1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "catmullclark_patch.h"
#include "bezier_patch.h"
#include "bezier_curve.h"
#include "catmullclark_coefficients.h"
namespace embree
{
template<typename Vertex, typename Vertex_t = Vertex>
class __aligned(64) GregoryPatchT
{
typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
typedef GeneralCatmullClarkPatchT<Vertex,Vertex_t> GeneralCatmullClarkPatch;
typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClark1Ring;
typedef BezierCurveT<Vertex> BezierCurve;
public:
Vertex v[4][4];
Vertex f[2][2];
__forceinline GregoryPatchT() {}
__forceinline GregoryPatchT(const CatmullClarkPatch& patch) {
init(patch);
}
__forceinline GregoryPatchT(const CatmullClarkPatch& patch,
const BezierCurve* border0, const BezierCurve* border1, const BezierCurve* border2, const BezierCurve* border3)
{
init_crackfix(patch,border0,border1,border2,border3);
}
__forceinline GregoryPatchT (const HalfEdge* edge, const char* vertices, size_t stride) {
init(CatmullClarkPatch(edge,vertices,stride));
}
__forceinline Vertex& p0() { return v[0][0]; }
__forceinline Vertex& p1() { return v[0][3]; }
__forceinline Vertex& p2() { return v[3][3]; }
__forceinline Vertex& p3() { return v[3][0]; }
__forceinline Vertex& e0_p() { return v[0][1]; }
__forceinline Vertex& e0_m() { return v[1][0]; }
__forceinline Vertex& e1_p() { return v[1][3]; }
__forceinline Vertex& e1_m() { return v[0][2]; }
__forceinline Vertex& e2_p() { return v[3][2]; }
__forceinline Vertex& e2_m() { return v[2][3]; }
__forceinline Vertex& e3_p() { return v[2][0]; }
__forceinline Vertex& e3_m() { return v[3][1]; }
__forceinline Vertex& f0_p() { return v[1][1]; }
__forceinline Vertex& f1_p() { return v[1][2]; }
__forceinline Vertex& f2_p() { return v[2][2]; }
__forceinline Vertex& f3_p() { return v[2][1]; }
__forceinline Vertex& f0_m() { return f[0][0]; }
__forceinline Vertex& f1_m() { return f[0][1]; }
__forceinline Vertex& f2_m() { return f[1][1]; }
__forceinline Vertex& f3_m() { return f[1][0]; }
__forceinline const Vertex& p0() const { return v[0][0]; }
__forceinline const Vertex& p1() const { return v[0][3]; }
__forceinline const Vertex& p2() const { return v[3][3]; }
__forceinline const Vertex& p3() const { return v[3][0]; }
__forceinline const Vertex& e0_p() const { return v[0][1]; }
__forceinline const Vertex& e0_m() const { return v[1][0]; }
__forceinline const Vertex& e1_p() const { return v[1][3]; }
__forceinline const Vertex& e1_m() const { return v[0][2]; }
__forceinline const Vertex& e2_p() const { return v[3][2]; }
__forceinline const Vertex& e2_m() const { return v[2][3]; }
__forceinline const Vertex& e3_p() const { return v[2][0]; }
__forceinline const Vertex& e3_m() const { return v[3][1]; }
__forceinline const Vertex& f0_p() const { return v[1][1]; }
__forceinline const Vertex& f1_p() const { return v[1][2]; }
__forceinline const Vertex& f2_p() const { return v[2][2]; }
__forceinline const Vertex& f3_p() const { return v[2][1]; }
__forceinline const Vertex& f0_m() const { return f[0][0]; }
__forceinline const Vertex& f1_m() const { return f[0][1]; }
__forceinline const Vertex& f2_m() const { return f[1][1]; }
__forceinline const Vertex& f3_m() const { return f[1][0]; }
__forceinline Vertex initCornerVertex(const CatmullClarkPatch& irreg_patch, const size_t index) {
return irreg_patch.ring[index].getLimitVertex();
}
__forceinline Vertex initPositiveEdgeVertex(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx) {
return madd(1.0f/3.0f,irreg_patch.ring[index].getLimitTangent(),p_vtx);
}
__forceinline Vertex initNegativeEdgeVertex(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx) {
return madd(1.0f/3.0f,irreg_patch.ring[index].getSecondLimitTangent(),p_vtx);
}
__forceinline Vertex initPositiveEdgeVertex2(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx)
{
CatmullClark1Ring3fa r0,r1,r2;
irreg_patch.ring[index].subdivide(r0);
r0.subdivide(r1);
r1.subdivide(r2);
return madd(8.0f/3.0f,r2.getLimitTangent(),p_vtx);
}
