File: tessellation_cache.cpp

package info (click to toggle)
embree 3.12.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,412 kB
  • sloc: cpp: 173,822; xml: 3,737; ansic: 2,955; python: 1,628; sh: 480; makefile: 193; csh: 42
file content (326 lines) | stat: -rw-r--r-- 10,093 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "tessellation_cache.h"

namespace embree
{
  SharedLazyTessellationCache SharedLazyTessellationCache::sharedLazyTessellationCache;

  __thread ThreadWorkState* SharedLazyTessellationCache::init_t_state = nullptr;
  ThreadWorkState* SharedLazyTessellationCache::current_t_state = nullptr;

  void resizeTessellationCache(size_t new_size)
  {    
    if (new_size >= SharedLazyTessellationCache::MAX_TESSELLATION_CACHE_SIZE)
      new_size = SharedLazyTessellationCache::MAX_TESSELLATION_CACHE_SIZE;
    if (SharedLazyTessellationCache::sharedLazyTessellationCache.getSize() != new_size) 
      SharedLazyTessellationCache::sharedLazyTessellationCache.realloc(new_size);    
  }

  void resetTessellationCache()
  {
    //SharedLazyTessellationCache::sharedLazyTessellationCache.addCurrentIndex(SharedLazyTessellationCache::NUM_CACHE_SEGMENTS);
    SharedLazyTessellationCache::sharedLazyTessellationCache.reset();
  }
  
  SharedLazyTessellationCache::SharedLazyTessellationCache()
  {
    size = 0;
    data = nullptr;
    hugepages = false;
    maxBlocks              = size/BLOCK_SIZE;
    localTime              = NUM_CACHE_SEGMENTS;
    next_block             = 0;
    numRenderThreads       = 0;
#if FORCE_SIMPLE_FLUSH == 1
    switch_block_threshold = maxBlocks;
#else
    switch_block_threshold = maxBlocks/NUM_CACHE_SEGMENTS;
#endif
    threadWorkState     = new ThreadWorkState[NUM_PREALLOC_THREAD_WORK_STATES];

    //reset_state.reset();
    //linkedlist_mtx.reset();
  }

  SharedLazyTessellationCache::~SharedLazyTessellationCache() 
  {
    for (ThreadWorkState* t=current_t_state; t!=nullptr; ) 
    {
      ThreadWorkState* next = t->next;
      if (t->allocated) delete t;
      t = next;
    }

    delete[] threadWorkState;
  }

  void SharedLazyTessellationCache::getNextRenderThreadWorkState() 
  {
    const size_t id = numRenderThreads.fetch_add(1); 
    if (id >= NUM_PREALLOC_THREAD_WORK_STATES) init_t_state = new ThreadWorkState(true);
    else                                       init_t_state = &threadWorkState[id];
    
    /* critical section for updating link list with new thread state */
    linkedlist_mtx.lock();
    init_t_state->next = current_t_state;
    current_t_state = init_t_state;
    linkedlist_mtx.unlock();
  }

  void SharedLazyTessellationCache::waitForUsersLessEqual(ThreadWorkState *const t_state,
							  const unsigned int users)
   {
     while( !(t_state->counter <= users) )
     {
       _mm_pause();
       _mm_pause();
       _mm_pause();
       _mm_pause();
     }
   }

  void SharedLazyTessellationCache::allocNextSegment() 
  {
    if (reset_state.try_lock())
    {
      if (next_block >= switch_block_threshold)
      {
        /* lock the linked list of thread states */
        
        linkedlist_mtx.lock();
        
        /* block all threads */
        for (ThreadWorkState *t=current_t_state;t!=nullptr;t=t->next)
          if (lockThread(t,THREAD_BLOCK_ATOMIC_ADD) != 0)
            waitForUsersLessEqual(t,THREAD_BLOCK_ATOMIC_ADD);
        
        /* switch to the next segment */
        addCurrentIndex();
        CACHE_STATS(PRINT("RESET TESS CACHE"));
        
#if FORCE_SIMPLE_FLUSH == 1
        next_block = 0;
        switch_block_threshold = maxBlocks;
#else
        const size_t region = localTime % NUM_CACHE_SEGMENTS;
        next_block = region * (maxBlocks/NUM_CACHE_SEGMENTS);
        switch_block_threshold = next_block + (maxBlocks/NUM_CACHE_SEGMENTS);
        assert( switch_block_threshold <= maxBlocks );
#endif
        
        CACHE_STATS(SharedTessellationCacheStats::cache_flushes++);
        
        /* release all blocked threads */
        
        for (ThreadWorkState *t=current_t_state;t!=nullptr;t=t->next)
          unlockThread(t,-THREAD_BLOCK_ATOMIC_ADD);
        
        /* unlock the linked list of thread states */
        
        linkedlist_mtx.unlock();
	
        
      }
      reset_state.unlock();
    }
    else
      reset_state.wait_until_unlocked();	   
  }
  
  
  void SharedLazyTessellationCache::reset()
  {
    /* lock the reset_state */
    reset_state.lock();

    /* lock the linked list of thread states */
    linkedlist_mtx.lock();

    /* block all threads */
    for (ThreadWorkState *t=current_t_state;t!=nullptr;t=t->next)
      if (lockThread(t,THREAD_BLOCK_ATOMIC_ADD) != 0)
        waitForUsersLessEqual(t,THREAD_BLOCK_ATOMIC_ADD);

    /* reset to the first segment */
    next_block = 0;
#if FORCE_SIMPLE_FLUSH == 1
    switch_block_threshold = maxBlocks;
#else
    switch_block_threshold = maxBlocks/NUM_CACHE_SEGMENTS;
#endif

    /* reset local time */
    localTime = NUM_CACHE_SEGMENTS;

