File: scene_grid_mesh.cpp

package info (click to toggle)
embree 3.12.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,412 kB
  • sloc: cpp: 173,822; xml: 3,737; ansic: 2,955; python: 1,628; sh: 480; makefile: 193; csh: 42
file content (260 lines) | stat: -rw-r--r-- 8,628 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "scene_grid_mesh.h"
#include "scene.h"

namespace embree
{
#if defined(EMBREE_LOWEST_ISA)

  GridMesh::GridMesh (Device* device)
    : Geometry(device,GTY_GRID_MESH,0,1)
  {
    vertices.resize(numTimeSteps);
  }

  void GridMesh::setMask (unsigned mask) 
  {
    this->mask = mask; 
    Geometry::update();
  }

  void GridMesh::setNumTimeSteps (unsigned int numTimeSteps)
  {
    vertices.resize(numTimeSteps);
    Geometry::setNumTimeSteps(numTimeSteps);
  }

  void GridMesh::setVertexAttributeCount (unsigned int N)
  {
    vertexAttribs.resize(N);
    Geometry::update();
  }
  
  void GridMesh::setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num)
  {
    /* verify that all accesses are 4 bytes aligned */
    if (((size_t(buffer->getPtr()) + offset) & 0x3) || (stride & 0x3)) 
      throw_RTCError(RTC_ERROR_INVALID_OPERATION, "data must be 4 bytes aligned");

    if (type == RTC_BUFFER_TYPE_VERTEX)
    {
      if (format != RTC_FORMAT_FLOAT3)
        throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex buffer format");

      /* if buffer is larger than 16GB the premultiplied index optimization does not work */
      if (stride*num > 16ll*1024ll*1024ll*1024ll)
        throw_RTCError(RTC_ERROR_INVALID_OPERATION, "vertex buffer can be at most 16GB large");

      if (slot >= vertices.size())
        throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid vertex buffer slot");

      vertices[slot].set(buffer, offset, stride, num, format);
      vertices[slot].checkPadding16();
      vertices0 = vertices[0];
    }
    else if (type == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE)
    {
      if (format < RTC_FORMAT_FLOAT || format > RTC_FORMAT_FLOAT16)
        throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex attribute buffer format");

      if (slot >= vertexAttribs.size())
        throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid vertex attribute buffer slot");
      
      vertexAttribs[slot].set(buffer, offset, stride, num, format);
      vertexAttribs[slot].checkPadding16();
    }
	else if (type == RTC_BUFFER_TYPE_GRID)
	{
		if (slot != 0)
			throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
		if (format != RTC_FORMAT_GRID)
			throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid index buffer format");

		grids.set(buffer, offset, stride, num, format);
		setNumPrimitives(num);
	}
    else 
      throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
  }

  void* GridMesh::getBuffer(RTCBufferType type, unsigned int slot)
  {
    if (type == RTC_BUFFER_TYPE_GRID)
    {
      if (slot != 0)
        throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
      return grids.getPtr();
    }
    else if (type == RTC_BUFFER_TYPE_VERTEX)
    {
      if (slot >= vertices.size())
        throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
      return vertices[slot].getPtr();
    }
    else if (type == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE)
    {
      if (slot >= vertexAttribs.size())
        throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
      return vertexAttribs[slot].getPtr();
    }
    else
    {
      throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
      return nullptr;
    }
  }

  void GridMesh::updateBuffer(RTCBufferType type, unsigned int slot)
  {
    if (type == RTC_BUFFER_TYPE_GRID)
    {
      if (slot != 0)
        throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
      grids.setModified();
    }
    else if (type == RTC_BUFFER_TYPE_VERTEX)
    {
      if (slot >= vertices.size())
        throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
      vertices[slot].setModified();
    }
    else if (type == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE)
    {
      if (slot >= vertexAttribs.size())
        throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "invalid buffer slot");
      vertexAttribs[slot].setModified();
    }
    else
    {
      throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown buffer type");
    }

    Geometry::update();
  }

  void GridMesh::commit()
  {
    /* verify that stride of all time steps are identical */
    for (unsigned int t=0; t<numTimeSteps; t++)
      if (vertices[t].getStride() != vertices[0].getStride())
        throw_RTCError(RTC_ERROR_INVALID_OPERATION,"stride of vertex buffers have to be identical for each time step");

    Geometry::commit();
  }
  
  void GridMesh::addElementsToCount (GeometryCounts & counts) const 
  {
    if (numTimeSteps == 1) counts.numGrids += numPrimitives;
    else                   counts.numMBGrids += numPrimitives;
  }

  bool GridMesh::verify() 
  {
    /*! verify size of vertex arrays */
    if (vertices.size() == 0) return false;
    for (const auto& buffer : vertices)
      if (buffer.size() != numVertices())
        return false;