__forceinline Vertex initNegativeEdgeVertex2(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx)
{
CatmullClark1Ring3fa r0,r1,r2;
irreg_patch.ring[index].subdivide(r0);
r0.subdivide(r1);
r1.subdivide(r2);
return madd(8.0f/3.0f,r2.getSecondLimitTangent(),p_vtx);
}
void initFaceVertex(const CatmullClarkPatch& irreg_patch,
const size_t index,
const Vertex& p_vtx,
const Vertex& e0_p_vtx,
const Vertex& e1_m_vtx,
const unsigned int face_valence_p1,
const Vertex& e0_m_vtx,
const Vertex& e3_p_vtx,
const unsigned int face_valence_p3,
Vertex& f_p_vtx,
Vertex& f_m_vtx)
{
const unsigned int face_valence = irreg_patch.ring[index].face_valence;
const unsigned int edge_valence = irreg_patch.ring[index].edge_valence;
const unsigned int border_index = irreg_patch.ring[index].border_index;
const Vertex& vtx = irreg_patch.ring[index].vtx;
const Vertex e_i = irreg_patch.ring[index].getEdgeCenter(0);
const Vertex c_i_m_1 = irreg_patch.ring[index].getQuadCenter(0);
const Vertex e_i_m_1 = irreg_patch.ring[index].getEdgeCenter(1);
Vertex c_i, e_i_p_1;
const bool hasHardEdge0 =
std::isinf(irreg_patch.ring[index].vertex_crease_weight) &&
std::isinf(irreg_patch.ring[index].crease_weight[0]);
if (unlikely((border_index == edge_valence-2) || hasHardEdge0))
{
/* mirror quad center and edge mid-point */
c_i = madd(2.0f, e_i - c_i_m_1, c_i_m_1);
e_i_p_1 = madd(2.0f, vtx - e_i_m_1, e_i_m_1);
}
else
{
c_i = irreg_patch.ring[index].getQuadCenter( face_valence-1 );
e_i_p_1 = irreg_patch.ring[index].getEdgeCenter( face_valence-1 );
}
Vertex c_i_m_2, e_i_m_2;
const bool hasHardEdge1 =
std::isinf(irreg_patch.ring[index].vertex_crease_weight) &&
std::isinf(irreg_patch.ring[index].crease_weight[1]);
if (unlikely(border_index == 2 || hasHardEdge1))
{
/* mirror quad center and edge mid-point */
c_i_m_2 = madd(2.0f, e_i_m_1 - c_i_m_1, c_i_m_1);
e_i_m_2 = madd(2.0f, vtx - e_i, + e_i);
}
else
{
c_i_m_2 = irreg_patch.ring[index].getQuadCenter( 1 );
e_i_m_2 = irreg_patch.ring[index].getEdgeCenter( 2 );
}
const float d = 3.0f;
//const float c = cosf(2.0f*M_PI/(float)face_valence);
//const float c_e_p = cosf(2.0f*M_PI/(float)face_valence_p1);
//const float c_e_m = cosf(2.0f*M_PI/(float)face_valence_p3);
const float c = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence);
const float c_e_p = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p1);
const float c_e_m = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p3);
const Vertex r_e_p = 1.0f/3.0f * (e_i_m_1 - e_i_p_1) + 2.0f/3.0f * (c_i_m_1 - c_i);
const Vertex r_e_m = 1.0f/3.0f * (e_i - e_i_m_2) + 2.0f/3.0f * (c_i_m_1 - c_i_m_2);
f_p_vtx = 1.0f / d * (c_e_p * p_vtx + (d - 2.0f*c - c_e_p) * e0_p_vtx + 2.0f*c* e1_m_vtx + r_e_p);
f_m_vtx = 1.0f / d * (c_e_m * p_vtx + (d - 2.0f*c - c_e_m) * e0_m_vtx + 2.0f*c* e3_p_vtx + r_e_m);
}
__noinline void init(const CatmullClarkPatch& patch)
{
assert( patch.ring[0].hasValidPositions() );
assert( patch.ring[1].hasValidPositions() );
assert( patch.ring[2].hasValidPositions() );
assert( patch.ring[3].hasValidPositions() );
p0() = initCornerVertex(patch,0);
p1() = initCornerVertex(patch,1);
p2() = initCornerVertex(patch,2);
p3() = initCornerVertex(patch,3);
e0_p() = initPositiveEdgeVertex(patch,0, p0());
e1_p() = initPositiveEdgeVertex(patch,1, p1());
e2_p() = initPositiveEdgeVertex(patch,2, p2());
e3_p() = initPositiveEdgeVertex(patch,3, p3());
e0_m() = initNegativeEdgeVertex(patch,0, p0());
e1_m() = initNegativeEdgeVertex(patch,1, p1());
e2_m() = initNegativeEdgeVertex(patch,2, p2());
e3_m() = initNegativeEdgeVertex(patch,3, p3());
const unsigned int face_valence_p0 = patch.ring[0].face_valence;
const unsigned int face_valence_p1 = patch.ring[1].face_valence;
const unsigned int face_valence_p2 = patch.ring[2].face_valence;
const unsigned int face_valence_p3 = patch.ring[3].face_valence;
initFaceVertex(patch,0,p0(),e0_p(),e1_m(),face_valence_p1,e0_m(),e3_p(),face_valence_p3,f0_p(),f0_m() );
initFaceVertex(patch,1,p1(),e1_p(),e2_m(),face_valence_p2,e1_m(),e0_p(),face_valence_p0,f1_p(),f1_m() );
initFaceVertex(patch,2,p2(),e2_p(),e3_m(),face_valence_p3,e2_m(),e1_p(),face_valence_p1,f2_p(),f2_m() );
