1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "../common/tutorial/tutorial_device.h"
#include "../common/math/closest_point.h"
namespace embree {
struct TriangleMesh;
struct Instance;
/* for animation */
float g_last_time = 0.f;
float g_animate_time = 0.f;
extern "C" bool g_animate;
extern "C" bool g_userDefinedInstancing;
/* scene data */
RTCScene g_scene1 = nullptr;
RTCScene g_sceneEmbreeInstance = nullptr;
RTCScene g_sceneUserDefinedInstance = nullptr;
// scene containing all instances. will point to g_sceneEmbreeInstance or
// g_sceneUserDefinedInstance depending on g_userDefinedInstancing
RTCScene g_scene = nullptr;
RTCGeometry g_instanceEmbree[3] = { nullptr, nullptr, nullptr };
Instance* g_instanceUserDefined[3] = { nullptr, nullptr, nullptr };
TriangleMesh* g_triangle_meshes[4] = {
nullptr, nullptr, nullptr, nullptr
};
AffineSpace3fa g_instance_xfm[3];
LinearSpace3fa g_normal_xfm[3];
/* data for visualization */
const unsigned int g_num_point_queries = 10;
Vec3f g_sphere_locations[2*g_num_point_queries] = {
Vec3f( 0.00f, -0.50f, -0.25f), Vec3f(0.0f),
Vec3f(-8.25f, -0.50f, -1.25f), Vec3f(0.0f),
Vec3f(-8.00f, -2.00f, -7.75f), Vec3f(0.0f),
Vec3f(-0.50f, 1.75f, -7.25f), Vec3f(0.0f),
Vec3f( 0.00f, 1.75f, -13.00f), Vec3f(0.0f),
Vec3f( 6.75f, 1.00f, -12.25f), Vec3f(0.0f),
Vec3f( 5.75f, 1.00f, -12.25f), Vec3f(0.0f),
Vec3f( 5.50f, 0.50f, -6.50f), Vec3f(0.0f),
Vec3f( 7.25f, -3.00f, -1.00f), Vec3f(0.0f),
Vec3f(-0.25f, -0.50f, -4.25f), Vec3f(0.0f),
}; // consequtive pairs of (query point, closest point)
RTCGeometry g_spheres = nullptr;
RTCGeometry g_lines = nullptr;
unsigned int g_spheres_geomID = 111111;
unsigned int g_lines_geomID = 111112;
Vec4f g_sphere_vertex_buffer[2*g_num_point_queries];
Vec4f g_line_vertex_buffer[2*g_num_point_queries];
unsigned int g_line_index_buffer[g_num_point_queries] = {
0, 2, 4, 6, 8, 10, 12, 14, 16, 18
};
// ======================================================================== //
// User defined instancing //
// ======================================================================== //
struct Instance
{
ALIGNED_STRUCT_(16)
RTCGeometry geometry;
RTCScene object;
int userID;
AffineSpace3fa local2world;
AffineSpace3fa world2local;
LinearSpace3fa normal2world;
Vec3fa lower;
Vec3fa upper;
};
void instanceBoundsFunc(const struct RTCBoundsFunctionArguments* args)
{
const Instance* instance = (const Instance*) args->geometryUserPtr;
RTCBounds* bounds_o = args->bounds_o;
Vec3fa l = instance->lower;
Vec3fa u = instance->upper;
Vec3fa p000 = xfmPoint(instance->local2world,Vec3fa(l.x,l.y,l.z));
Vec3fa p001 = xfmPoint(instance->local2world,Vec3fa(l.x,l.y,u.z));
Vec3fa p010 = xfmPoint(instance->local2world,Vec3fa(l.x,u.y,l.z));
Vec3fa p011 = xfmPoint(instance->local2world,Vec3fa(l.x,u.y,u.z));
Vec3fa p100 = xfmPoint(instance->local2world,Vec3fa(u.x,l.y,l.z));
Vec3fa p101 = xfmPoint(instance->local2world,Vec3fa(u.x,l.y,u.z));
Vec3fa p110 = xfmPoint(instance->local2world,Vec3fa(u.x,u.y,l.z));
Vec3fa p111 = xfmPoint(instance->local2world,Vec3fa(u.x,u.y,u.z));
Vec3fa lower = min(min(min(p000,p001),min(p010,p011)),min(min(p100,p101),min(p110,p111)));
Vec3fa upper = max(max(max(p000,p001),max(p010,p011)),max(max(p100,p101),max(p110,p111)));
bounds_o->lower_x = lower.x;
bounds_o->lower_y = lower.y;
bounds_o->lower_z = lower.z;
bounds_o->upper_x = upper.x;
bounds_o->upper_y = upper.y;
bounds_o->upper_z = upper.z;
}
inline void pushInstanceId(RTCIntersectContext* ctx, unsigned int id)
{
#if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
ctx->instID[ctx->instStackSize++] = id;
#else
ctx->instID[0] = id;