    /* release all blocked threads */
    for (ThreadWorkState *t=current_t_state;t!=nullptr;t=t->next)
      unlockThread(t,-THREAD_BLOCK_ATOMIC_ADD);

    /* unlock the linked list of thread states */
    linkedlist_mtx.unlock();	    

    /* unlock the reset_state */
    reset_state.unlock();
  }

  void SharedLazyTessellationCache::realloc(const size_t new_size)
  {
    /* lock the reset_state */
    reset_state.lock();

    /* lock the linked list of thread states */
    linkedlist_mtx.lock();

    /* block all threads */
    for (ThreadWorkState *t=current_t_state;t!=nullptr;t=t->next)
      if (lockThread(t,THREAD_BLOCK_ATOMIC_ADD) != 0)
        waitForUsersLessEqual(t,THREAD_BLOCK_ATOMIC_ADD);

    /* reallocate data */
    if (data) os_free(data,size,hugepages);
    size      = new_size;
    data      = nullptr;
    if (size) data = (float*)os_malloc(size,hugepages);
    maxBlocks = size/BLOCK_SIZE;    

    /* invalidate entire cache */
    localTime += NUM_CACHE_SEGMENTS; 

    /* reset to the first segment */
#if FORCE_SIMPLE_FLUSH == 1
    next_block = 0;
    switch_block_threshold = maxBlocks;
#else
    const size_t region = localTime % NUM_CACHE_SEGMENTS;
    next_block = region * (maxBlocks/NUM_CACHE_SEGMENTS);
    switch_block_threshold = next_block + (maxBlocks/NUM_CACHE_SEGMENTS);
    assert( switch_block_threshold <= maxBlocks );
#endif

    /* release all blocked threads */
    for (ThreadWorkState *t=current_t_state;t!=nullptr;t=t->next)
      unlockThread(t,-THREAD_BLOCK_ATOMIC_ADD);

    /* unlock the linked list of thread states */
    linkedlist_mtx.unlock();	    

    /* unlock the reset_state */
    reset_state.unlock();
  }


  ////////////////////////////////////////////////////////////////////////////////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////////////////////////////////////

  std::atomic<size_t> SharedTessellationCacheStats::cache_accesses(0);
  std::atomic<size_t> SharedTessellationCacheStats::cache_hits(0);
  std::atomic<size_t> SharedTessellationCacheStats::cache_misses(0);
  std::atomic<size_t> SharedTessellationCacheStats::cache_flushes(0);  
  SpinLock   SharedTessellationCacheStats::mtx;  
  size_t SharedTessellationCacheStats::cache_num_patches(0);

  void SharedTessellationCacheStats::printStats()
  {
    PRINT(cache_accesses);
    PRINT(cache_misses);
    PRINT(cache_hits);
    PRINT(cache_flushes);
    PRINT(100.0f * cache_hits / cache_accesses);
    assert(cache_hits + cache_misses == cache_accesses);
    PRINT(cache_num_patches);
  }

  void SharedTessellationCacheStats::clearStats()
  {
    SharedTessellationCacheStats::cache_accesses  = 0;
    SharedTessellationCacheStats::cache_hits      = 0;
    SharedTessellationCacheStats::cache_misses    = 0;
    SharedTessellationCacheStats::cache_flushes   = 0;
  }

  struct cache_regression_test : public RegressionTest
  {
    BarrierSys barrier;
    std::atomic<size_t> numFailed;
    std::atomic<int> threadIDCounter;
    static const size_t numEntries = 4*1024;
    SharedLazyTessellationCache::CacheEntry entry[numEntries];

    cache_regression_test() 
      : RegressionTest("cache_regression_test"), numFailed(0), threadIDCounter(0)
    {
      registerRegressionTest(this);
    }

    static void thread_alloc(cache_regression_test* This)
    {
      int threadID = This->threadIDCounter++;
      size_t maxN = SharedLazyTessellationCache::sharedLazyTessellationCache.maxAllocSize()/4;
      This->barrier.wait();

      for (size_t j=0; j<100000; j++)
      {
        size_t elt = (threadID+j)%numEntries;
        size_t N = min(1+10*(elt%1000),maxN);
          
        volatile int* data = (volatile int*) SharedLazyTessellationCache::lookup(This->entry[elt],0,[&] () {
            int* data = (int*) SharedLazyTessellationCache::sharedLazyTessellationCache.malloc(4*N);
            for (size_t k=0; k<N; k++) data[k] = (int)elt;
            return data;
          });
        
        if (data == nullptr) {
          SharedLazyTessellationCache::sharedLazyTessellationCache.unlock();
          This->numFailed++;
          continue;
        }
            
        /* check memory block */
        for (size_t k=0; k<N; k++) {
          if (data[k] != (int)elt) {
            This->numFailed++;
            break;
          }
        }
        
        SharedLazyTessellationCache::sharedLazyTessellationCache.unlock();
      }
      This->barrier.wait();
    }
    
    bool run ()
    {
      numFailed.store(0);

      size_t numThreads = getNumberOfLogicalThreads();
      barrier.init(numThreads+1);

      /* create threads */
      std::vector<thread_t> threads;
      for (size_t i=0; i<numThreads; i++)
        threads.push_back(createThread((thread_func)thread_alloc,this,0,i));

      /* run test */ 
      barrier.wait();
      barrier.wait();

      /* destroy threads */
      for (size_t i=0; i<numThreads; i++)
        join(threads[i]);

      return numFailed == 0;
    }
  };

  cache_regression_test cache_regression;
};

extern "C" void printTessCacheStats()
{
  PRINT("SHARED TESSELLATION CACHE");
  embree::SharedTessellationCacheStats::printStats();
  embree::SharedTessellationCacheStats::clearStats();
}