initFaceVertex(patch,3,p3(),e3_p(),e0_m(),face_valence_p0,e3_m(),e2_p(),face_valence_p3,f3_p(),f3_m() );
}
__noinline void init_crackfix(const CatmullClarkPatch& patch,
const BezierCurve* border0,
const BezierCurve* border1,
const BezierCurve* border2,
const BezierCurve* border3)
{
assert( patch.ring[0].hasValidPositions() );
assert( patch.ring[1].hasValidPositions() );
assert( patch.ring[2].hasValidPositions() );
assert( patch.ring[3].hasValidPositions() );
p0() = initCornerVertex(patch,0);
p1() = initCornerVertex(patch,1);
p2() = initCornerVertex(patch,2);
p3() = initCornerVertex(patch,3);
e0_p() = initPositiveEdgeVertex(patch,0, p0());
e1_p() = initPositiveEdgeVertex(patch,1, p1());
e2_p() = initPositiveEdgeVertex(patch,2, p2());
e3_p() = initPositiveEdgeVertex(patch,3, p3());
e0_m() = initNegativeEdgeVertex(patch,0, p0());
e1_m() = initNegativeEdgeVertex(patch,1, p1());
e2_m() = initNegativeEdgeVertex(patch,2, p2());
e3_m() = initNegativeEdgeVertex(patch,3, p3());
if (unlikely(border0 != nullptr))
{
p0() = border0->v0;
e0_p() = border0->v1;
e1_m() = border0->v2;
p1() = border0->v3;
}
if (unlikely(border1 != nullptr))
{
p1() = border1->v0;
e1_p() = border1->v1;
e2_m() = border1->v2;
p2() = border1->v3;
}
if (unlikely(border2 != nullptr))
{
p2() = border2->v0;
e2_p() = border2->v1;
e3_m() = border2->v2;
p3() = border2->v3;
}
if (unlikely(border3 != nullptr))
{
p3() = border3->v0;
e3_p() = border3->v1;
e0_m() = border3->v2;
p0() = border3->v3;
}
const unsigned int face_valence_p0 = patch.ring[0].face_valence;
const unsigned int face_valence_p1 = patch.ring[1].face_valence;
const unsigned int face_valence_p2 = patch.ring[2].face_valence;
const unsigned int face_valence_p3 = patch.ring[3].face_valence;
initFaceVertex(patch,0,p0(),e0_p(),e1_m(),face_valence_p1,e0_m(),e3_p(),face_valence_p3,f0_p(),f0_m() );
initFaceVertex(patch,1,p1(),e1_p(),e2_m(),face_valence_p2,e1_m(),e0_p(),face_valence_p0,f1_p(),f1_m() );
initFaceVertex(patch,2,p2(),e2_p(),e3_m(),face_valence_p3,e2_m(),e1_p(),face_valence_p1,f2_p(),f2_m() );
initFaceVertex(patch,3,p3(),e3_p(),e0_m(),face_valence_p0,e3_m(),e2_p(),face_valence_p3,f3_p(),f3_m() );
}
void computeGregoryPatchFacePoints(const unsigned int face_valence,
const Vertex& r_e_p,
const Vertex& r_e_m,
const Vertex& p_vtx,
const Vertex& e0_p_vtx,
const Vertex& e1_m_vtx,
const unsigned int face_valence_p1,
const Vertex& e0_m_vtx,
const Vertex& e3_p_vtx,
const unsigned int face_valence_p3,
Vertex& f_p_vtx,
Vertex& f_m_vtx,
const float d = 3.0f)
{
//const float c = cosf(2.0*M_PI/(float)face_valence);
//const float c_e_p = cosf(2.0*M_PI/(float)face_valence_p1);
//const float c_e_m = cosf(2.0*M_PI/(float)face_valence_p3);
const float c = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence);
const float c_e_p = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p1);
const float c_e_m = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p3);
f_p_vtx = 1.0f / d * (c_e_p * p_vtx + (d - 2.0f*c - c_e_p) * e0_p_vtx + 2.0f*c* e1_m_vtx + r_e_p);
f_m_vtx = 1.0f / d * (c_e_m * p_vtx + (d - 2.0f*c - c_e_m) * e0_m_vtx + 2.0f*c* e3_p_vtx + r_e_m);
f_p_vtx = 1.0f / d * (c_e_p * p_vtx + (d - 2.0f*c - c_e_p) * e0_p_vtx + 2.0f*c* e1_m_vtx + r_e_p);
f_m_vtx = 1.0f / d * (c_e_m * p_vtx + (d - 2.0f*c - c_e_m) * e0_m_vtx + 2.0f*c* e3_p_vtx + r_e_m);
}
__noinline void init(const GeneralCatmullClarkPatch& patch)
{
assert(patch.size() == 4);
#if 0
CatmullClarkPatch qpatch; patch.init(qpatch);
init(qpatch);
#else
const float face_valence_p0 = patch.ring[0].face_valence;
const float face_valence_p1 = patch.ring[1].face_valence;
const float face_valence_p2 = patch.ring[2].face_valence;
const float face_valence_p3 = patch.ring[3].face_valence;
Vertex p0_r_p, p0_r_m;
patch.ring[0].computeGregoryPatchEdgePoints( p0(), e0_p(), e0_m(), p0_r_p, p0_r_m );
Vertex p1_r_p, p1_r_m;
patch.ring[1].computeGregoryPatchEdgePoints( p1(), e1_p(), e1_m(), p1_r_p, p1_r_m );
Vertex p2_r_p, p2_r_m;
patch.ring[2].computeGregoryPatchEdgePoints( p2(), e2_p(), e2_m(), p2_r_p, p2_r_m );