#endif
}
inline void popInstanceId(RTCIntersectContext* ctx)
{
#if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
ctx->instID[--ctx->instStackSize] = RTC_INVALID_GEOMETRY_ID;
#else
ctx->instID[0] = RTC_INVALID_GEOMETRY_ID;
#endif
}
void instanceIntersectFunc(const RTCIntersectFunctionNArguments* args)
{
const int* valid = args->valid;
void* ptr = args->geometryUserPtr;
RTCIntersectContext* context = args->context;
RTCRayHitN* rays = (RTCRayHitN*)args->rayhit;
assert(args->N == 1);
if (!valid[0])
return;
Ray *ray = (Ray*)rays;
const Instance* instance = (const Instance*)ptr;
const Vec3ff ray_org = ray->org;
const Vec3ff ray_dir = ray->dir;
const float ray_tnear = ray->tnear();
const float ray_tfar = ray->tfar;
ray->org = (Vec3ff) xfmPoint (instance->world2local,ray_org);
ray->dir = (Vec3ff) xfmVector(instance->world2local,ray_dir);
ray->tnear() = ray_tnear;
ray->tfar = ray_tfar;
pushInstanceId(context, instance->userID);
rtcIntersect1(instance->object,context,RTCRayHit_(*ray));
popInstanceId(context);
const float updated_tfar = ray->tfar;
ray->org = ray_org;
ray->dir = ray_dir;
ray->tfar = updated_tfar;
}
inline void pushInstanceIdAndTransform(RTCPointQueryContext* context,
unsigned int id,
AffineSpace3fa const& w2i_in,
AffineSpace3fa const& i2w_in)
{
context->instID[context->instStackSize] = id;
// local copies of const references to fullfill alignment constraints
AffineSpace3fa w2i = w2i_in;
AffineSpace3fa i2w = i2w_in;
const unsigned int stackSize = context->instStackSize;
if (stackSize > 0) {
w2i = (*(AffineSpace3fa*)context->world2inst[stackSize-1]) * w2i;
i2w = i2w * (*(AffineSpace3fa*)context->inst2world[stackSize-1]);
}
(*(AffineSpace3fa*)context->world2inst[stackSize]) = w2i;
(*(AffineSpace3fa*)context->inst2world[stackSize]) = i2w;
context->instStackSize++;
}
inline void popInstanceIdAndTransform(RTCPointQueryContext* context)
{
context->instID[--context->instStackSize] = RTC_INVALID_GEOMETRY_ID;
}
bool instanceClosestPointFunc(RTCPointQueryFunctionArguments* args)
{
// convert geomID in the scene to instance idx (-4)
Instance* instance = g_instanceUserDefined[args->geomID - 4];
pushInstanceIdAndTransform(args->context, instance->userID, instance->world2local, instance->local2world);
bool changed = rtcPointQuery(instance->object, args->query, args->context, 0, args->userPtr);
popInstanceIdAndTransform(args->context);
return changed;
}
Instance* createInstance (RTCScene scene, RTCScene object, int userID, const Vec3fa& lower, const Vec3fa& upper)
{
Instance* instance = (Instance*) alignedMalloc(sizeof(Instance),16);
instance->object = object;
instance->userID = userID;
instance->lower = lower;
instance->upper = upper;
instance->local2world.l.vx = Vec3fa(1,0,0);
instance->local2world.l.vy = Vec3fa(0,1,0);
instance->local2world.l.vz = Vec3fa(0,0,1);
instance->local2world.p = Vec3fa(0,0,0);
instance->geometry = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);
rtcSetGeometryUserPrimitiveCount(instance->geometry,1);
rtcSetGeometryUserData(instance->geometry,instance);
rtcSetGeometryBoundsFunction(instance->geometry,instanceBoundsFunc,nullptr);
rtcSetGeometryIntersectFunction(instance->geometry,instanceIntersectFunc);
rtcSetGeometryPointQueryFunction(instance->geometry, instanceClosestPointFunc);
rtcCommitGeometry(instance->geometry);
rtcAttachGeometry(scene,instance->geometry);
rtcReleaseGeometry(instance->geometry);
return instance;
}
void updateInstance (RTCScene scene, Instance* instance)
{
instance->world2local = rcp(instance->local2world);
instance->normal2world = transposed(rcp(instance->local2world.l));
