in EMBOSS
installations include srs:embl, srs:uniprot and ensembl
Data can also be read from sequence output in any supported format
written by an EMBOSS or third-party application.
The input format can be specified by using the command-line qualifier
-sformat xxx, where 'xxx' is replaced by the name of the required
format. The available format names are: gff (gff3), gff2, embl (em),
genbank (gb, refseq), ddbj, refseqp, pir (nbrf), swissprot (swiss, sw),
dasgff and debug.
See: http://emboss.sf.net/docs/themes/SequenceFormats.html for further
information on sequence formats.
Output sequence formats
The output is a standard EMBOSS sequence file.
The results can be output in one of several styles by using the
command-line qualifier -osformat xxx, where 'xxx' is replaced by the
name of the required format. The available format names are: embl,
genbank, gff, pir, swiss, dasgff, debug, listfile, dbmotif, diffseq,
excel, feattable, motif, nametable, regions, seqtable, simple, srs,
table, tagseq.
See: http://emboss.sf.net/docs/themes/SequenceFormats.html for further
information on sequence formats.
Future directions
More formats, both for input and for output, can be easily added, so
suggestions are always welcome.
Associated qualifiers
As noted previously there are many 'associated' qualifiers that alter
the behaviour of seqret when it reads in or writes out a sequence. As
these are used in all EMBOSS programs that read in or write out
sequences, they are not reported by the '-help' qualifier. They are
however reported by the pair of qualifiers: '-help -verbose':
Some of the more useful associated qualifiers are:
Qualifier Description
-sbegin The first position to be used in the sequence
-send The last position to be used in the sequence
-sreverse Use the reverse complement of a nucleic acid sequence
-sask Ask the user for begin/end/reverse information
-slower Convert the sequence to lower case
-supper Convert the sequence to upper case
-sformat Specify the input sequence format
-osformat Specify the output sequence format
-ossingle Write each entry into a separate file
The set of associated qualifiers for sequences behave in different ways
depending on where they appear.
If these qualifiers immediately follow a parameter they apply only to
that parameter and not to all cases. If they occur before any
parameters, they apply to all following sequence parameters.
If there are no two parameters of equal type, the order of parameters
and their qualifiers is irrelevant.
Where a qualifier is defined more than once, for example "-sformat" for
2 input sequences to be aligned, the qualifier name can have a number
to indicate which sequence is meant. "-sbegin2=25" will apply only to
the second sequence, no matter where it appears on the command line.
The -sbegin and -send qualifiers take an integer number specifying the
position to begin or end reading a sequence. If the number is positive,
the number is the position counting from the first base or residue of
the sequence. If the number is negative the position is counted from
the end of the sequence, so position -1 is the last base or residue of
the sequence. (If -sbegin 0 is used, it is assumed to be the same as
-sbegin 1 and -send 0 is the same as -send -1.)
The filter qualifier makes the program behave like a filter, reading
its (first) input 'file' from the standard input, and writing its
(first) output 'file' to the standard output. The -filter qualifier
will also invoke the -auto qualifier, so the user is never prompted for
any missing values.
Example:
% cat sequence.seq | seqret -filter | lpr
The example shows the application seqret being run with the -filter
qualifier. The input file is 'piped' into the program using the unix
command cat and the output is 'piped' directly to the unix program lpr,
which will print it on the printer.
When the -options qualifier is used and not all the parameters are
given on the command line, it will query the user for those parameters.
It will not only query the user for the required parameters as it would
do without the -options qualifier, but it will also query the user for
the optional parameters.
When the -stdout qualifier is used, the user will still be prompted for
all the info that is required, but will write to standard output by
default. The user will also still be prompted for an output filename,
in case the user wants to save the output to a file.
References
None.
Warnings
None.
Diagnostic Error Messages
None.
Exit status
It always exits with a status of 0.
Known bugs
None.
See also
Program name Description
aligncopy Read and write alignments
aligncopypair Read and write pairs from alignments
biosed Replace or delete sequence sections
codcopy Copy and reformat a codon usage table
cutseq Remove a section from a sequence
degapseq Remove non-alphabetic (e.g. gap) characters from sequences
descseq Alter the name or description of a sequence
entret Retrieve sequence entries from flatfile databases and files
extractalign Extract regions from a sequence alignment
extractfeat Extract features from sequence(s)
extractseq Extract regions from a sequence
featcopy Read and write a feature table
featmerge Merge two overlapping feature tables
featreport Read and write a feature table
feattext Return a feature table original text
listor Write a list file of the logical OR of two sets of sequences
makenucseq Create random nucleotide sequences
makeprotseq Create random protein sequences
maskambignuc Mask all ambiguity characters in nucleotide sequences with
N
maskambigprot Mask all ambiguity characters in protein sequences with X
maskfeat Write a sequence with masked features
maskseq Write a sequence with masked regions
newseq Create a sequence file from a typed-in sequence
nohtml Remove mark-up (e.g. HTML tags) from an ASCII text file
noreturn Remove carriage return from ASCII files
nospace Remove whitespace from an ASCII text file
notab Replace tabs with spaces in an ASCII text file
notseq Write to file a subset of an input stream of sequences
nthseq Write to file a single sequence from an input stream of
sequences
nthseqset Read and write (return) one set of sequences from many
pasteseq Insert one sequence into another
revseq Reverse and complement a nucleotide sequence
seqcount Read and count sequences
seqretsetall Read and write (return) many sets of sequences
seqretsplit Read sequences and write them to individual files
sizeseq Sort sequences by size
skipredundant Remove redundant sequences from an input set
skipseq Read and write (return) sequences, skipping first few
splitsource Split sequence(s) into original source sequences
splitter Split sequence(s) into smaller sequences
trimest Remove poly-A tails from nucleotide sequences
trimseq Remove unwanted characters from start and end of sequence(s)
trimspace Remove extra whitespace from an ASCII text file
union Concatenate multiple sequences into a single sequence
vectorstrip Remove vectors from the ends of nucleotide sequence(s)
yank Add a sequence reference (a full USA) to a list file
Valid names of the databases set up in your local implementation of
EMBOSS can be seen by using the program 'showdb'.
Author(s)
Peter Rice
European Bioinformatics Institute, Wellcome Trust Genome Campus,
Hinxton, Cambridge CB10 1SD, UK
Please report all bugs to the EMBOSS bug team
(emboss-bug (c) emboss.open-bio.org) not to the original author.
History
1999 - Written by Peter Rice
Feb 2002 - '-feature' qualifier added by Peter Rice
Target users
This program is intended to be used by everyone and everything, from
naive users to embedded scripts.
Comments
Fasta output format
Question
When i tried to convert the EMBL format file into fasta format using
the program "seqret", I found that the Access.no appears twice...
>AF102796 AF102796 Homo sapiens alphaE-catenin (CTNNA1) gene, exon 11.
Answer
"It is not a bug ... it is a feature"
There are many "FASTA formats". EMBOSS uses the format that ACEDB and
the EBI genome projects use. The first field after the ID is the
accession number, so that accession numbers can be kept when sequences
are converted to FASTA format, without using the NCBI format (with '|'
characters in the IDs).
Your EMBL format file has IDs that look like accession numbers, so
EMBOSS fills in the accession number for each sequence, and reports it
in the FASTA format.
|