Vertex p3_r_p, p3_r_m;
patch.ring[3].computeGregoryPatchEdgePoints( p3(), e3_p(), e3_m(), p3_r_p, p3_r_m );
computeGregoryPatchFacePoints(face_valence_p0, p0_r_p, p0_r_m, p0(), e0_p(), e1_m(), face_valence_p1, e0_m(), e3_p(), face_valence_p3, f0_p(), f0_m() );
computeGregoryPatchFacePoints(face_valence_p1, p1_r_p, p1_r_m, p1(), e1_p(), e2_m(), face_valence_p2, e1_m(), e0_p(), face_valence_p0, f1_p(), f1_m() );
computeGregoryPatchFacePoints(face_valence_p2, p2_r_p, p2_r_m, p2(), e2_p(), e3_m(), face_valence_p3, e2_m(), e1_p(), face_valence_p1, f2_p(), f2_m() );
computeGregoryPatchFacePoints(face_valence_p3, p3_r_p, p3_r_m, p3(), e3_p(), e0_m(), face_valence_p0, e3_m(), e2_p(), face_valence_p3, f3_p(), f3_m() );
#endif
}
__forceinline void convert_to_bezier()
{
f0_p() = (f0_p() + f0_m()) * 0.5f;
f1_p() = (f1_p() + f1_m()) * 0.5f;
f2_p() = (f2_p() + f2_m()) * 0.5f;
f3_p() = (f3_p() + f3_m()) * 0.5f;
f0_m() = Vertex( zero );
f1_m() = Vertex( zero );
f2_m() = Vertex( zero );
f3_m() = Vertex( zero );
}
static __forceinline void computeInnerVertices(const Vertex matrix[4][4], const Vertex f_m[2][2], const float uu, const float vv,
Vertex_t& matrix_11, Vertex_t& matrix_12, Vertex_t& matrix_22, Vertex_t& matrix_21)
{
if (unlikely(uu == 0.0f || uu == 1.0f || vv == 0.0f || vv == 1.0f))
{
matrix_11 = matrix[1][1];
matrix_12 = matrix[1][2];
matrix_22 = matrix[2][2];
matrix_21 = matrix[2][1];
}
else
{
const Vertex_t f0_p = matrix[1][1];
const Vertex_t f1_p = matrix[1][2];
const Vertex_t f2_p = matrix[2][2];
const Vertex_t f3_p = matrix[2][1];
const Vertex_t f0_m = f_m[0][0];
const Vertex_t f1_m = f_m[0][1];
const Vertex_t f2_m = f_m[1][1];
const Vertex_t f3_m = f_m[1][0];
matrix_11 = ( uu * f0_p + vv * f0_m)*rcp(uu+vv);
matrix_12 = ((1.0f-uu) * f1_m + vv * f1_p)*rcp(1.0f-uu+vv);
matrix_22 = ((1.0f-uu) * f2_p + (1.0f-vv) * f2_m)*rcp(2.0f-uu-vv);
matrix_21 = ( uu * f3_m + (1.0f-vv) * f3_p)*rcp(1.0f+uu-vv);
}
}
template<typename vfloat>
static __forceinline void computeInnerVertices(const Vertex v[4][4], const Vertex f[2][2],
size_t i, const vfloat& uu, const vfloat& vv, vfloat& matrix_11, vfloat& matrix_12, vfloat& matrix_22, vfloat& matrix_21)
{
const auto m_border = (uu == 0.0f) | (uu == 1.0f) | (vv == 0.0f) | (vv == 1.0f);
const vfloat f0_p = v[1][1][i];
const vfloat f1_p = v[1][2][i];
const vfloat f2_p = v[2][2][i];
const vfloat f3_p = v[2][1][i];
const vfloat f0_m = f[0][0][i];
const vfloat f1_m = f[0][1][i];
const vfloat f2_m = f[1][1][i];
const vfloat f3_m = f[1][0][i];
const vfloat one_minus_uu = vfloat(1.0f) - uu;
const vfloat one_minus_vv = vfloat(1.0f) - vv;
const vfloat f0_i = ( uu * f0_p + vv * f0_m) * rcp(uu+vv);
const vfloat f1_i = (one_minus_uu * f1_m + vv * f1_p) * rcp(one_minus_uu+vv);
const vfloat f2_i = (one_minus_uu * f2_p + one_minus_vv * f2_m) * rcp(one_minus_uu+one_minus_vv);
const vfloat f3_i = ( uu * f3_m + one_minus_vv * f3_p) * rcp(uu+one_minus_vv);
matrix_11 = select(m_border,f0_p,f0_i);
matrix_12 = select(m_border,f1_p,f1_i);
matrix_22 = select(m_border,f2_p,f2_i);
matrix_21 = select(m_border,f3_p,f3_i);
}
static __forceinline Vertex eval(const Vertex matrix[4][4], const Vertex f[2][2], const float& uu, const float& vv)
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::eval(uu);
const Vec4<float> Bv = BezierBasis::eval(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
static __forceinline Vertex eval_du(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::derivative(uu);
const Vec4<float> Bv = BezierBasis::eval(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
static __forceinline Vertex eval_dv(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::eval(uu);
const Vec4<float> Bv = BezierBasis::derivative(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
static __forceinline Vertex eval_dudu(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::derivative2(uu);
const Vec4<float> Bv = BezierBasis::eval(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
static __forceinline Vertex eval_dvdv(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::eval(uu);