rtcCommitGeometry(instance->geometry);
}
// ======================================================================== //
// triangle mesh geometry //
// ======================================================================== //
struct TriangleMesh
{
ALIGNED_STRUCT_(16)
Vertex* vertices;
Triangle* triangles;
unsigned int num_vertices;
unsigned int num_triangles;
TriangleMesh()
: vertices(nullptr), triangles(nullptr) {}
~TriangleMesh() {
if(vertices) alignedFree(vertices);
if(triangles) alignedFree(triangles);
}
private:
TriangleMesh (const TriangleMesh& other) DELETED; // do not implement
TriangleMesh& operator= (const TriangleMesh& other) DELETED; // do not implement
};
// ======================================================================== //
// everything needed for closest point query //
// ======================================================================== //
struct ClosestPointResult
{
ClosestPointResult()
: primID(RTC_INVALID_GEOMETRY_ID)
, geomID(RTC_INVALID_GEOMETRY_ID)
{}
Vec3f p;
unsigned int primID;
unsigned int geomID;
};
bool closestPointFunc(RTCPointQueryFunctionArguments* args)
{
assert(args->userPtr);
const unsigned int geomID = args->geomID;
const unsigned int primID = args->primID;
RTCPointQueryContext* context = args->context;
const unsigned int stackSize = args->context->instStackSize;
const unsigned int stackPtr = stackSize-1;
AffineSpace3fa inst2world = stackSize > 0
? (*(AffineSpace3fa*)context->inst2world[stackPtr])
: one;
// query position in world space
Vec3fa q(args->query->x, args->query->y, args->query->z);
/*
* Get triangle information in local space
*/
const TriangleMesh *const triangle_mesh = g_triangle_meshes[geomID];
Triangle const& t = triangle_mesh->triangles[primID];
Vertex const& V0 = triangle_mesh->vertices[t.v0];
Vertex const& V1 = triangle_mesh->vertices[t.v1];
Vertex const& V2 = triangle_mesh->vertices[t.v2];
Vec3fa v0(V0.x, V0.y, V0.z);
Vec3fa v1(V1.x, V1.y, V1.z);
Vec3fa v2(V2.x, V2.y, V2.z);
/*
* Bring query and primitive data in the same space if necessary.
*/
if (stackSize > 0 && args->similarityScale > 0)
{
// Instance transform is a similarity transform, therefore we
// can comute distance insformation in instance space. Therefore,
// transform query position into local instance space.
AffineSpace3fa const& m = (*(AffineSpace3fa*)context->world2inst[stackPtr]);
q = xfmPoint(m, q);
}
else if (stackSize > 0)
{
// Instance transform is not a similarity tranform. We have to transform the
// primitive data into world space and perform distance computations in
// world space to ensure correctness.
v0 = xfmPoint(inst2world, v0);
v1 = xfmPoint(inst2world, v1);
v2 = xfmPoint(inst2world, v2);
}
else {
// Primitive is not instanced, therefore point query and primitive are
// already in the same space.
}
/*
* Determine distance to closest point on triangle (implemented in
* common/math/closest_point.h), and transform in world space if necessary.
*/
const Vec3fa p = closestPointTriangle(q, v0, v1, v2);
float d = distance(q, p);
if (args->similarityScale > 0)
d = d / args->similarityScale;
/*
* Store result in userPtr and update the query radius if we found a point
* closer to the query position. This is optional but allows for faster
* traversal (due to better culling).
*/
if (d < args->query->radius)
{
args->query->radius = d;
ClosestPointResult* result = (ClosestPointResult*)args->userPtr;
result->p = args->similarityScale > 0 ? xfmPoint(inst2world, p) : p;
result->primID = primID;
result->geomID = geomID;
return true; // Return true to indicate that the query radius changed.