    /*! verify size of user vertex arrays */
    for (const auto& buffer : vertexAttribs)
      if (buffer.size() != numVertices())
        return false;

    /*! verify vertices */
    for (const auto& buffer : vertices)
      for (size_t i=0; i<buffer.size(); i++)
	if (!isvalid(buffer[i])) 
	  return false;

    return true;
  }
  
  void GridMesh::interpolate(const RTCInterpolateArguments* const args)
  {
    unsigned int primID = args->primID;
    float U = args->u;
    float V = args->v;

    /* clamp input u,v to [0;1] range */
    U = max(min(U,1.0f),0.0f);
    V = max(min(V,1.0f),0.0f);
    
    RTCBufferType bufferType = args->bufferType;
    unsigned int bufferSlot = args->bufferSlot;
    float* P = args->P;
    float* dPdu = args->dPdu;
    float* dPdv = args->dPdv;
    float* ddPdudu = args->ddPdudu;
    float* ddPdvdv = args->ddPdvdv;
    float* ddPdudv = args->ddPdudv;
    unsigned int valueCount = args->valueCount;

    /* calculate base pointer and stride */
    assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) ||
           (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size()));
    const char* src = nullptr; 
    size_t stride = 0;
    if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
      src    = vertexAttribs[bufferSlot].getPtr();
      stride = vertexAttribs[bufferSlot].getStride();
    } else {
      src    = vertices[bufferSlot].getPtr();
      stride = vertices[bufferSlot].getStride();
    }

    const Grid& grid = grids[primID];
    const int grid_width  = grid.resX-1;
    const int grid_height = grid.resY-1;
    const float rcp_grid_width = rcp(float(grid_width));
    const float rcp_grid_height = rcp(float(grid_height));
    const int iu = min((int)floor(U*grid_width ),grid_width);
    const int iv = min((int)floor(V*grid_height),grid_height);
    const float u = U*grid_width-float(iu);
    const float v = V*grid_height-float(iv);
    
    for (unsigned int i=0; i<valueCount; i+=4)
    {
      const size_t ofs = i*sizeof(float);
      const unsigned int idx0 = grid.startVtxID + (iv+0)*grid.lineVtxOffset + iu;
      const unsigned int idx1 = grid.startVtxID + (iv+1)*grid.lineVtxOffset + iu;
      
      const vbool4 valid = vint4((int)i)+vint4(step) < vint4(int(valueCount));
      const vfloat4 p0 = vfloat4::loadu(valid,(float*)&src[(idx0+0)*stride+ofs]);
      const vfloat4 p1 = vfloat4::loadu(valid,(float*)&src[(idx0+1)*stride+ofs]);
      const vfloat4 p2 = vfloat4::loadu(valid,(float*)&src[(idx1+1)*stride+ofs]);
      const vfloat4 p3 = vfloat4::loadu(valid,(float*)&src[(idx1+0)*stride+ofs]);
      const vbool4 left = u+v <= 1.0f;
      const vfloat4 Q0 = select(left,p0,p2);
      const vfloat4 Q1 = select(left,p1,p3);
      const vfloat4 Q2 = select(left,p3,p1);
      const vfloat4 U  = select(left,u,vfloat4(1.0f)-u);
      const vfloat4 V  = select(left,v,vfloat4(1.0f)-v);
      const vfloat4 W  = 1.0f-U-V;
      
      if (P) {
        vfloat4::storeu(valid,P+i,madd(W,Q0,madd(U,Q1,V*Q2)));
      }
      if (dPdu) { 
        assert(dPdu); vfloat4::storeu(valid,dPdu+i,select(left,Q1-Q0,Q0-Q1)*rcp_grid_width);
        assert(dPdv); vfloat4::storeu(valid,dPdv+i,select(left,Q2-Q0,Q0-Q2)*rcp_grid_height);
      }
      if (ddPdudu) { 
        assert(ddPdudu); vfloat4::storeu(valid,ddPdudu+i,vfloat4(zero));
        assert(ddPdvdv); vfloat4::storeu(valid,ddPdvdv+i,vfloat4(zero));
        assert(ddPdudv); vfloat4::storeu(valid,ddPdudv+i,vfloat4(zero));
      }
    }
  }
  
#endif
  
  namespace isa
  {
    GridMesh* createGridMesh(Device* device) {
      return new GridMeshISA(device);
    }
  }
}