const Vec4<float> Bv = BezierBasis::derivative2(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
static __forceinline Vertex eval_dudv(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
{
Vertex_t v_11, v_12, v_22, v_21;
computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
const Vec4<float> Bu = BezierBasis::derivative(uu);
const Vec4<float> Bv = BezierBasis::derivative(vv);
return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
}
__forceinline Vertex eval(const float uu, const float vv) const {
return eval(v,f,uu,vv);
}
__forceinline Vertex eval_du( const float uu, const float vv) const {
return eval_du(v,f,uu,vv);
}
__forceinline Vertex eval_dv( const float uu, const float vv) const {
return eval_dv(v,f,uu,vv);
}
__forceinline Vertex eval_dudu( const float uu, const float vv) const {
return eval_dudu(v,f,uu,vv);
}
__forceinline Vertex eval_dvdv( const float uu, const float vv) const {
return eval_dvdv(v,f,uu,vv);
}
__forceinline Vertex eval_dudv( const float uu, const float vv) const {
return eval_dudv(v,f,uu,vv);
}
static __forceinline Vertex normal(const Vertex matrix[4][4], const Vertex f_m[2][2], const float uu, const float vv) // FIXME: why not using basis functions
{
/* interpolate inner vertices */
Vertex_t matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(matrix,f_m,uu,vv,matrix_11, matrix_12, matrix_22, matrix_21);
/* tangentU */
const Vertex_t col0 = deCasteljau(vv, (Vertex_t)matrix[0][0], (Vertex_t)matrix[1][0], (Vertex_t)matrix[2][0], (Vertex_t)matrix[3][0]);
const Vertex_t col1 = deCasteljau(vv, (Vertex_t)matrix[0][1], (Vertex_t)matrix_11 , (Vertex_t)matrix_21 , (Vertex_t)matrix[3][1]);
const Vertex_t col2 = deCasteljau(vv, (Vertex_t)matrix[0][2], (Vertex_t)matrix_12 , (Vertex_t)matrix_22 , (Vertex_t)matrix[3][2]);
const Vertex_t col3 = deCasteljau(vv, (Vertex_t)matrix[0][3], (Vertex_t)matrix[1][3], (Vertex_t)matrix[2][3], (Vertex_t)matrix[3][3]);
const Vertex_t tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3);
/* tangentV */
const Vertex_t row0 = deCasteljau(uu, (Vertex_t)matrix[0][0], (Vertex_t)matrix[0][1], (Vertex_t)matrix[0][2], (Vertex_t)matrix[0][3]);
const Vertex_t row1 = deCasteljau(uu, (Vertex_t)matrix[1][0], (Vertex_t)matrix_11 , (Vertex_t)matrix_12 , (Vertex_t)matrix[1][3]);
const Vertex_t row2 = deCasteljau(uu, (Vertex_t)matrix[2][0], (Vertex_t)matrix_21 , (Vertex_t)matrix_22 , (Vertex_t)matrix[2][3]);
const Vertex_t row3 = deCasteljau(uu, (Vertex_t)matrix[3][0], (Vertex_t)matrix[3][1], (Vertex_t)matrix[3][2], (Vertex_t)matrix[3][3]);
const Vertex_t tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3);
/* normal = tangentU x tangentV */
const Vertex_t n = cross(tangentU,tangentV);
return n;
}
__forceinline Vertex normal( const float uu, const float vv) const {
return normal(v,f,uu,vv);
}
__forceinline void eval(const float u, const float v,
Vertex* P, Vertex* dPdu, Vertex* dPdv,
Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv,
const float dscale = 1.0f) const
{
if (P) {
*P = eval(u,v);
}
if (dPdu) {
assert(dPdu); *dPdu = eval_du(u,v)*dscale;
assert(dPdv); *dPdv = eval_dv(u,v)*dscale;
}
if (ddPdudu) {
assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale);
assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale);
assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale);
}
}
template<class vfloat>
static __forceinline vfloat eval(const Vertex v[4][4], const Vertex f[2][2],
const size_t i, const vfloat& uu, const vfloat& vv, const Vec4<vfloat>& u_n, const Vec4<vfloat>& v_n,
vfloat& matrix_11, vfloat& matrix_12, vfloat& matrix_22, vfloat& matrix_21)
{
const vfloat curve0_x = madd(v_n[0],vfloat(v[0][0][i]),madd(v_n[1],vfloat(v[1][0][i]),madd(v_n[2],vfloat(v[2][0][i]),v_n[3] * vfloat(v[3][0][i]))));
const vfloat curve1_x = madd(v_n[0],vfloat(v[0][1][i]),madd(v_n[1],vfloat(matrix_11 ),madd(v_n[2],vfloat(matrix_21 ),v_n[3] * vfloat(v[3][1][i]))));
const vfloat curve2_x = madd(v_n[0],vfloat(v[0][2][i]),madd(v_n[1],vfloat(matrix_12 ),madd(v_n[2],vfloat(matrix_22 ),v_n[3] * vfloat(v[3][2][i]))));