}
return false;
}
// ======================================================================== //
// helpers to create scene geometry //
// ======================================================================== //
TriangleMesh* createTriangulatedSphere (const Vec3fa& p, float r)
{
// resolution of triangulated spheres
const int numPhi = 10;
const int numTheta = 4*numPhi;
/* create triangle mesh */
TriangleMesh* sphere = new TriangleMesh();
sphere->num_vertices = numTheta*(numPhi+1);
sphere->num_triangles = 2*numTheta*(numPhi-1);
sphere->vertices = (Vertex*) alignedMalloc(sizeof(Vertex)*sphere->num_vertices+1, 16);
sphere->triangles = (Triangle*) alignedMalloc(sizeof(Triangle)*sphere->num_triangles, 16);
/* create sphere */
int tri = 0;
const float rcpNumTheta = rcp((float)numTheta);
const float rcpNumPhi = rcp((float)numPhi);
for (int phi=0; phi<=numPhi; phi++)
{
for (int theta=0; theta<numTheta; theta++)
{
const float phif = phi*float(pi)*rcpNumPhi;
const float thetaf = theta*2.0f*float(pi)*rcpNumTheta;
Vertex& v = sphere->vertices[phi*numTheta+theta];
v.x = p.x + r*sin(phif)*sin(thetaf);
v.y = p.y + r*cos(phif);
v.z = p.z + r*sin(phif)*cos(thetaf);
}
if (phi == 0) continue;
for (int theta=1; theta<=numTheta; theta++)
{
int p00 = (phi-1)*numTheta+theta-1;
int p01 = (phi-1)*numTheta+theta%numTheta;
int p10 = phi*numTheta+theta-1;
int p11 = phi*numTheta+theta%numTheta;
if (phi > 1) {
sphere->triangles[tri].v0 = p10;
sphere->triangles[tri].v1 = p00;
sphere->triangles[tri].v2 = p01;
tri++;
}
if (phi < numPhi) {
sphere->triangles[tri].v0 = p11;
sphere->triangles[tri].v1 = p10;
sphere->triangles[tri].v2 = p01;
tri++;
}
}
}
return sphere;
}
TriangleMesh* createCube (const Vec3fa& p, float r)
{
/* create triangle mesh */
TriangleMesh* cube = new TriangleMesh();
cube->num_vertices = 8;
cube->num_triangles = 12;
cube->vertices = (Vertex*) alignedMalloc(sizeof(Vertex)*cube->num_vertices+1, 16);
cube->triangles = (Triangle*) alignedMalloc(sizeof(Triangle)*cube->num_triangles, 16);
/* set vertices and vertex colors */
cube->vertices[0].x = -r+p.x; cube->vertices[0].y = -r+p.y; cube->vertices[0].z = -r+p.z;
cube->vertices[1].x = -r+p.x; cube->vertices[1].y = -r+p.y; cube->vertices[1].z = +r+p.z;
cube->vertices[2].x = -r+p.x; cube->vertices[2].y = +r+p.y; cube->vertices[2].z = -r+p.z;
cube->vertices[3].x = -r+p.x; cube->vertices[3].y = +r+p.y; cube->vertices[3].z = +r+p.z;
cube->vertices[4].x = +r+p.x; cube->vertices[4].y = -r+p.y; cube->vertices[4].z = -r+p.z;
cube->vertices[5].x = +r+p.x; cube->vertices[5].y = -r+p.y; cube->vertices[5].z = +r+p.z;
cube->vertices[6].x = +r+p.x; cube->vertices[6].y = +r+p.y; cube->vertices[6].z = -r+p.z;
cube->vertices[7].x = +r+p.x; cube->vertices[7].y = +r+p.y; cube->vertices[7].z = +r+p.z;
/* set triangles and face colors */
int tri = 0;
// left side
cube->triangles[tri].v0 = 0; cube->triangles[tri].v1 = 1; cube->triangles[tri].v2 = 2; tri++;
cube->triangles[tri].v0 = 1; cube->triangles[tri].v1 = 3; cube->triangles[tri].v2 = 2; tri++;
// right side
cube->triangles[tri].v0 = 4; cube->triangles[tri].v1 = 6; cube->triangles[tri].v2 = 5; tri++;
cube->triangles[tri].v0 = 5; cube->triangles[tri].v1 = 6; cube->triangles[tri].v2 = 7; tri++;