const vfloat curve3_x = madd(v_n[0],vfloat(v[0][3][i]),madd(v_n[1],vfloat(v[1][3][i]),madd(v_n[2],vfloat(v[2][3][i]),v_n[3] * vfloat(v[3][3][i]))));
return madd(u_n[0],curve0_x,madd(u_n[1],curve1_x,madd(u_n[2],curve2_x,u_n[3] * curve3_x)));
}
template<typename vbool, typename vfloat>
static __forceinline void eval(const Vertex v[4][4], const Vertex f[2][2],
const vbool& valid, const vfloat& uu, const vfloat& vv,
float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
const float dscale, const size_t dstride, const size_t N)
{
if (P) {
const Vec4<vfloat> u_n = BezierBasis::eval(uu);
const Vec4<vfloat> v_n = BezierBasis::eval(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,P+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21));
}
}
if (dPdu)
{
{
assert(dPdu);
const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
const Vec4<vfloat> v_n = BezierBasis::eval(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,dPdu+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*dscale);
}
}
{
assert(dPdv);
const Vec4<vfloat> u_n = BezierBasis::eval(uu);
const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,dPdv+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*dscale);
}
}
}
if (ddPdudu)
{
{
assert(ddPdudu);
const Vec4<vfloat> u_n = BezierBasis::derivative2(uu);
const Vec4<vfloat> v_n = BezierBasis::eval(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,ddPdudu+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*sqr(dscale));
}
}
{
assert(ddPdvdv);
const Vec4<vfloat> u_n = BezierBasis::eval(uu);
const Vec4<vfloat> v_n = BezierBasis::derivative2(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,ddPdvdv+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*sqr(dscale));
}
}
{
assert(ddPdudv);
const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
for (size_t i=0; i<N; i++) {
vfloat matrix_11, matrix_12, matrix_22, matrix_21;
computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
vfloat::store(valid,ddPdudv+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*sqr(dscale));
}
}
}
}
template<typename vbool, typename vfloat>
__forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv,
float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
const float dscale, const size_t dstride, const size_t N) const {
eval(v,f,valid,uu,vv,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
}
template<class T>
static __forceinline Vec3<T> eval_t(const Vertex matrix[4][4], const Vec3<T> f[2][2], const T& uu, const T& vv)
{
typedef typename T::Bool M;
const M m_border = (uu == 0.0f) | (uu == 1.0f) | (vv == 0.0f) | (vv == 1.0f);
const Vec3<T> f0_p = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z);
const Vec3<T> f1_p = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z);
const Vec3<T> f2_p = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z);
const Vec3<T> f3_p = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z);
const Vec3<T> f0_m = f[0][0];
const Vec3<T> f1_m = f[0][1];
const Vec3<T> f2_m = f[1][1];
const Vec3<T> f3_m = f[1][0];
const T one_minus_uu = T(1.0f) - uu;
const T one_minus_vv = T(1.0f) - vv;
const Vec3<T> f0_i = ( uu * f0_p + vv * f0_m) * rcp(uu+vv);
const Vec3<T> f1_i = (one_minus_uu * f1_m + vv * f1_p) * rcp(one_minus_uu+vv);
const Vec3<T> f2_i = (one_minus_uu * f2_p + one_minus_vv * f2_m) * rcp(one_minus_uu+one_minus_vv);
const Vec3<T> f3_i = ( uu * f3_m + one_minus_vv * f3_p) * rcp(uu+one_minus_vv);
const Vec3<T> F0( select(m_border,f0_p.x,f0_i.x), select(m_border,f0_p.y,f0_i.y), select(m_border,f0_p.z,f0_i.z) );
const Vec3<T> F1( select(m_border,f1_p.x,f1_i.x), select(m_border,f1_p.y,f1_i.y), select(m_border,f1_p.z,f1_i.z) );
const Vec3<T> F2( select(m_border,f2_p.x,f2_i.x), select(m_border,f2_p.y,f2_i.y), select(m_border,f2_p.z,f2_i.z) );
const Vec3<T> F3( select(m_border,f3_p.x,f3_i.x), select(m_border,f3_p.y,f3_i.y), select(m_border,f3_p.z,f3_i.z) );
const T B0_u = one_minus_uu * one_minus_uu * one_minus_uu;
const T B0_v = one_minus_vv * one_minus_vv * one_minus_vv;
const T B1_u = 3.0f * (one_minus_uu * uu * one_minus_uu);
const T B1_v = 3.0f * (one_minus_vv * vv * one_minus_vv);
const T B2_u = 3.0f * (uu * one_minus_uu * uu);
const T B2_v = 3.0f * (vv * one_minus_vv * vv);
const T B3_u = uu * uu * uu;
const T B3_v = vv * vv * vv;
const T x = madd(B0_v,madd(B0_u,matrix[0][0].x,madd(B1_u,matrix[0][1].x,madd(B2_u,matrix[0][2].x,B3_u * matrix[0][3].x))),
madd(B1_v,madd(B0_u,matrix[1][0].x,madd(B1_u,F0.x ,madd(B2_u,F1.x ,B3_u * matrix[1][3].x))),
madd(B2_v,madd(B0_u,matrix[2][0].x,madd(B1_u,F3.x ,madd(B2_u,F2.x ,B3_u * matrix[2][3].x))),
B3_v*madd(B0_u,matrix[3][0].x,madd(B1_u,matrix[3][1].x,madd(B2_u,matrix[3][2].x,B3_u * matrix[3][3].x))))));
const T y = madd(B0_v,madd(B0_u,matrix[0][0].y,madd(B1_u,matrix[0][1].y,madd(B2_u,matrix[0][2].y,B3_u * matrix[0][3].y))),
madd(B1_v,madd(B0_u,matrix[1][0].y,madd(B1_u,F0.y ,madd(B2_u,F1.y ,B3_u * matrix[1][3].y))),
madd(B2_v,madd(B0_u,matrix[2][0].y,madd(B1_u,F3.y ,madd(B2_u,F2.y ,B3_u * matrix[2][3].y))),
B3_v*madd(B0_u,matrix[3][0].y,madd(B1_u,matrix[3][1].y,madd(B2_u,matrix[3][2].y,B3_u * matrix[3][3].y))))));
const T z = madd(B0_v,madd(B0_u,matrix[0][0].z,madd(B1_u,matrix[0][1].z,madd(B2_u,matrix[0][2].z,B3_u * matrix[0][3].z))),
madd(B1_v,madd(B0_u,matrix[1][0].z,madd(B1_u,F0.z ,madd(B2_u,F1.z ,B3_u * matrix[1][3].z))),
madd(B2_v,madd(B0_u,matrix[2][0].z,madd(B1_u,F3.z ,madd(B2_u,F2.z ,B3_u * matrix[2][3].z))),
B3_v*madd(B0_u,matrix[3][0].z,madd(B1_u,matrix[3][1].z,madd(B2_u,matrix[3][2].z,B3_u * matrix[3][3].z))))));
return Vec3<T>(x,y,z);
}
template<class T>
__forceinline Vec3<T> eval(const T& uu, const T& vv) const
{
Vec3<T> ff[2][2];
ff[0][0] = Vec3<T>(f[0][0]);
ff[0][1] = Vec3<T>(f[0][1]);
ff[1][1] = Vec3<T>(f[1][1]);
ff[1][0] = Vec3<T>(f[1][0]);
return eval_t(v,ff,uu,vv);
}
template<class T>
static __forceinline Vec3<T> normal_t(const Vertex matrix[4][4], const Vec3<T> f[2][2], const T& uu, const T& vv)
{
typedef typename T::Bool M;
const Vec3<T> f0_p = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z);
const Vec3<T> f1_p = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z);
const Vec3<T> f2_p = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z);
const Vec3<T> f3_p = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z);
const Vec3<T> f0_m = f[0][0];
const Vec3<T> f1_m = f[0][1];
const Vec3<T> f2_m = f[1][1];
const Vec3<T> f3_m = f[1][0];
const T one_minus_uu = T(1.0f) - uu;
const T one_minus_vv = T(1.0f) - vv;
const Vec3<T> f0_i = ( uu * f0_p + vv * f0_m) * rcp(uu+vv);
const Vec3<T> f1_i = (one_minus_uu * f1_m + vv * f1_p) * rcp(one_minus_uu+vv);
const Vec3<T> f2_i = (one_minus_uu * f2_p + one_minus_vv * f2_m) * rcp(one_minus_uu+one_minus_vv);
const Vec3<T> f3_i = ( uu * f3_m + one_minus_vv * f3_p) * rcp(uu+one_minus_vv);
#if 1
const M m_corner0 = (uu == 0.0f) & (vv == 0.0f);
const M m_corner1 = (uu == 1.0f) & (vv == 0.0f);
const M m_corner2 = (uu == 1.0f) & (vv == 1.0f);
const M m_corner3 = (uu == 0.0f) & (vv == 1.0f);
const Vec3<T> matrix_11( select(m_corner0,f0_p.x,f0_i.x), select(m_corner0,f0_p.y,f0_i.y), select(m_corner0,f0_p.z,f0_i.z) );
const Vec3<T> matrix_12( select(m_corner1,f1_p.x,f1_i.x), select(m_corner1,f1_p.y,f1_i.y), select(m_corner1,f1_p.z,f1_i.z) );
const Vec3<T> matrix_22( select(m_corner2,f2_p.x,f2_i.x), select(m_corner2,f2_p.y,f2_i.y), select(m_corner2,f2_p.z,f2_i.z) );
const Vec3<T> matrix_21( select(m_corner3,f3_p.x,f3_i.x), select(m_corner3,f3_p.y,f3_i.y), select(m_corner3,f3_p.z,f3_i.z) );
#else
const M m_border = (uu == 0.0f) | (uu == 1.0f) | (vv == 0.0f) | (vv == 1.0f);
const Vec3<T> matrix_11( select(m_border,f0_p.x,f0_i.x), select(m_border,f0_p.y,f0_i.y), select(m_border,f0_p.z,f0_i.z) );
const Vec3<T> matrix_12( select(m_border,f1_p.x,f1_i.x), select(m_border,f1_p.y,f1_i.y), select(m_border,f1_p.z,f1_i.z) );
const Vec3<T> matrix_22( select(m_border,f2_p.x,f2_i.x), select(m_border,f2_p.y,f2_i.y), select(m_border,f2_p.z,f2_i.z) );
const Vec3<T> matrix_21( select(m_border,f3_p.x,f3_i.x), select(m_border,f3_p.y,f3_i.y), select(m_border,f3_p.z,f3_i.z) );