// bottom side
cube->triangles[tri].v0 = 0; cube->triangles[tri].v1 = 4; cube->triangles[tri].v2 = 1; tri++;
cube->triangles[tri].v0 = 1; cube->triangles[tri].v1 = 4; cube->triangles[tri].v2 = 5; tri++;
// top side
cube->triangles[tri].v0 = 2; cube->triangles[tri].v1 = 3; cube->triangles[tri].v2 = 6; tri++;
cube->triangles[tri].v0 = 3; cube->triangles[tri].v1 = 7; cube->triangles[tri].v2 = 6; tri++;
// front side
cube->triangles[tri].v0 = 0; cube->triangles[tri].v1 = 2; cube->triangles[tri].v2 = 4; tri++;
cube->triangles[tri].v0 = 2; cube->triangles[tri].v1 = 6; cube->triangles[tri].v2 = 4; tri++;
// back side
cube->triangles[tri].v0 = 1; cube->triangles[tri].v1 = 5; cube->triangles[tri].v2 = 3; tri++;
cube->triangles[tri].v0 = 3; cube->triangles[tri].v1 = 5; cube->triangles[tri].v2 = 7; tri++;
return cube;
}
TriangleMesh* createPlane (
AffineSpace3fa const& M, // transformation
unsigned int R) // resolution
{
/* create triangle mesh */
TriangleMesh* plane = new TriangleMesh();
plane->num_vertices = (R+1)*(R+1);
plane->num_triangles = 2*R*R;
plane->vertices = (Vertex*) alignedMalloc(sizeof(Vertex)*plane->num_vertices+1, 16);
plane->triangles = (Triangle*) alignedMalloc(sizeof(Triangle)*plane->num_triangles, 16);
/* set vertices and vertex colors */
for (unsigned int y = 0; y <= R; ++y)
for (unsigned int x = 0; x <= R; ++x)
{
Vec3fa p((float)x/R, (float)y/R, 0.f);
Vec3fa pt = xfmPoint(M, p);
plane->vertices[y*(R+1)+x].x = pt.x;
plane->vertices[y*(R+1)+x].y = pt.y;
plane->vertices[y*(R+1)+x].z = pt.z;
}
/* set triangles and face colors */
for (unsigned int j = 0; j < R; ++j)
for (unsigned int i = 0; i < R; ++i)
{
plane->triangles[2*(j*R+i)+0].v0 = (j*(R+1)+i);
plane->triangles[2*(j*R+i)+0].v1 = (j*(R+1)+i) + (R + 1) + 1;
plane->triangles[2*(j*R+i)+0].v2 = (j*(R+1)+i) + (R + 1);
plane->triangles[2*(j*R+i)+1].v0 = (j*(R+1)+i);
plane->triangles[2*(j*R+i)+1].v1 = (j*(R+1)+i) + 1;
plane->triangles[2*(j*R+i)+1].v2 = (j*(R+1)+i) + (R + 1) + 1;
}
return plane;
}
// ======================================================================== //
// update instance transforms and perform all closest point queries //
// ======================================================================== //
void updateGeometryAndQueries(float time)
{
const float delta_time = time - g_last_time;
if (g_animate) {
g_animate_time += delta_time;
}
g_last_time = time;
g_instance_xfm[0] = AffineSpace3fa::translate(Vec3f(7.5f, 0.f, -8.f))
* AffineSpace3fa::rotate(Vec3f(0.f, 1.f, 0.f), float(pi)/2.f)
* AffineSpace3fa::rotate(Vec3f(1.f, 0.f, 0.f), 0.2f * sin(g_animate_time));
g_instance_xfm[1] = AffineSpace3fa::translate(Vec3f(0.f, 3.f + 1.5f*sin(g_animate_time), -9.f))
* AffineSpace3fa::scale(Vec3fa(1.f, 2.f, 3.f))
* AffineSpace3fa::rotate(Vec3f(0.f, 1.f, 0.f), float(pi));
AffineSpace3fa sheer = AffineSpace3fa::scale(Vec3f(1.2f));
sheer.l.vz.x = cos(g_animate_time*0.75f) * 1.0f + 0.5f;
g_instance_xfm[2] = AffineSpace3fa::translate(Vec3f(-8.5f, 0.f, -7.f))
* AffineSpace3fa::rotate(Vec3fa(0.f, 1.f, 0.f), -float(pi)/2.f)
* sheer;
assert( similarityTransform(g_instance_xfm[0], 0));
assert(!similarityTransform(g_instance_xfm[1], 0));
assert(!similarityTransform(g_instance_xfm[2], 0));
g_normal_xfm[0] = transposed(rcp(g_instance_xfm[0].l));
g_normal_xfm[1] = transposed(rcp(g_instance_xfm[1].l));
g_normal_xfm[2] = transposed(rcp(g_instance_xfm[2].l));
/* set instance transformations */
rtcSetGeometryTransform(g_instanceEmbree[0],0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&g_instance_xfm[0]);
rtcSetGeometryTransform(g_instanceEmbree[1],0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&g_instance_xfm[1]);
rtcSetGeometryTransform(g_instanceEmbree[2],0,RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,(float*)&g_instance_xfm[2]);
/* update scene */
rtcCommitGeometry(g_instanceEmbree[0]);
rtcCommitGeometry(g_instanceEmbree[1]);
rtcCommitGeometry(g_instanceEmbree[2]);
rtcCommitScene(g_sceneEmbreeInstance);
g_instanceUserDefined[0]->local2world = g_instance_xfm[0];
g_instanceUserDefined[1]->local2world = g_instance_xfm[1];
g_instanceUserDefined[2]->local2world = g_instance_xfm[2];
/* update scene */
updateInstance(g_sceneUserDefinedInstance,g_instanceUserDefined[0]);
updateInstance(g_sceneUserDefinedInstance,g_instanceUserDefined[1]);
updateInstance(g_sceneUserDefinedInstance,g_instanceUserDefined[2]);
rtcCommitScene(g_sceneUserDefinedInstance);
g_scene = g_userDefinedInstancing ? g_sceneUserDefinedInstance : g_sceneEmbreeInstance;
for (int i = 0; i < g_num_point_queries; ++i)
{
RTCPointQuery query;
query.x = g_sphere_locations[2*i+0].x;
query.y = g_sphere_locations[2*i+0].y;
query.z = g_sphere_locations[2*i+0].z;
query.radius = inf;
query.time = 0.f;
ClosestPointResult result;
RTCPointQueryContext context;
rtcInitPointQueryContext(&context);
rtcPointQuery(g_scene, &query, &context, nullptr, (void*)&result);
assert(result.primID != RTC_INVALID_GEOMETRY_ID || result.geomID != RTC_INVALID_GEOMETRY_ID);
g_sphere_locations[2*i+1] = result.p;
g_sphere_vertex_buffer[2*i+0] = Vec4f(g_sphere_locations[2*i+0], 0.2f);
g_sphere_vertex_buffer[2*i+1] = Vec4f(g_sphere_locations[2*i+1], 0.2f);
g_line_vertex_buffer[2*i+0] = Vec4f(g_sphere_locations[2*i+0], 0.05f);
g_line_vertex_buffer[2*i+1] = Vec4f(g_sphere_locations[2*i+1], 0.05f);
}
rtcCommitGeometry(g_spheres);
rtcCommitGeometry(g_lines);
rtcCommitScene(g_scene);
}
/* called by the C++ code for initialization */
extern "C" void device_init (char* cfg)
{
/* create scene data */
g_triangle_meshes[0] = createPlane(
AffineSpace3fa::translate(Vec3fa(0.f, -3.f, 0.f)) *
AffineSpace3fa::scale(Vec3fa(10.f, 4.f, 4.f)) *
AffineSpace3fa::rotate(Vec3fa(1.f, 0.f, 0.f), float(pi)/2) *
AffineSpace3fa::translate(Vec3fa(-0.5f, -0.5f, 0.f)),
1);
g_triangle_meshes[1] = createPlane(
AffineSpace3fa::translate(Vec3fa(0.f, -1.f, 2.f)) *
AffineSpace3fa::scale(Vec3fa(10.f, 4.f, 4.f)) *
AffineSpace3fa::translate(Vec3fa(-0.5f, -0.5f, 0.f)),
8);
g_triangle_meshes[2] = createTriangulatedSphere(Vec3fa(3.f, -2.f, 0.0f), 1.f);
g_triangle_meshes[3] = createCube(Vec3fa(-3.f, -2.f, 0), 1.0f);
/* create embree scene */
g_sceneEmbreeInstance = rtcNewScene(g_device);
g_sceneUserDefinedInstance = rtcNewScene(g_device);
/* create scene that will be instanced */
g_scene1 = rtcNewScene(g_device);
// add the four objects to all three scenes
{
RTCScene scenes[3] = { g_scene1, g_sceneEmbreeInstance, g_sceneUserDefinedInstance };
for (int m = 0; m < 4; ++m)