#endif
const Vec3<T> matrix_00 = Vec3<T>(matrix[0][0].x,matrix[0][0].y,matrix[0][0].z);
const Vec3<T> matrix_10 = Vec3<T>(matrix[1][0].x,matrix[1][0].y,matrix[1][0].z);
const Vec3<T> matrix_20 = Vec3<T>(matrix[2][0].x,matrix[2][0].y,matrix[2][0].z);
const Vec3<T> matrix_30 = Vec3<T>(matrix[3][0].x,matrix[3][0].y,matrix[3][0].z);
const Vec3<T> matrix_01 = Vec3<T>(matrix[0][1].x,matrix[0][1].y,matrix[0][1].z);
const Vec3<T> matrix_02 = Vec3<T>(matrix[0][2].x,matrix[0][2].y,matrix[0][2].z);
const Vec3<T> matrix_03 = Vec3<T>(matrix[0][3].x,matrix[0][3].y,matrix[0][3].z);
const Vec3<T> matrix_31 = Vec3<T>(matrix[3][1].x,matrix[3][1].y,matrix[3][1].z);
const Vec3<T> matrix_32 = Vec3<T>(matrix[3][2].x,matrix[3][2].y,matrix[3][2].z);
const Vec3<T> matrix_33 = Vec3<T>(matrix[3][3].x,matrix[3][3].y,matrix[3][3].z);
const Vec3<T> matrix_13 = Vec3<T>(matrix[1][3].x,matrix[1][3].y,matrix[1][3].z);
const Vec3<T> matrix_23 = Vec3<T>(matrix[2][3].x,matrix[2][3].y,matrix[2][3].z);
/* tangentU */
const Vec3<T> col0 = deCasteljau(vv, matrix_00, matrix_10, matrix_20, matrix_30);
const Vec3<T> col1 = deCasteljau(vv, matrix_01, matrix_11, matrix_21, matrix_31);
const Vec3<T> col2 = deCasteljau(vv, matrix_02, matrix_12, matrix_22, matrix_32);
const Vec3<T> col3 = deCasteljau(vv, matrix_03, matrix_13, matrix_23, matrix_33);
const Vec3<T> tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3);
/* tangentV */
const Vec3<T> row0 = deCasteljau(uu, matrix_00, matrix_01, matrix_02, matrix_03);
const Vec3<T> row1 = deCasteljau(uu, matrix_10, matrix_11, matrix_12, matrix_13);
const Vec3<T> row2 = deCasteljau(uu, matrix_20, matrix_21, matrix_22, matrix_23);
const Vec3<T> row3 = deCasteljau(uu, matrix_30, matrix_31, matrix_32, matrix_33);
const Vec3<T> tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3);
/* normal = tangentU x tangentV */
const Vec3<T> n = cross(tangentU,tangentV);
return n;
}
template<class T>
__forceinline Vec3<T> normal(const T& uu, const T& vv) const
{
Vec3<T> ff[2][2];
ff[0][0] = Vec3<T>(f[0][0]);
ff[0][1] = Vec3<T>(f[0][1]);
ff[1][1] = Vec3<T>(f[1][1]);
ff[1][0] = Vec3<T>(f[1][0]);
return normal_t(v,ff,uu,vv);
}
__forceinline BBox<Vertex> bounds() const
{
const Vertex *const cv = &v[0][0];
BBox<Vertex> bounds (cv[0]);
for (size_t i=1; i<16; i++)
bounds.extend( cv[i] );
bounds.extend(f[0][0]);
bounds.extend(f[1][0]);
bounds.extend(f[1][1]);
bounds.extend(f[1][1]);
return bounds;
}
friend embree_ostream operator<<(embree_ostream o, const GregoryPatchT& p)
{
for (size_t y=0; y<4; y++)
for (size_t x=0; x<4; x++)
o << "v[" << y << "][" << x << "] " << p.v[y][x] << embree_endl;
for (size_t y=0; y<2; y++)
for (size_t x=0; x<2; x++)
o << "f[" << y << "][" << x << "] " << p.f[y][x] << embree_endl;
return o;
}
};
typedef GregoryPatchT<Vec3fa,Vec3fa_t> GregoryPatch3fa;
template<typename Vertex, typename Vertex_t>
__forceinline BezierPatchT<Vertex,Vertex_t>::BezierPatchT (const HalfEdge* edge, const char* vertices, size_t stride)
{
CatmullClarkPatchT<Vertex,Vertex_t> patch(edge,vertices,stride);
GregoryPatchT<Vertex,Vertex_t> gpatch(patch);
gpatch.convert_to_bezier();
for (size_t y=0; y<4; y++)
for (size_t x=0; x<4; x++)
matrix[y][x] = (Vertex_t)gpatch.v[y][x];
}
template<typename Vertex, typename Vertex_t>
__forceinline BezierPatchT<Vertex,Vertex_t>::BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch)
{
GregoryPatchT<Vertex,Vertex_t> gpatch(patch);
gpatch.convert_to_bezier();
for (size_t y=0; y<4; y++)
for (size_t x=0; x<4; x++)
matrix[y][x] = (Vertex_t)gpatch.v[y][x];
}
template<typename Vertex, typename Vertex_t>
__forceinline BezierPatchT<Vertex,Vertex_t>::BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch,
const BezierCurveT<Vertex>* border0,
const BezierCurveT<Vertex>* border1,
const BezierCurveT<Vertex>* border2,
const BezierCurveT<Vertex>* border3)
{
GregoryPatchT<Vertex,Vertex_t> gpatch(patch,border0,border1,border2,border3);
gpatch.convert_to_bezier();
for (size_t y=0; y<4; y++)
for (size_t x=0; x<4; x++)
matrix[y][x] = (Vertex_t)gpatch.v[y][x];
}
}
|