for (int s = 0; s < 3; ++s)
{
RTCGeometry geom = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_TRIANGLE);
rtcSetGeometryPointQueryFunction(geom, closestPointFunc);
rtcCommitGeometry(geom);
rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_VERTEX,0,RTC_FORMAT_FLOAT3,g_triangle_meshes[m]->vertices, 0,sizeof(Vertex), g_triangle_meshes[m]->num_vertices);
rtcSetSharedGeometryBuffer(geom,RTC_BUFFER_TYPE_INDEX, 0,RTC_FORMAT_UINT3, g_triangle_meshes[m]->triangles,0,sizeof(Triangle),g_triangle_meshes[m]->num_triangles);
rtcAttachGeometryByID(scenes[s], geom, m);
rtcReleaseGeometry(geom);
rtcCommitGeometry(geom);
}
rtcCommitScene(g_scene1);
}
/* compute bounding box of the scene that will be instanced */
Vec3f bbmin(inf);
Vec3f bbmax(neg_inf);
for (int i = 0; i < 4; ++i) {
TriangleMesh* mesh = g_triangle_meshes[i];
for (unsigned int v = 0; v < mesh->num_vertices; ++v) {
Vertex* vert = mesh->vertices+v;
bbmin = min(bbmin, Vec3f(vert->x, vert->y, vert->z));
bbmax = max(bbmax, Vec3f(vert->x, vert->y, vert->z));
}
}
/* instantiate geometry */
for (unsigned int i = 0; i < 3; ++i) {
g_instanceEmbree[i] = rtcNewGeometry (g_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(g_instanceEmbree[i], g_scene1);
rtcSetGeometryTimeStepCount(g_instanceEmbree[i], 1);
rtcAttachGeometryByID(g_sceneEmbreeInstance, g_instanceEmbree[i], 4+i);
rtcReleaseGeometry(g_instanceEmbree[i]);
rtcCommitGeometry(g_instanceEmbree[i]);
g_instanceUserDefined[i] = createInstance(g_sceneUserDefinedInstance, g_scene1, i, bbmin, bbmax);
}
{
// add visualization spheres to both scenes
RTCScene scenes[2] = { g_sceneEmbreeInstance, g_sceneUserDefinedInstance };
for (unsigned int s = 0; s < 2; ++s)
{
g_spheres = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_SPHERE_POINT);
rtcSetSharedGeometryBuffer(g_spheres, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, g_sphere_vertex_buffer, 0, sizeof(Vec4f), 2*g_num_point_queries);
rtcAttachGeometryByID(scenes[s], g_spheres, g_spheres_geomID);
rtcReleaseGeometry(g_spheres);
rtcCommitGeometry(g_spheres);
g_lines = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
rtcSetSharedGeometryBuffer(g_lines, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, g_line_vertex_buffer, 0, sizeof(Vec4f), 2*g_num_point_queries);
rtcSetSharedGeometryBuffer(g_lines, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, g_line_index_buffer, 0, sizeof(unsigned int), g_num_point_queries);
rtcAttachGeometryByID(scenes[s], g_lines, g_lines_geomID);
rtcReleaseGeometry(g_lines);
rtcCommitGeometry(g_lines);
}
}
updateGeometryAndQueries(0.f);
}
inline Vec3fa face_forward(const Vec3fa& dir, const Vec3fa& _Ng) {
const Vec3fa Ng = _Ng;
return dot(dir,Ng) < 0.0f ? Ng : neg(Ng);
}
/* task that renders a single screen tile */
Vec3fa renderPixelStandard(float x, float y, const ISPCCamera& camera, RayStats& stats)
{
RTCIntersectContext context;
rtcInitIntersectContext(&context);
/* initialize ray */
Ray ray(Vec3fa(camera.xfm.p),
Vec3fa(normalize(x*camera.xfm.l.vx + y*camera.xfm.l.vy + camera.xfm.l.vz)),
0.0f, inf, 0.0f, -1,
RTC_INVALID_GEOMETRY_ID, RTC_INVALID_GEOMETRY_ID);
/* intersect ray with scene */
rtcIntersect1(g_scene, &context, RTCRayHit_(ray));
RayStats_addRay(stats);
/* shade pixels */
if (ray.geomID != RTC_INVALID_GEOMETRY_ID)
{
if (ray.geomID == g_spheres_geomID)
{
if (ray.primID % 2 == 0) return Vec3fa(0.8f, 0.2f, 0.2f);
else return Vec3fa(1.0f, 1.0f, 1.0f);
}
if (ray.geomID == g_lines_geomID)
{
return Vec3fa(0.7f, 0.3f, 0.7f);
}
/* calculate shading normal in world space */
Vec3fa Ns = ray.Ng;
if (ray.instID[0] != RTC_INVALID_GEOMETRY_ID)
{
if (g_userDefinedInstancing)
Ns = xfmVector(g_instanceUserDefined[ray.instID[0]]->normal2world, Vec3fa(Ns));
else
// convert geomID (ray.instID) in the scene to instance idx (-4)
Ns = xfmVector(g_normal_xfm[ray.instID[0]-4], Vec3fa(Ns));
}
Ns = face_forward(ray.dir,normalize(Ns));
return 0.5f * Ns + Vec3fa(0.5f, 0.5f, 0.5f);
}
return Vec3fa(0.0f);
}
/* renders a single screen tile */
void renderTileStandard(int taskIndex,
int threadIndex,
int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
const unsigned int tileY = taskIndex / numTilesX;
const unsigned int tileX = taskIndex - tileY * numTilesX;
const unsigned int x0 = tileX * TILE_SIZE_X;
const unsigned int x1 = min(x0+TILE_SIZE_X,width);
const unsigned int y0 = tileY * TILE_SIZE_Y;
const unsigned int y1 = min(y0+TILE_SIZE_Y,height);
for (unsigned int y=y0; y<y1; y++) for (unsigned int x=x0; x<x1; x++)
{
/* calculate pixel color */
Vec3fa color = renderPixelStandard((float)x,(float)y,camera,g_stats[threadIndex]);
/* write color to framebuffer */
unsigned int r = (unsigned int) (255.0f * clamp(color.x,0.0f,1.0f));
unsigned int g = (unsigned int) (255.0f * clamp(color.y,0.0f,1.0f));
unsigned int b = (unsigned int) (255.0f * clamp(color.z,0.0f,1.0f));
pixels[y*width+x] = (b << 16) + (g << 8) + r;
}
}
/* task that renders a single screen tile */
void renderTileTask (int taskIndex, int threadIndex, int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera,
const int numTilesX,
const int numTilesY)
{
renderTileStandard(taskIndex,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
}
extern "C" void renderFrameStandard (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
/* render all pixels */
const int numTilesX = (width +TILE_SIZE_X-1)/TILE_SIZE_X;
const int numTilesY = (height+TILE_SIZE_Y-1)/TILE_SIZE_Y;
parallel_for(size_t(0),size_t(numTilesX*numTilesY),[&](const range<size_t>& range) {
const int threadIndex = (int)TaskScheduler::threadIndex();
for (size_t i=range.begin(); i<range.end(); i++)
renderTileTask((int)i,threadIndex,pixels,width,height,time,camera,numTilesX,numTilesY);
});
}
/* called by the C++ code to render */
extern "C" void device_render (int* pixels,
const unsigned int width,
const unsigned int height,
const float time,
const ISPCCamera& camera)
{
updateGeometryAndQueries(time);
}
/* called by the C++ code for cleanup */
extern "C" void device_cleanup ()
{
rtcReleaseScene (g_scene1); g_scene1 = nullptr;
rtcReleaseScene (g_sceneEmbreeInstance); g_sceneEmbreeInstance = nullptr;
rtcReleaseScene (g_sceneUserDefinedInstance); g_sceneUserDefinedInstance = nullptr;
for (int i = 0; i < 4; ++i)
{
if (g_triangle_meshes[i])
delete g_triangle_meshes[i];
}
for (int i = 0; i < 3; ++i)
{
if (g_instanceUserDefined[i])
delete g_instanceUserDefined[i];
}
rtcReleaseDevice(g_device); g_device = nullptr;
}
} // namespace embree
|